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Abiotic stresses strongly affect plant growth, development, and quality of production; final crop yield can be really
compromised if stress occurs in plants’ most sensitive phenological phases. Additionally, the increase of crop stress
tolerance through genetic improvements requires long breeding programmes and different cultivation environments for
crop performance validation. Biostimulants have been proposed as agronomic tools to counteract abiotic stress. Indeed,
these products containing bioactive molecules have a beneficial effect on plants and improve their capability to face
adverse environmental conditions, acting on primary or secondary metabolism. Many companies are investing in new
biostimulant products development and in the identification of the most effective bioactive molecules contained in different
kinds of extracts, able to elicit specific plant responses against abiotic stresses. Most of these compounds are unknown
and their characterization in term of composition is almost impossible; therefore, they could be classified on the basis of
their role in plants. Biostimulants have been generally applied to high-value crops like fruits and vegetables; thus, in this
review, we examine and summarise literature on their use on vegetable crops, focusing on their application to counteract
the most common environmental stresses.
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1. Abiotic Stresses

Plants are continuously subjected to a multitude of stressful events, from seed germination through to the whole life cycle.
These stresses are commonly divided into two categories—biotic and abiotic stresses—depending on the nature of the
trigger factor. The first are caused by other living organisms, including insects, bacteria, fungi, and weeds that affect plant
development and productivity. The second are generally linked with the climatic, edaphic, and physiographic components
of the environment, when they are limiting factors of plant growth and survival. The most important abiotic stresses limiting
agricultural productivity, almost all over the world, are drought, salinity, non-optimal temperatures, and low soil fertility.
Among these, drought, and nutrient deficiencies are major problems, mostly in developing countries where the incomes of
rural people depend on agriculture . Actually, in “The State of Food and Agriculture 2007”, FAO reported that only 3.5%
of the global land area is not affected by some environmental constraints. In 1982, Boyer estimated that yield losses
caused by unfavourable environments were as much as 70% @Bl Farooq et al. [ reported that drought induced a
reduction of yield between 13% and 94% in several crops, depending on the intensity and duration of the stress.
Afterwards, Cramer et al. B estimated the impacts of different abiotic stresses on crop production in terms of the
percentage of global land area affected, considering the 2000 and 2007 FAO reports. They also referred to the increasing
number of publications focused on this topic between 2001 and 2011. The exact impact of these changes on agricultural
systems is extremely difficult to predict and it depends on numerous parameters that are all not always included in
predictive models. Even if some projections show that positive and negative outcomes on crop production could be
balanced in the medium term, several studies agree that in the long term, the negative ones will prevail €, Based on
future scenarios, adaptation and mitigation are essential to increase the resilience capacity of agricultural systems and to
ensure crops yield and quality. Since environmental conditions cannot be controlled, several strategies on different levels
are required, such as agronomical techniques or breeding of more tolerant cultivars &,

In 2010, at the society’s annual conference, Vegetable Breeding and Stress Physiology working groups of the American
Society for Horticultural Sciences focused particularly on the “Improvement of Horticultural Crops for Abiotic Stress
Tolerance” considering the effects of climate change &. Up to now, most studies on climate change impacts focus on
major crops, and only few papers pay attention to fruit and vegetable in terms of production, quality, and supply chain 19
(21 An important aspect to take into consideration is the effect of the combination of different stressful factors. Most of the
time, crops are subjected to several abiotic stresses that occur simultaneously in the field. In these situations, studying the
stresses separately is not enough because plant response is unique and cannot be predicted by the reply obtained when



each factor is applied individually 12131141 noreover, biotic and abiotic components typically interact in an ecosystem.
For instance, environmental conditions affect plant-pest interaction in different ways, by decreasing plant tolerance or
increasing the risk of pathogen infection (L5161,

