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Deep learning models have potential to improve performance of automated computer-assisted diagnosis tools in digital

histopathology and reduce subjectivity. The main objective of this study was to further improve diagnostic potential of

convolutional neural networks (CNNs) in detection of lymph node metastasis in breast cancer patients by integrative

augmentation of input images with multiple segmentation channels. For this retrospective study, we used the

PatchCamelyon dataset, consisting of 327,680 histopathology images of lymph node sections from breast cancer. Images

had labels for the presence or absence of metastatic tissue. In addition, we used four separate histopathology datasets

with annotations for nucleus, mitosis, tubule, and epithelium to train four instances of U-net. Then our baseline model was

trained with and without additional segmentation channels and their performances were compared. Integrated gradient

was used to visualize model attribution. The model trained with concatenation/integration of original input plus four

additional segmentation channels, which we refer to as ConcatNet, was superior (AUC 0.924) compared to baseline with

or without augmentations (AUC 0.854; 0.884). Baseline model trained with one additional segmentation channel showed

intermediate performance (AUC 0.870-0.895). ConcatNet had sensitivity of 82.0% and specificity of 87.8%, which was an

improvement in performance over the baseline (sensitivity of 74.6%; specificity of 80.4%). Integrated gradients showed

that models trained with additional segmentation channels had improved focus on particular areas of the image containing

aberrant cells. Augmenting images with additional segmentation channels improved baseline model performance as well

as its ability to focus on discrete areas of the image.
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1. Introduction

Whether metastatic lesions are present in sentinel lymph nodes (SLN) is an important prognostic marker for early-stage

breast cancer . Large tumor size and perivascular invasion are associated with SLN involvement . Therefore, the

presence of metastatic tissue in SLN of breast cancer patients often represents a disseminated disease associated with

poor prognosis and limited treatment options . Since the status of SLN cannot be determined by clinical examination

alone, SLN biopsies are routinely performed on early-stage breast cancer patients and are assessed by clinical

pathologists for metastasis .

Accurate histopathological diagnosis empowers clinicians to recommend targeted treatment options specific for each

patient . Such histopathological diagnoses often occur in a time-limited setting during surgery, requiring a rapid

classification of metastatic status, which greatly influences intraoperative decisions made whether to proceed with

invasive treatment options or not . For example, SLN-positive patients are recommended to receive axillary lymph

node dissection, which is associated with significant permanent impairment . However, detection procedures conducted

by pathologists are often time consuming and subjective . For example, metrics such as tumor cell percentage or

quantification of fluorescent markers for estrogen receptor and/or HER-2 status are tasks that are often associated with

inter-observer variability . Furthermore, for the task of micro-metastases detection under simulated time constraints,

pathologists have shown an underwhelming performance of 38% .

Whole-slide imaging systems have improved over the years, and are now capable of producing digitized, high-resolution,

giga-pixel whole-slide images (WSI) of histopathology slides . Using this technology, histopathological assessments can

be done on a computer screen rather than using light microscopes. Digitization of workflow in pathology laboratories can

reduce patient identification errors and save time for both pathologists and laboratory technicians . Digitization of WSI

has also enabled the development of automated computer-assisted diagnosis (CAD) platforms . Automated

computer-assisted diagnosis (CAD) has the potential to improve the speed and accuracy of histopathological diagnoses

as well as reducing subjectivity .
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Advancements in computer vision, most notably deep learning, has enabled researchers to extract more abstract features

from large amounts of high-resolution medical images . Therefore, high-resolution WSIs that contain complex features

are suitable for application of deep learning strategies using convolutional neural networks (CNNs) . The Cancer

Metastases in Lymph Nodes Challenge 2016 (Camelyon16) found best algorithms to be performing significantly better

than pathologists with time constraints and comparable to pathologists without time constraints . Lymph Node Assistant

(LYNA), an algorithm developed by Google AI Healthcare , managed to achieve 99.0% area under the curve in detection

of micro- and macro-metastases from lymph node blocks . Furthermore, pathologists with assistance from LYNA

achieved 100% specificity and showed improved sensitivity over performance achieved by LYNA alone, which suggests

the benefit of human intervention in CAD and room for improvement .

Weights previously trained on large-scale datasets such as ImageNet  can be used to initiate training of the model on a

different task. Such strategy known as transfer learning have reportedly shown to facilitate faster convergence and better

prediction performance for CNNs in digital pathology . For example, Nishio et al.  have shown that VGG16 [16] with

transfer learning performed better overall than same models trained without transfer learning. However, transfer learning

does not guarantee better performance, because performance of models trained with the same architecture and pre-

trained weights have been observed to differ greatly .

Data augmentation strategies, such as stain color normalization and morphological transformations of the input images,

are often employed for digital histopathology image analyses, to improve model generalizability and robustness .

Algorithms such as WSI color standardizer (WSICS)  and Stain Normalization using Sparse AutoEncoders (StaNoSA)

 demonstrated that data augmentation can improve performance of existing CAD systems for tasks such as necrosis

quantification and nuclei detection, respectively. Therefore, we sought other data augmentation approaches to further

improve performance of existing CAD models in histopathology.

