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Peroxisome proliferator-activated receptors (PPARS) are non-steroid nuclear receptors, which dimerize with the
retinoid X receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of
target genes. Recently, peroxisome proliferator-activated receptor (PPAR)-a and y isoforms have been gaining

consistent interest in neuropathology and treatment of neuropsychiatric disorders.
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| 1. Introduction

Peroxisome proliferator-activated receptors (PPARS) are non-steroid nuclear receptors, which dimerize with the
retinoid X receptor (RXR) and bind to PPAR-responsive regulatory elements (PPRE) in the promoter region of
target genes (Figure 1) [Il. PPARs are expressed in many cellular types and tissues and exhibit differences in
ligand specificity and activation of metabolic pathways [&. In humans, among all known transcriptional factors
belonging to the nuclear receptor superfamily, three isoforms of PPARs have been characterized: PPAR-a, PPAR-
/5, and PPAR-y, also known as NR1C1, NR1C2, and NR1C3, respectively . PPARs are a target for fatty acids
(unsaturated, mono-unsaturated, and poly-unsaturated), for which they mediate binding and transport, as well as
oligosaccharides, polyphenols, and numerous synthetic ligands [, Furthermore, they are involved in a series of
molecular processes, ranging from peroxisomal regulation and mitochondrial B-oxidation to thermogenesis and
lipoprotein metabolism Bl. PPAR distribution changes in different organs and tissues. In rodent central nervous
system, the three isoforms are widely co-expressed across brain areas and in circuitry that are responsible for
mediating stress-responses, which supports a role in several neuropsychopathologies by mediating anti-
inflammatory and metabolic actions B Intriguingly, both synthetic and endogenously-produced PPAR agonists

have shown benefits for treatment of mood disorders and neurological diseases [&l.
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Figure 1. Schematic representation of PPAR-a and PPAR-y signal cascade following their activation by
endogenous or synthetic ligands. PPAR-a endogenous and synthetic agonists, including PEA and the fibrates,
activate PPAR-a that dimerizes with the retinoid X-receptor (RXR) and activates the calcium influx through

transcriptional regulation of cyclic AMP response element-binding protein (CREB), which in turn promotes
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hippocampal brain derived neurotropic factor (BDNF) signaling cascade. PPAR-a activation also upregulates both
the steroidogenic acute regulatory protein (StAR), which forms a complex with cholesterol and translocator protein
(TSPO) allowing the entry of cholesterol into the inner mitochondria membrane where cholesterol is transformed
into pregnenolone (PE), the precursors of all neurosteroids, through the cholesterol side-chain cleavage enzyme
(P450scc). PE, which is translocated to cortical and hippocampus glutamatergic pyramidal neurons is then
converted in allopregnanolone. Allopregnanolone enhances y-aminobutyric acid action at GABA, receptors (210
and improves emotional behavior. Allopregnanolone may also exert an important anti-inflammatory action by
binding at a2-containing GABA, receptor subtypes located in glial cells, through inhibition of toll-like 4 receptor/NF-
kB pathway 1. PPAR-y agonists potentiate the PPAR-y-induced inhibitory action on NF-kB, which is responsible
for microglial activated status, neuroinflammation and neurodegeneration. Moreover, NF-kB inhibits the
hippocampal BDNF signaling cascade 123l Thus, PPAR-y agonists exert an anti-inflammatory effect, by
decreasing pro-inflammatory cytokines IL-6, IL-13, TNF-a, as well as the JAK-2/STAT3 pathway, which is involved
in immunity processes. Additionally, activation of PPAR-y plays a neuroprotective action by decreasing the

inhibition on BDNF signaling pathway.

By enhancing free fatty acid uptake, PPARs may improve insulin sensitivity and beta-cell properties in
hyperglycemia in patients affected with type 2 diabetes 24!, For example, thiazolidinediones, including pioglitazone
and rosiglitazone, are synthetic ligands that selectively bind at PPAR-y and are used clinically for the treatment of
diabetes 12, However, given their side effects on weight gain, congestive heart failure, bone fractures, and macular
and peripheral edema, the Food and Drug Administration (FDA) has limited their use 18, PPAR-a synthetic ligands,
including the fibrates (fenofibrate, clofibrate) (depicted in Figure 2) are characterized by a much safer
pharmacological profile and are widely prescribed to lower high cholesterol blood levels and triglycerides 2. While
PPAR-a and y endogenous and synthetic ligands have been well characterized for the treatment of diabetes and

cardiovascular disease, their central neuronal effects on behavior and neuropathology have only emerged recently
[
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Figure 2. List of endogenous and synthetic PPAR- a, PPAR-y and dual PPAR- a/y ligands.