Focusing on horticultural species, the tolerance to abiotic stresses is an important trait because their cash value is usually
higher than field crops, they require more resources for farming and because they provide a source of many nutrients,
fibre, minerals, and carbohydrates, which are essential in a healthy diet 12, Food and Agriculture Organization (FAO)
reports that about 90% of essential vitamin C and 60% of vitamin A for human comes from vegetables. Indeed, low fruit
and vegetable intake is a major contributing risk factor to several widespread and debilitating nutritional diseases.
According to the Global Burden of Disease Study, 3.4 million deaths can be attributed to low consumption of fruit and 1.8
million to low vegetables diets worldwide 18! Therefore, growing high-quality vegetables becomes one of the most
important goals of current agriculture, in order to meet the needs of the population and the increasing demand for fruit and
vegetables. Abiotic stresses do not only affect the yield but also the quality of these products, triggering morphological,
physiological and biochemical changes that can alter the visual appearance and/or the nutraceutical value in a way that
the product could become unmarketable 2. Bisbis et al. 1] investigated the double effects of elevated temperature and
increased CO, on the physiology of different vegetables. They observed several responses according to plant species
and severity of the stress, taking into consideration the possible adaptation strategies that could be implemented in order
to mitigate the effects of climate change. Nonetheless, these mechanisms are still under-researched and should be
studied in depth, because not only different species but different cultivars also could respond differently to the same
environmental stress. For example, cultivars with low levels of antioxidants are particularly vulnerable to oxidative stress
compared to those with high antioxidant activity 2A[21[22]23] Thjs aspect has a particular importance as selection criterion
in the choice of appropriate cultivars for a specific situation. Oxidative stress is a common phenomenon caused by several
adverse conditions; it generally occurs when the balance between the production of reactive oxygen species (ROS) and
the quenching activity is upset by a stressful event 24, Low levels of ROS are normally produced by different reactions
during physiological metabolisms like photosynthesis or respiration, and they play an important signaling role in plant
growth and development. Their amount dramatically increases under abiotic stress conditions and, if not controlled could
result in cellular damage and death. Besides their toxicity to proteins, lipids or nucleic acids, the increased production of
ROS under stressful conditions plays a key role in the complex signaling network of plants stress responses. Their
concentration is maintained at non-toxic levels by the activity of the antioxidant system: a wide range of enzymatic or non-
enzymatic antioxidant molecules are accumulated in plant tissues to quench ROS induced by stress [22[26127][28]
Moreover, the maintenance of this equilibrium is also dependent on numerous factors, such as the timing of stress
application, its intensity and duration. Indeed, moderate or controlled stress conditions could have a positive effect on
quality traits of several crops 22, For example, water deprivation might be a useful crop management strategy to improve
the quality of lettuce and fleshy fruits in terms of nutritive and health-promoting value and taste, by stimulating the
secondary metabolism and concentration of different phytochemicals such as a-tocopherol, 3-carotene, flavonoid and so
on [BUBY Besides the production of ROS scavenging compounds, plants also increase the biosynthesis and accumulation
of compatible solutes with an osmoprotective role, like sugars and proline.

Plants generally reply to non-optimal environmental conditions both with short- and long-term adaptation strategies, by the
activation and regulation of the expression of specific stress associated genes [221(33],

Since plants are sessile organisms and they have to cope with adverse external conditions; all these mechanisms are
essential for their survival. These strategies are effective if they are activated in time, in order to set a defense response
and anticipate the environmental changes that might affect plant growth irreversibly. The trade-off between growth and
acclimation metabolisms results in a sort of fithess cost for plants, since energy and nutrients normally destined to growth
and production are intended for stress responsive mechanisms 341,

Agronomic management conducted in order to enhance plant tolerance towards abiotic stresses evolved over the
centuries due to the technologic progress, climate change, scientific knowledge, and farmers’ experiences. The choice of
the correct cultivar, the best growing period, the sowing density, and the amount of water or fertilizers are some of the
most common strategies applied to mitigate the negative effects of abiotic stresses [, Protected cultivation is a cropping
technique adopted to preserve plants from unfavourable outdoor conditions. It is mainly suited to vegetables and
floriculture production in a non-optimal environment, through the control of temperatures, radiation or atmospheric
composition. Another agronomical strategy, especially applied in vegetable crops, is soilless cultivation. This approach
allows controlling of water and nutrients, avoiding the use of soil for cultivation and all the problems related to it, like poor
quality or contamination.