Pathologists look for histological features such as nuclei, mitotic figures, tissue types, and multicellular structures such as

tubules to make and justify their diagnoses. For example, pixel-wise detection of cytological features such as epithelial cell

nuclei, epithelial cell cytoplasm, and the lumen were used for the higher-level tasks of gland segmentation and prediction

of tumor grade on the Gleason grading scheme in prostate cancer . Another study showed that local descriptors

such as the distribution of cell nuclei was one of the most significant features used by a random forest model to detect

metastasis from digital pathology images .Therefore, we investigated if we could further improve the performance of

baseline CNN models by providing multiple segmentation channels of the input images with pixel-wise histological

annotations of such features. Each of these segmentation channels can be extracted by U-net, a CNN model designed for

semantic segmentation of biomedical images , which can then be integrated onto the original images depth-wise prior

to input into the baseline model. We hypothesized that training CNN models with additional multiple segmentation

channels will boost its performance over the baseline model. The specific aims of this project were: 1) train and evaluate a

baseline CNN model for detecting breast cancer metastasis from digital histopathology images of lymph node sections

using the PatchCamelyon (PCam) dataset ; 2) train four instances of a U-net model for semantic segmentation of

histological features including the nucleus, mitotic figures, epithelium, and tubule using four independent datasets curated

previously ; 3) train and evaluate a second instance of the baseline model with additional segmentation channels of

images from the same test set to compare to the baseline model.

2. Discussion

Deep neural networks were inspired by the organization of the human visual cortex . By designing a model which

mimics the human brain, researchers were able to gain significant advances in various fields, notably in computer vision

and CAD . Likewise, the central motivation of this study was to modify a model to mimic how a pathologist sees a

histology image and assess the model’s performance. In the eyes of a pathologist, histological features like cell nuclei, cell

type, cell state, and multicellular structures are recognized naturally, which all contribute to the pathologist’s ability to

recognize malignancy from a given histology image . Objective and quantitative segmentation of histologic primitives

such as the nuclei and glandular structures is one of the major interests of digital pathology . Accordingly, we extracted

multiple segmentation channels that captured such histological features, which were used to augment input images during

the training phase. As previously demonstrated by the whole-slide image color standardizer (WSICS) algorithm, which

reduced the effects of stain variations and further improve performance of a CAD system by incorporating spatial

information, we incorporated the spatial information of histological structures to improve our model’s classification

performance.

For our problem of detecting metastatic cells from digital histopathology images of sentinel lymph node sections extracted

from breast cancer patients, we observed improvements in both sensitivity and specificity when the models were provided

with one or more additional segmentation channels. Deep neural networks and features generated by these models have
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been criticized for their lack of interpretability. However, we also showed that through the IG algorithm  that the models

trained with additional segmentation channels were able to establish regions of interest containing malignant-looking cells

or structures when the baseline model could not.

Our findings suggest that even for models of CAD with considerably high predictive performance, their performance can

be further improved by augmenting input images with multiple additional segmentation channels. Diagnostic errors are

expensive both for the patient and the healthcare system because false positive results can lead to unnecessary calls for

additional diagnostic tests or treatments on a healthy individual, and false negative results can lead to a lack of care for

patients who need early medical intervention . Furthermore, both types of errors can lead to potential litigations.

Therefore, it is important to consider our method of data augmentation to further improve the performance of existing CAD

tools and those in development. However, it should be noted that although the IG algorithm was able to visualize the

differences in feature attribution between models, we still do not have a clear understanding as to why some models have

focused appropriately on regions containing malignancy and yet made incorrect decisions on some of the images.

Nonetheless, proper focus and extraction of regions of interest can potentially relieve the burden of pathologists, who

serve majority of their time scanning benign areas without malignancy . Moreover, the ability of automated CAD tools to

speedily and objectively quantify histopathological features such as tumor cell percentage and disease grade is much

needed [8].

Many of our predecessors in digital histopathologic image analysis have used transfer learning techniques, mostly by

using weights from CNN architectures pre-trained on large generalized image datasets such as ImageNet , to reduce

training time and to benefit from potential performance benefits . Although there was a significant reduction in training

time, the performance results were highly variable, even with the same pre-trained CNN architectures . In our study, we

observed that VGG16 with transfer learning performed better than the baseline, albeit with substantially higher number of

parameters. Our approach to augment the training phase of CNN models can also be seen as a method of transfer

learning, albeit different from our predecessors in that 1) we transferred knowledge gained from the same type of images,

specifically from histopathology; and 2) rather than transferring only the weights, we used entire pre-trained networks in

parallel to extract new segmentation channels from the same input image . These two key differences potentially

contributed to the improvements in performance benefits that were observed in this study, including convergence at lower

loss value and increased generalizability to unseen data, with little additional computational cost to the classifier models.

However, a major limitation of this study was that the annotated histology images used to train the U-nets were not from

the same tissues. For example, the nuclei and tubule segmentation datasets were images from colorectal cancer patients

 whereas the epithelium and mitosis segmentation datasets were images from breast cancer patients . Furthermore,

our main benchmark dataset, PCam, consisted of images from sentinel lymph node sections . Training the U-nets and the

subsequent baseline model with a single dataset with multiple annotations for nuclei, mitotic figures, multicellular

structures, and other histological features has potential to improve model performance even further.

3. Conclusions

In summary, we demonstrated that improvements were made in both sensitivity and specificity when deep learning

models were trained with additional segmentation channels of input images. IG analysis suggested that these additional

segmentation channels help the models to orient their attention to specific regions of the image containing malignancies,

although we found examples where better focus did not necessarily lead to correct classification. However, further

analyses should be repeated using larger datasets with better resolutions and deeper models in the future to investigate if

our results can be replicated under those circumstances. Interpretation of deep learning models still remains a challenge

and presents room for improvements.

Furthermore, the feature segmentation pipeline using U-net can be extended to segment other, more complex histological

features such as different tumor tissues, inflammation, and necrosis, among many others. We demonstrate that data

augmentation with prior extracted features have potential to further improve the performance of CAD tools in digital

histopathology and other tasks in medical image analyses, in which even small improvements in performances has

significant implications for the patient’s clinical outcomes.
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