AR Gene

Subjects: Genetics & Heredity Contributor: Vicky Zhou

androgen receptor

Keywords: genes

1. Normal Function

The *AR* gene provides instructions for making a protein called an androgen receptor. Androgens are hormones (such as testosterone) that are important for normal male sexual development before birth and during puberty. Androgen receptors allow the body to respond appropriately to these hormones. The receptors are present in many of the body's tissues, where they attach (bind) to androgens. The resulting androgen-receptor complex then binds to DNA and regulates the activity of androgen-responsive genes. By turning the genes on or off as necessary, the androgen receptor helps direct the development of male sexual characteristics. Androgens and androgen receptors also have other important functions in both males and females, such as regulating hair growth and sex drive.

In one region of the *AR* gene, a DNA segment known as CAG is repeated multiple times. This CAG segment is called a triplet or trinucleotide repeat. In most people, the number of CAG repeats in the *AR* gene ranges from fewer than 10 to about 36.

2. Health Conditions Related to Genetic Changes

2.1. Androgen Insensitivity Syndrome

More than 600 different mutations in the *AR* gene have been identified in people with androgen insensitivity syndrome, a condition that affects sexual development before birth and during puberty. Most of these mutations are changes in single DNA building blocks (base pairs). Other mutations insert or delete multiple base pairs in the gene or affect how the gene is processed into a protein. Some mutations lead to an abnormally short version of the androgen receptor protein, while others result in the production of an abnormal receptor that cannot bind to androgens or to DNA. As a result, cells that are sensitive to androgens become less responsive to these hormones or unable to use these hormones at all. People with this condition are genetically male, with one X chromosome and one Y chromosome in each cell. Because their bodies are unable to respond to androgens, they may have mostly female sex characteristics or signs of both male and female sexual development.

Mutations that completely eliminate the function of the androgen receptor cause complete androgen insensitivity syndrome. Genetic changes that significantly reduce but do not eliminate the receptor's activity cause partial androgen insensitivity syndrome. Mild androgen insensitivity syndrome results from changes that only slightly reduce the activity of the receptor.

2.2. Spinal and Bulbar Muscular Atrophy

Spinal and bulbar muscular atrophy, a disorder of specialized nerve cells that control muscle movement (motor neurons), results from an expansion of the CAG trinucleotide repeat in the *AR* gene. In people with this disorder, CAG is abnormally repeated from 38 to more than 60 times. Although the extended CAG region changes the structure of the androgen receptor, it is unclear how the altered protein damages nerve cells. Researchers believe that a fragment of the androgen receptor protein containing the CAG repeats accumulates within these cells and interferes with normal cell functions. This buildup leads to the gradual loss of motor neurons, which results in muscle weakness and wasting (atrophy).

2.3. Androgenetic Alopecia

Changes in the *AR* gene are associated with an increased risk of androgenetic alopecia, a form of hair loss also known as male-pattern baldness in men and female-pattern baldness in women. The variations result from small changes in the number or types of DNA building blocks (base pairs) that make up the *AR* gene. These genetic changes appear to be most frequent in men with hair loss that begins at an early age. Researchers believe that *AR* gene variations may increase the activity of androgen receptors in the scalp. Although androgenetic alopecia is related to the effects of androgens on hair growth, it remains unclear how changes in the *AR* gene increase the risk of hair loss in men and women with this condition.

2.4. Polycystic Ovary Syndrome

Polycystic ovary syndrome

2.5. Prostate Cancer

Prostate cancer

3. Other Names for This Gene

- AIS
- ANDR_HUMAN
- androgen receptor (dihydrotestosterone receptor; testicular feminization; spinal and bulbar muscular atrophy; Kennedy disease)
- DHTR
- HUMARA
- KD
- NR3C4
- SBMA
- SMAX1
- TFM

References

- 1. Adachi H, Katsuno M, Minamiyama M, Waza M, Sang C, Nakagomi Y, Kobayashi Y, Tanaka F, Doyu M, Inukai A, Yoshid a M, Hashizume Y, Sobue G. Widespread nuclearand cytoplasmic accumulation of mutant androgen receptor in SBMA patients. Brain.2005 Mar;128(Pt 3):659-70.
- 2. Beitel LK, Scanlon T, Gottlieb B, Trifiro MA. Progress in Spinobulbar muscularatrophy research: insights into neuronal d ysfunction caused by thepolyglutamine-expanded androgen receptor. Neurotox Res. 2005;7(3):219-30. Review.
- Bennett NC, Gardiner RA, Hooper JD, Johnson DW, Gobe GC. Molecular cellbiology of androgen receptor signalling. I nt J Biochem Cell Biol. 2010Jun;42(6):813-27. doi: 10.1016/j.biocel.2009.11.013.
- 4. Gottlieb B, Beitel LK, Nadarajah A, Paliouras M, Trifiro M. The androgenreceptor gene mutations database: 2012 updat e. Hum Mutat. 2012 May;33(5):887-94. doi: 10.1002/humu.22046.
- 5. Gottlieb B, Beitel LK, Wu J, Elhaji YA, Trifiro M. Nuclear receptors and disease: and rogen receptor. Essays Biochem. 20 04;40:121-36. Review.
- 6. Hillmer AM, Hanneken S, Ritzmann S, Becker T, Freudenberg J, Brockschmidt FF, Flaquer A, Freudenberg-Hua Y, Jam ra RA, Metzen C, Heyn U, Schweiger N, Betz RC, Blaumeiser B, Hampe J, Schreiber S, Schulze TG, Hennies HC, Sch umacher J,Propping P, Ruzicka T, Cichon S, Wienker TF, Kruse R, Nothen MM. Geneticvariation in the human androge n receptor gene is the major determinant of common early-onset androgenetic alopecia. Am J Hum Genet. 2005 Jul;77 (1):140-8.
- 7. Katsuno M, Adachi H, Tanaka F, Sobue G. Spinal and bulbar muscular atrophy:ligand-dependent pathogenesis and the rapeutic perspectives. J Mol Med (Berl).2004 May;82(5):298-307.
- 8. Levy-Nissenbaum E, Bar-Natan M, Frydman M, Pras E. Confirmation of theassociation between male pattern baldness and the androgen receptor gene. Eur JDermatol. 2005 Sep-Oct;15(5):339-40.
- Poletti A, Negri-Cesi P, Martini L. Reflections on the diseases linked tomutations of the androgen receptor. Endocrine. 2 005 Dec;28(3):243-62. Review.

10. Zajac JD, Fui MN. Kennedy's disease: clinical significance of tandem repeats in the androgen receptor. Adv Exp Med Bi ol. 2012;769:153-68. Review.

Retrieved from https://encyclopedia.pub/entry/history/show/12200