Grafting is an additional tool adopted to counteract environmental stresses and increase tolerance in vegetable crops.
This technique is applied especially to high-yielding fruits and vegetables such as cucurbits and solanaceous to enhance
tolerance against saline soil, nutrient or water deficiency, heavy metals or pollutants toxicity 221381371,

Agronomical strategies are essential in mitigating the negative effect of several abiotic stresses, but sometimes their
application is not enough. Moreover, current experiments aim to transfer one or more genes involved in signaling or
regulatory pathways, or genes encoding to molecules, such as osmolytes and antioxidants, conferring tolerance to a
specific abiotic stress 28], Several functional and regulatory genes involved in abiotic stress tolerance have been identified
and studied. Results of these studies can be exploited for genetic improvement aiming to introduce tolerance traits in
cultivated crops. Since different physiological traits related to stress tolerance are under multigenic control, the
manipulation of a single gene generally is not enough. Hence, scientists have paid more attention to regulatory genes,

including transcription factors, due to their ability to regulate a vast array of downstream stress-responsive genes at a time
[391[40][41]

However, the huge existing genetic variability among vegetable species, the lack of knowledge about minor cultivars
genome, the complex responses triggered by abiotic stress conditions and the limited strategies currently available make
genetic improvement really difficult and often inefficient. Moreover, besides the wide diversity of germplasms available,
plant tolerance to stress depends both on stress features such as duration, severity, and frequency, as well as the affected
tissues and development stages of crops [241[42](43](44]

Additionally, the increase of crop tolerance through genetic improvements requires many years of work and different
cultivation environments that cannot be always taken into consideration. As a result, several new cultivars that can be
used by the growers are released each year.

Another technique widely used for developing stress tolerance in plants is in vitro selection. This culture-based tool allows
better understanding of several plants’ physiological and biochemical responses to adverse environmental conditions. It
has been applied specially to obtain salt/ and drought/tolerant lines in a wide range of plant species, including vegetables
451 |n vitro selection is based on the induction of a genetic variation among cells, tissues or organs, their exposure to a
stressor, and the subsequent regeneration of the whole organism starting from the surviving cells 28l Even if in vitro
selection is a less expensive and time-saving approach compared with classic molecular engineering, some limitations,
mostly concerning the stability of the selected traits and epigenetic adaptation, still exist.

In addition to these strategies, it has been observed that stress tolerance can also be induced by biostimulants or specific
bioactive compounds, if they are applied on vegetable crops when they really need to be protected 2Z28l49] Bjostimulant
application on horticultural crops under environmental stress conditions will be discussed in detail below.

2. Biostimulants

Biostimulant products have been considered innovative agronomic tools as demonstrated by the increase of scientific
publications and by the constant expansion of their market 2. France, Italy, and Spain are the leading EU countries in the
production of biostimulants 2. According to a new report by Grand View Research, Inc., the biostimulant market size is
expected to reach USD 4.14 billion by 2025 2, The complex nature of the composition of these products and the wide
range of molecules contained makes it complicated to understand and define which compounds are the most active. The
isolation and study of a single component is almost impossible and the efficacy of a biostimulant is not due to a single
compound but is the consequence of the synergistic action of different bioactive molecules. Moreover, the application
rules and time are not always clear. For all these reasons, the European Commission developed a proposal for a new
regulatory framework and a draft for a new fertilizer regulation was prepared in 2016. The amendments to the proposal of
the European Commission were adopted by the European Parliament in October 2017, while the legislative resolution on
the proposal was approved on 27 March 2019 [531[541[55],

Plant biostimulants are defined as products obtained from different organic or inorganic substances and/or
microorganisms, that are able to improve plant growth, productivity and alleviate the negative effects of abiotic stresses
[B8II57]. Mineral elements, vitamins, amino acids, and poly- and oligosaccharides, trace of natural plant hormones are the
most known components. However, it is important to underline that the biostimulant activity must not depend on the
product’s nutrients or natural plant hormones content. The mechanisms activated by biostimulants are often difficult to
identify and are still under investigation 28!, High-throughput phenotyping and omic technologies seem to be useful
approaches to understand biostimulants activity and hypothesize a mode of action BB They can act directly on plant
physiology and metabolism by improving soil conditions (62831, They are able to modify some molecular processes that
allow to improve water and nutrient use efficiency of crops, stimulate plant development, and counteract abiotic
stresses 47 by enhancing primary and secondary metabolism [B3IE163],



One of the key points of the discussion is about the application of these products in stressful conditions and their role as
nutrients, not with a curative function. In particular, if a product has a direct effect against biotic stresses, it should not be
included in the biostimulant category but should be registered as plant protection products.