The efficacy of PPAR-y agonists on behavior was initially shown in rodent models of anxiety and depression, where
the administration of rosiglitazone significantly reduced the immobility time in the forced swim test 18 This
antidepressant effect was also observed in clinical trials where administration of pioglitazone or rosiglitazone
improved symptoms in patients with major depression 28, Importantly, the improvement in depression correlated
with normalization of inflammatory biomarkers (e.g., IL-6) and insulin resistance, suggesting an intriguing link
among PPAR-y-activation, depression, inflammation, and metabolism 1€,

These findings highlight the potential therapeutic value of PPAR-y agonists in the treatment of neuropsychiatric
disorders 181819  Fyrthermore, they encourage developing new antidepressant drugs beyond the traditional
selective serotonin reuptake inhibitors (SSRIs). SSRIs are relatively inefficient because they only improve
symptoms in about half of patients with mood disorders, including major depression and post-traumatic stress
disorder (PTSD) . Hence, there is an urgent need for developing new treatment strategies and identifying novel

neurobiological targets and biomarkers that may stimulate discovery of novel ligands 2.

| 2. Brain Distribution of PPARs in the Rodent Brain

The distribution of PPARs changes over different tissues. In rat brain, the three isoforms are co-expressed during
neurodevelopment. Later in life, PPAR-B/d becomes the most predominant isoform and subsequently there is a

decrease in the expression of PPAR-a and PPAR-y 29, However, PPAR-a is widely expressed in amygdala,
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prefrontal cortex, thalamic nuclei, nucleus accumbens, ventral tegmental area, and basal ganglia 2122, |n these
regions, PPAR-a expression is found at the highest levels in neurons, followed by astrocytes, where it was
detected in cell body and astrocytic processes, and is weakly expressed in microglia. PPAR-a is the only isotype
that colocalizes with all cell types and it is the most expressed isotype in astrocytes 22, PPAR-B/3 has a ubiquitous
distribution across the brain. It is the most widely expressed isotype both in the brain and the periphery, and
studies suggest a regulatory role for PPAR-B/d on the other isoforms [23. PPAR-y is highly expressed in the
amygdala, piriform cortex, dental gyrus and basal ganglia, with lower levels in thalamic nuclei and hippocampal
formation 822, PPAR-y is also more widely expressed in neurons than astrocytes where it varies across brain
regions, with higher expression in nucleus accumbens followed by the prefrontal cortex. Interestingly, PPAR-y is
not expressed in microglia of mouse or human brain unless there is a condition of a microglial functional state, as it
appears after lipopolysaccharide (LPS) treatment 22, While PPAR-B/3 is not found in microglia, PPAR-a is the only
isotype expressed under normal and LPS conditions 22, PPAR expression across brain areas in circuitry that
regulates stress-response suggests that they may play a role in several neuropsychopathologies by mediating anti-
inflammatory and metabolic actions. Intriguingly, both synthetic and endogenously-produced PPAR agonists have

shown benefits for treatment of mood disorders and neurological diseases [J[EI[10]124][25]

| 3. Neuropsychiatric Disorders and PPARs

3.1. Mood Disorders

Major depressive disorder (MDD) affects 15%—20% of the general American population, thereby representing a
remarkable burden for society, exacerbated by its chronicity and comorbidity with other prevalent mood disorders,
such as PTSD and suicide, and drug use disorder 281271 |t is the second most common cause of disability
worldwide and it is expected to become the main cause in high-income countries by 2030 28 Currently, FDA-
approved treatments for depression include the SSRI antidepressants and the serotonin-norepinephrine reuptake
inhibitor (SNRIs), which have a high rate of non-responders [29. Additionally, these medications might take up to
several weeks to induce pharmacological effects and patients often drop-off treatment because of a variety of
unwanted secondary effects, which comprise insomnia, headache, sexual dysfunction, and dry mouth B9, While
novel therapeutic strategies are urgently needed for the management of MDD, PTSD, and other mood disorders,
the nuclear receptors PPAR-a and y are gaining consistent interest as new promising targets for treating behavioral
dysfunction (please see Table 1 and Table 2 for a summary) B, This is further substantiated by the recent
discovery that stimulation of PPAR-a can enhance neurosteroid biosynthesis 19, which is implicated in the

etiopathology of mood disorders and their treatment [32](331[34](35]

Table 1. Studies of peroxisome proliferator-activated receptor (PPAR) ligands in models of neuropsychiatric

disorders.

Preclinical Studies

Models of mood disorders
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