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Over previous decades, many nature-inspired optimization algorithms (NIOAs) have been proposed and applied
due to their importance and significance. Some survey studies have also been made to investigate NIOAs and their
variants and applications. However, these comparative studies mainly focus on one single NIOA, and there lacks a

comprehensive comparative and contrastive study of the existing NIOAs.

nature-inspired algorithm meta-heuristic algorithm swarm intelligence algorithm

bio-inspired algorithm black-box optimization benchmarking statistical test

| 1. Introduction

Nature-inspired optimization algorithms (NIOAs), defined as a group of algorithms that are inspired by natural
phenomena, including swarm intelligence, biological systems, physical and chemical systems and, etc. 1I. NIOAs
include bio-inspired algorithms and physics- and chemistry-based algorithms; the bio-inspired algorithms further
include swarm intelligence-based and evolutionary algorithms [ NIOAs are an important branch of artificial
intelligence (Al), and NIOAs have made significant progress in the last 30 years. Thus far, a large number of
common NIOAs and their variants have been proposed, such as genetic algorithm (GA) &, particle swarm
optimization (PSO) algorithm [, differential evolution (DE) algorithm 4!, artificial bee colony (ABC) algorithm 2!, ant
colony optimization (ACO) algorithm [&!, cuckoo search (CS) algorithm @, bat algorithm (BA) (&, firefly algorithm
(FA) B immune algorithm (1A) 29, grey wolf optimization (GWO) 11, gravitational search algorithm (GSA) 2 and
harmony search (HS) algorithm 3. In addition to the theoretical studies of NIOAs, many previous works have
made an in-depth investigation on how the NIOAs are applied to various domains. Single NIOAs have been
reviewed comprehensively [24IL5I16][17]118][19][20][21][22][23][24](25] ' \yhich present the algorithms and their variants at a
good breadth and depth. In the rest of this chapter, we summarize the current survey work of the NIOAs, discuss
our motivations for this survey, present our research methodologies and scope of this work and finally, describe our

contributions to this field.

| 2. Common NIOAs

Actually, most of the NIOAs have a similar structure, although they are defined in various forms. In this section,
first, the common process will be extracted to offer a unified description for the NIOAs, and then the principles of
the 11 NIOAs will be outlined and discussed under this unified structure. The unified representation makes it

convenient to analyze the similarity and dissimilarity of these algorithms.
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2.1. The Common Process for the 11 NIOAs

The common process of most of NIOAs is described in Figure 1, which can be divided into four steps. In step S1,
the population and related parameters are initialized. Usually, the initial population is generated by random
methods, which ensure it covers as much solution space as possible; the population size is selected based on
expert experience and specific requirements, and generally, it should be as large as possible. Most NIOAs use
iterative methods, and the maximum iteration times and precision threshold are two common conditions of
algorithm termination, which should also be initialized in step S1.
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Figure 1. The common process of NIOAs.

The fitness function is the unique indicator that reflects the performance of each individual solution, and it is
designed by the target function (i.e., the BBOB functions will be described in Section 4.1), which usually has a
maximum or minimum value. Generally, an individual has its own local optimal solution, and the whole population
has a global optimum. In step S2, the fitness values of the population in each iteration are computed, and if the
global best solution satisfies the termination conditions, NIOAs will output the results (in step S4). Otherwise, step

S3 is implemented, which performs the key operations (defined by various components or operators) to exchange
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information among the whole population in order to evolve excellent individuals. Then, the population is updated,
and the workflow jumps to step S2 to execute the next iteration. According to the above process, a set of
commonly used symbols are given in Table 1 as a unified description for the 11 NIOAs, where D represents the

dimension number of objective functions, M is the individual number of each NIOA and N the total iterative times.

Table 1. The common symbols of NIOAs.

Conceptions Symbols Description
_SpaC(_e D, 0<d<D The problem space description
dimension
Population size M, 0<isM Individual quantity
Iteration times N, O<t<N Algorithm termination condition
ivi Th i f the i soluti he " i I
Indw@ual XO=0d.10),... x0.d(D).... Xi.D()) e expression of the 'lm .so_uFlon on the ¢ iteration, also
position used to represent the /" individual
Local best : : : : . th e . .
solution pit)=(pi,1(9),....pi.d(®),....pi,D(®)  Local best solution of the i individual on the # iteration
Global best Global best solution of the whole populationon
=(pg,1(),...,pg,d(t),... D . .
solution PO()=(Pg.1(9).....PG.A().... PG, D(0) the " iteration
Fitness function f() Unique standard to evaluate solutions
Precision . S L
3
threshold Algorithm termination condition

| 3. Theoretical Comparison and Analysis of the 11 NIOAs
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application problem, but it’is not clear why this NIOA was chosen (researchers just happened to use it).

Consequently, it is our belief that in the future, researchers should tackle the following three problems in the

NIOAs. These three problems indicate three future research directions for the NIOAs study.