2.1 Biostimulants and Crop Tolerance to Abiotic Stresses

Table 1 is a summary of biostimulant products or bioactive molecules from different origins that have been evaluated for
amelioration of abiotic stresses in several vegetables species. The biostimulants effectiveness to counteract the stressful
condition depends on several factors, such as timing of application and their mode of action. The application of
biostimulants can be carried out with different timings: before the stress affects the cultivation, during the stress, or even
after. They could be applied on seeds, when plants are in early stages of growth, or when crops are fully developed,
depending on the desired results (84, As general consideration, biostimulants that contain anti-stress compounds, such as
proline or glutamic acid, can be applied when the stress occurs or during stress conditions. On the contrary, those that are
involved in the activation of bioactive compounds biosynthesis must be applied before the stress occurs. Proper timing of
application during crop development differs from species to species and it also depends on the most critical phases for
crop productivity. Thus, the identification of the right time of biostimulant application is as important as the determination of
the exact dose, in order to avoid waste of product, high production costs, and unexpected results. Biostimulants can be
applied as foliar spray or to the roots, at sowing for protecting the seedling in the early development stages, in a floating
system nutrient solution or during blooming or fruit setting. There is no general recipe that works for a crop species and in
each stress situation.

The protective role of biostimulants on plants has been increasingly studied. These products are able to counteract
environmental stress such as water deficit, soil salinization, and exposure to sub-optimal growth temperatures in several
ways BEI6S]66]  They improve plant performance, enhance plant growth and productivity, interact with several
processes involved in plant responses to stress, and increase the accumulation of antioxidant compounds that allow
decrease in plant stress sensitivity.

Table 1. Examples of biostimulant products or substances with a biostimulant effect on horticultural crops to counteract
abiotic stress conditions.

APPLICATION
SEVERITY BIOSTIMULANT
METHODS
ABIOTIC AND TIME PRODUCT OR BENEFICIAL
DOSE AND NUMBER CROP REFERENCE
STRESS OF SUBSTANCES WITH A OF EFFECTS

EXPOUSURE BIOSTIMULANT EFFECT
TREATMENTS



Chilling
or cold
stress

6 °C for 6
days

10, 12 °C for
7 days /15
°Cfor 7, 10
days

-6 °C for 5
nights

-3°Cfor4dh

4 °C for 8
days or nights
/6 °C for 8
days only to
the roots

Asahi SL (Sodium para-
nitrophenolate, sodium
ortho-nitrophenolate,
sodium 5-nitroguaiacolate)

| Goémar Goteo

0.1% Foliar spray (3)

(Composition (w/v):
organic substances 1.3—
2.4%, phosphorus (P,0s).
24.8%, potassium (K,0)
.4.75%)

Flavobacterium glaciei,

Pseudomonas
Seed

frederiksbergensis, - ) .
inoculation

Pseudomonas
vancouverensis

Pepton 85/16 (enzymatic
hydrolysates obtained from
animal haemoglobin. L-a
amino acids (84.83%) and

free amino acids (16.52%), a
2Lha™ 4L

ha™!

Injection into

organic-nitrogen content .
the soil (5x)

(12%), mineral-nitrogen
content (1.4%), potassium
content (4.45%), iron
content (4061 ppm), very
low heavy-metal content)

0.4,0.8,1.6 g Soil application

Pepton 85/16
P Lt (1%)

Terra-Sorb® Foliar (Free
amino acids (ASP, SER,
GLU, GLY, HIS, ARG,
THR, ALA, PRO, CIS,
TYR, VAL, MET, LYS, ILE,
LEU, PHE, TRP) 9,3%
(w/w), Total amino acids
12% (w/w), Total nitrogen 3 mL L™t
(N) 2,1% (w/w), Organic

Nitrogen (N) 2,1% (w/w),

Boron (B) 0,02% (w/w),

Manganese (Mn) 0,05%

(w/w), Zinc (Zn) 0,07%

(w/w), Organic matter

14,8% (w/w))

