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A Physical Unclonable Function (PUF) is hardware that acts as a one-way function, whose each different instance

provides unique outputs for the same distinct input. Although recent research has demonstrated the merits of PUFs as

security primitives for resource-constrained computer systems, better implementations of them need to be identified by

future research, in order for them to be commercially adopted. Nevertheless, PUFs have already found application in the

implementation of a large number of cryptographic protocols and other security solutions. A number of well-known metrics

have been proposed in the literature in order to assess the quality of individual PUF implementations as security

mechanisms, in terms of the stability, uniqueness and randomness of their responses.
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1. PUFs and Their Operational Mechanism

Physical(ly) Unclon(e)able Functions  (PUFs) are instances of hardware modules that ideally act as one-way functions,

each of which provides a different output for the same input. Therefore, each PUF instance ideally implements a unique

function, making its reproduction hard to achieve and, in this way, leading to a notion of unclon(e)ability.

The implementation of PUFs is usually based on the existence of minor imperfections in hardware modules produced

using the exact same manufacturing process. Such imperfections do not affect the normal operation of the hardware

module in a notic(e)able way, but introduce unique (secondary) characteristics. These characteristics are then exploited

under specific conditions, being referred to as the challenge that is fed into the PUF, in order to extract a unique (binary)

response from the hardware module, based on its unique imperfections and characteristics (Figure 1).

Figure 1. Operational mechanism of PUFs.

2. PUF Implementations and Metrics

A number of hardware modules and characteristics have been utilised for the implementation of PUFs, such as the unique

reflection of optical materials , the delay characteristics of arbiters  and ring oscillators , the capacitance of coating

materials  , the start-up values of SRAMs   and DRAMs   and the decay characteristics of DRAM cells  . The

concept of a physical one-way function can also be traced in literature dating from many decades ago .

PUFs are usually classified into weak ones, which provide a single or very few Challenge-Response Pairs (CRPs), and

strong ones, which provide such a large number of CRPs that their complete characterisation within a limited time frame is

not possible . Although this classification is important regarding the level of security a PUF can provide, it is also not

always completely clear whether a PUF implementation can be considered as weak or strong, as well-known "strong"
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PUFs have proven vulnerable to modelling or machine learning attacks performed within limited time and, the number of

CRPs that can be considered large enough to prevent the complete characterisation of a PUF, obviously, differs for each

implementation.

PUFs have proven to be an important security primitive that can be used for cryptographic applications, especially in

devices that are resource-constrained and cannot support other security mechanisms.   However, a number of attacks

against them have brought their role as an adequate security mechanism into question. Therefore, current research is

focused on the examination of novel PUF implementations with potentially better quality characteristics and/or the

improvement of currently available ones. In general, since PUFs have been proven not to be unclon(e)able, the acronym

"PUF" should rather stand for Physical Unique Functions, as uniqueness is a rather intrinsic property of any PUF, much

like to its physical nature.

Well-known metrics used to assess the quality of the PUF responses include their Hamming weight, intra-device

Hamming distance, inter-device Hamming distance, Shannon (binary) entropy and min-entropy. In practice, the values of

the Hamming weight, intra-device Hamming distance and inter-device Hamming distance metrics are divided by the total

number of elements (bits) contained in the PUF responses being examined, and their  fractional  equivalents are

considered. Ideally, PUF responses would have a fractional Hamming weight of 0.5, a fractional intra-device Hamming

distance of 0 (or ~0.1, considering error correction methods), a fractional inter-device Hamming distance of 0.5, a

Shannon (binary) entropy of 1 and a min-entropy of 1. In practice, only certain instances of the PUFs that are based on

the start-up values of SRAMs have been able to approach these ideal values. Since the responses of the PUFs that are

based on the decay characteristics of DRAM cells are most often extremely biased, exhibiting a low entropy, the intra-

device Jaccard index and the inter-device Jaccard index metrics have been proposed to replace the  intra-device

Hamming distance and inter-device Hamming distance metrics, as quality assessment metrics for these PUFs. Again, in

practice, the fractional intra-device Jaccard index and the fractional inter-device Jaccard index metrics are utilised for this

purpose.

Moreover, it should also be mentioned that the responses of a particular PUF for a specific challenge at different times

typically incorporate a certain degree of noise. Therefore, quite often, fuzzy schemes, such as fuzzy extractors , are

employed in order to stabilise the PUF responses and usually, at the same time, convert them to bit strings of full binary

entropy, which can then be used in cryptography, as keys, identifiers, etc.

3. PUF Applications

Common applications of PUFs proposed in the relevant literature include  identification, authentication, attestation, secure

boot, anti-counterfeiting and secure key agreement protocols. Additionally, PUFs can also serve as the basis for the

implementation of true random number generators. PUFs can also be combined with other security primitives and entropy

sources, so that the overall construction will produce a different unique response for the same challenge, when queried at

different times. In this case, the overall construction is referred to, in the relevant literature, as a reconfigurable PUF.

 Finally, in order to use PUFs in security protocols, most often an enrollment phase is required, during which one or some

of the protocol's parties (most often the server) gains access to the PUF's CRPs and then one of the other parties (most

often the client) acquires exclusive access to the PUF module. Nevertheless, it has been proven that it is impossible to

achieve secure cryptographic protocols without any setup assumptions  and, therefore, it is not possible to establish a

security protocol without somehow exchanging some information first. Hence, in the case of PUFs, it is required that all

parties have acquired knowledge on the PUF's CRPs or can directly access the PUF, in order for PUF-based protocols to

work correctly. This setup phase, the enrollment phase, is most often followed by a reconstruction phase, during which the

party that now has exclusive access to the PUF (re)constructs the PUF-based secret, which may be either a raw PUF

response or a PUF-based token, identifier, key, etc. Then, the value of the secret (re)constructed by the party that now

has exclusive access to the PUF (EA party) is directly or indirectly compared to the value of the secret acquired or

constructed by the party or parties that have accessed to the PUF's CRPs during the enrollment phase (ENR

party/parties). For example, if the secret is a raw PUF response and the PUF considered is a strong PUF, then the

response acquired by the EA party can be directly transmitted to the ENR party/parties and compared to the response

they had acquired during the enrollment phase. However, if the secret is a PUF-based key, the EA party can encrypt a

nonce with the key based on its PUF response and transmit it to the ENR party/parties, which will then decrypt it with the

key based on the response they had acquired during the enrollment phase. Of course, all the CRPs required in order for

these protocols to function correctly need to have been acquired by all ENR parties during the enrollment phase.
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