1. Strengthening solid theoretical analysis for the NIOAs. Some theoretical problems of NIOAs are only studied in
specific NIOA (for example, PSO), such as the time complexity analysis, the convergence proof, topology analysis,
the automatic parameter tuning, the mechanisms of the exploitation and exploration processes. There are still
many problems to be solved in the existing research work [Z7128129] and the theoretical analysis of other NIOAs
needs to be analyzed deeply. COPs and MOOPs should be further studied by extending and combining the various
existing NIOAs. Furthermore, it is necessary to develop a visualization platform of deconstructing, modeling and
simulation of the interactions of components in NIOAs, to make it convenient to study the mechanisms of self-
organization, direct/indirect communication and the processes of intelligent emergence on various swarm systems
and application cases. It is also necessary to establish a benchmark test suite and easy-to-use algorithm toolbox
for different problems, for example, automatic parameter tuning and the aforementioned problems in complex

environments.

2. Designing novel NIOAs to solve complicated optimization problems. Many real-world optimization problems are
very complex, such as the multi-model and multi-objective problems, the constrained or uncertainty problems, the
large-scale optimization problems, the optimization problems with noisy, imprecise or time-varying fitness

evaluations. It is another important direction to design more targeted and effective NIOAs for the above problems.
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3. Deep fusion with other related disciplines. In order to improve the performance of the current NIOAs, it is
indispensable to combine the NIOAs with other related disciplines or directions, such as distributed and parallel
computing, machine learning, quantum computation and robot engineering. More concretely, because NIOAs by
nature possess the characteristics of distributed parallelism, it is more easily and natural for them to be
implemented in distributed and parallel environments, such as cloud platforms and GPU-based hardware
environments. Furthermore, for some large-scale optimization problems, the robot swarm can be a good solution
that combines NIOAs and robot engineering. With the support from machine learning methods, NIOAs can become
efficient to handle the multi-modal multi-objective optimization problems, and on the other way around, NIOAs can
provide optimization support to machine learning tasks, such as the clustering problem and the association rules

mining problem.

4. Combination with specific applications. It is necessary to design customized NIOA for specific application
problems; the topological structure, learning strategy and method of parameters’ selection of customized NIOAs
may be suitable to a specific problem, which can acquire the good convergence speed and optimization
performance. Existing applications rarely have targeted design of NIOAs; more of them use NIOAs directly or

cannot explain the reason for algorithm design with specific problems.

| 5. Conclusions

Nature-Inspired Optimization Algorithms (NIOAs) can provide satisfactory solutions to the NP-hard problems, which
are difficult and sometimes even impossible for traditional optimization methods to handle. Thus, the NIOAs have
been widely applied to various fields both theoretically and in practice; examples including function optimization
problems (convex, concave, high or low dimension and single peak or multiple peaks), combinatorial optimization
problems (traveling salesman problem (TSP), knapsack problem, bin-packing problem, layout-optimization
problem, graph-partitioning problem and production-scheduling problem), automatic control problems (control
system optimization, robot structure and trajectory planning), image-processing problems (image recognition,
restoration and edge-feature extraction), data-mining problems (feature selection, classification, association rules

mining and clustering).

Many NIOAs and their variants have been proposed in the last 30 years. However, for the specific optimization
problems, researchers tend to choose the NIOAs based on their narrow experiences or biased knowledge because
there lacks an overall and systematic comparison and analysis study of these NIOAs. This study aims to bridge this
gap; the contributions of this paper are fourfold. First, we summarize the uniform formal description for the NIOAs,
analyze the similarities and differences among the 11 common NIOAs; second, we compare the performance of 11
NIOAs comprehensively, which can reflect the essential characteristics of each algorithm; third, we present a
relatively comprehensive list of all the NIOAs so far, the first attempt to systematically summarize existing NIOAs,
although it is very hard work; fourth, we comprehensively discuss the challenges and future directions of the whole
NIOAs field, which can provide a reference for the further research of NIOAs. Actually, we are not aiming to find a
super algorithm that can solve all problems in different fields once and for all (it is an impossible task). Instead, we

propose a useful reference to help researchers to choose suitable algorithms more pertinently for different
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application scenarios in order to take a good advantage and make full use of the different NIOAs. We believe, with
this survey work, that more novel-problem-oriented NIOAs will emerge in the future, and we hope that this work

can be a good reference and handbook for the NIOAs innovation and applications.

Undoubtedly, it is necessary and meaningful to make a 34 comprehensive comparison of the common NIOAs, and
we believe that more efforts are required to further this review in the future. First, the state-of-the-art variants of the
11 common NIOAs will be compared and analyzed comprehensively, discussing their convergence, topological
structures, learning strategies, the method of parameter tuning and the application field. Second, there are more
than 120 MHAs with various topological structures and learning strategies. For example, the recently proposed
chicken swarm optimization (CSO) and spider monkey optimization (SMO) algorithms have a hierarchical
topological structure and grouping/regrouping learning strategies. Thus, the comprehensive analysis of various

topological structures and learning strategies of NIOAs is another future work.
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