Foliar spray (3x)

Chlorophyll a and

Coriandrum carotenoids

[65]
sativum L. 1Fv/IFm 1E 1gs
1Ci
1shoot height
troot length
thiomass
accumulation
Sol. Lelectrolyte
olanum
) leakage !lipid (67]i68)
lycopersicum T
peroxidation
tproline
accumulation
1SOD, CAT, APX,
POD, GR activity
F ) tnew roots
ragaria x
9 t1flowering tfruit 691
ananassa .
weight
tfresh and dry
Lactuca . [z0]
. weight 1SLA
sativa L.
1RGR
Lactuca troots fresh
sativa L. var.  weight 1green (l

capitata cover %



3°Cfor48h

5-aminolevulinic acid

0, 1, 10, 25,
50 ppm (15
ppm ( Seed soaking/ .
mL for seed . . Capsicum
] foliar spray/soil
soaking and annuum
) drench (1x)
25 mL for soil
drench)

lvisual injuring
tchlorophyll
tRWC 1gs
Imembrane
permeability
1shoot and root
mass 1SOD
activity



Drought
stress

Occlusion of
xylem vessels

No irrigation
for 5 days

50% ET

No irrigation
until
symptoms of
wilting appear

No irrigation
for 12 days

No irrigation
for 12 days

No irrigation
for 7 days

No irrigation
for 2 days

Azospirillum brasilense
(BNM65)

Megafol® (Composition
(w/v): total nitrogen (N)
3.0% (36.6 g L™Y; organic
nitrogen (N) 1.0% (12.2 g
L™Y); ureic nitrogen (N)
2.0% (24.4 g L™Y;
potassium oxide (K,0)

2mLL?

soluble in water 8.0%
(97.6 g); organic carbon
(C) of biological origin
9.0% (109.8 g L™1)

Ascophyllum nodosum 0.50%

Pseudomonas spp. (P.
putida P. fluorescens)

Achromobacter piechaudii
(ARVS)

Achromobacter piechaudii
(ARVS)

Ascophyllum nodosum 0.33%

Ascophyllum nodosum +
amino acids

Seed
inoculation

Foliar spray (1x)

Foliar spray and
drench

Seed
inoculation

Seedling
inoculation

Seedling
inoculation

Foliar spray (2x)

Soil application
(1x)/ foliar spray
(3%)

Solanum
lycopersicum

Solanum
lycopersicum

Spinacia
oleracea

Pisum
sativum

Solanum
lycopersicum

Capsicum
annuum

Solanum
lycopersicum

Brassica
oleracea var.
italica

theight plants
1dry weight
1xylem vessel
area

tleaf area
tRLWC

TRLWC tleaf
area tfresh and
dry weight 1SLA
1gas exchange

tgrain yield troot
growth tshoot
length tnumber
of pods per plant
tchlorophyll

tfresh and dry
weight of
seedling tplant
growth Lethylene

1 fresh and dry
weight of
seedling rplant
growth

tRWC tplant
growth tfoliar
density
tchlorophyll tlipid
peroxidation
tproline tsoluble
sugars

tPn 1gs
tchlorophyll

77

7]

78]



250, 500 ppm .
1CAT activity

) ) o o (GA3) 0.01, ) . .

40, 70% field Gibbrellic acid and titanium 0.03% Stems and foliar  Ocimum Llipid (801

8 0
capacity dioxide o spray (2x) basilicum peroxidation

(titanium

. tLRWC
nanoparticles)
Solanum tplant biomass

Noirrigation  VIVA® - 2x P (81l

lycopersicum  troots biomass

. Pseudomonades, Bacillus . 1CAT, GPX
60, 40% field . Seed Ocimum o g2
. lentus, Azospirillum - . . . activity 82
capacity . inoculation basilicum
brasilens tchlorophyll

tgrowth tHI
tWUE tFv/Fm
1Pl tsoluble
sugars tfree

. ) Cucurbita . 83]
60, 40% ET Moringa leaf extract 3% Foliar spray (2x) proline

epo
pep Lelectrolyte
leakage
tmembrane

stability
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