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Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a well-established treatment for a variety of hematologic

malignancies, immune disorders and metabolic diseases. Allo-HSCT often represents the only possible curative therapy,

however it is hampered by high morbidity and mortality rates for an array of complications, including bloodstream infection

and graft-versus-host disease (GvHD).
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1. Introduction

Recently, the gut microbiome (GM) has emerged as a major contributor to the genesis of the complications of Allo-HSCT

and to transplant outcomes . While this relationship has been extensively studied in terms of clinical correlations, the

underlying biological processes still remain poorly understood . A growing body of evidence is now focused on the role

of metabolomics in the immune response regulation and in other host biochemical processes . Interestingly, among the

factors that modify fecal, plasmatic and urinary metabolites, the GM, alongside with diet, have emerged as the major

determinants . Analogously, metabolic activities of GM are affected by environmental factors and host activities. The

latter include a complex crosstalk taking place in the intestinal mucosa, with the secretion of mucus, secretory IgA,

antibacterial peptides and microRNA . Hence it has been suggested that microbiome-derived metabolites could provide

some insights in the complex relationship between the GM, immune system and intestinal microenvironment, particularly

in the HSCT setting . To address this issue, we conducted a narrative literature review of studies addressing the role of

gut microbiota derived metabolites in allo-HSCT. Electronic databases, including PubMed, Google Scholar and EMBASE,

were searched to identify relevant studies published up to December 2020. The search was restricted to English-language

studies involving both humans, mice and pre-clinical models. Papers were selected independently by two authors

independently, and a third author supervised the selection. Herein, we provide a comprehensive overview on the current

knowledge of gut microbiome-derived metabolites and their role in determining relevant biological processes in HSCT

(Table 1 and Table 2).

Table 1. Summary of studies investigating the role of microbiome-derived metabolites in HSCT setting in mouse model.

Metabolites Results References

Fiber-Derived Metabolites—Short-Chain Fatty Acids

Butyrate Butyrate can improve IEC integrity, decrease apoptosis and mitigate GvHD.
Administration of Clostridiales strain leads to higher butyrate levels.

Butyrate Post-transplant enterococcal domination and loss of Clostridiales were associated
with a reduction in butyrate in mice developing GvHD.

Butyrate, propionate Butyrate and propionate improve GvHD in mouse model. This effect is dependent
on the presence of SCFA receptor GRP43.

Amino Acid-Derived Metabolites

Tryptophan-derived AhR ligand

Indoles and derivatives

GM derivatives, such as indole, limit intestinal inflammation and damage
associated with myeloablative chemotherapy or radiation exposure and acute

GvHD. Treatment with indole-3-carboxaldehyde can protect from gut damage in
HSCT recipients.

Tyrosine-derived metabolites

Tyrosine Mice with aGvHD present lower levels of tyrosine. Oral administration of tyrosine
can ameliorate aGvHD and modify GM configuration.

[1][2][3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]



Metabolites Results References

Choline-derived metabolites

TMAO
TMAO augments allo-reactive T-cell proliferation and Th1 subtype differentiation

mediated by the polarized M1 macrophages. This results in higher severity of
GvHD.

Bile Acids

Tauroursodeoxycholic
acid (TUDCA)

BAs were altered after HSCT. Administration of exogenous TUDCA protects
intestinal epithelium by inflammatory cytokines. TUDCA did not influence GM

composition.

Table 2. Summary of studies investigating the role of microbiome-derived metabolites in HSCT setting in human.

Metabolites Study Design Results References

Fiber-Derived Metabolites—Short-Chain Fatty Acids

Butyrate
1325 allo-

HSCT adult
patients

Post-transplant enterococcal domination and loss of Clostridiales
were associated with a reduction in butyrate in patients

developing GvHD.

Butyrate, propionate,
acetate

35 allo-HSCT
adult aGvHD

patients

Butyrate, propionate and acetate levels were lower in patients
experiencing GvHD 2–3 compared to the control. Butyrate was

low even in patents with GvHD 1.

Butyrate, propionate,
acetate, formate

42 allo-HSCT
pediatric
patients

Butyrate, propionate, acetate decrease within the first 14 days
after HSCT and are lower in patients developing GvHD. Formate

is a possible marker for the Enterobacteriaceae family.
Expression of butyrate transporters in GvHD is altered. Greater
number of days of antibiotic was associated with lower levels of

butyrate and propionate.

Butyrate, propionate,
hexanoate, isobutyrate

10 allo-HSCT
adult cGvHD

patients

Plasma concentration of SCFAs reflects fecal content. Patents
developing cGvHD present lower plasma concentration of

butyrate, propionate, hexanoate, isobutyrate.

Butyrate 44 allo-HSCT
adult patients

Butyrate levels were correlated with Shannon index and were low
in patients experiencing bloodstream infections within 30 days

after HSCT.

Butyrate, propionate,
acetate,

desaminotyrosine

360 allo-HSCT
adult patients

Butyrate-producing bacteria and fecal SCFAs were associated
with a protection from viral lower respiratory tract infections

Butyrate 99 allo-HSCT
adult patients

Oral supplementation with resistant starch and commercially
available prebiotic mixture, GFO, resulted in higher post-HSCT

butyrate-producing bacteria and a maintained or increased fecal
butyrate concentration.

Butyrate, propionate,
acetate

20 allo-HSCT
pediatric
patients

Enteral nutrition resulted in higher fecal concentration of
butyrate, propionate and acetate.

Amino Acid-Derived Metabolites

Tryptophan-derived AhR ligand

3-IS 131 allo-HSCT
adult patients

Lower 3-IS urinary levels are associated with higher transplant-
related mortality and worse outcome. 3-IS urinary levels are
correlated with GM diversity and with a higher presence of

Eubacterium rectale and Ruminococcaceae.

3-IS
13 allo-HSCT
adult patients
receiving FMT

FMT results in higher 3-IS urinary levels.

Indoxyl sulfate

Two cohort of
43 and 56 allo-

HSCT adult
patients

Tryptophan-derived AhR ligand 3-indoxyl sulfate was involved in
the GvHD-related metabolic alterations.

Tyrosine-derived metabolites
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Tyrosine 86 allo-HSCT
adult patients

In patients who develop aGvHD tyrosine metabolism was found
to be altered. Other microbiome-derived metabolites (tryptophan,

lysine, phenylalanine and secondary bile acids) were altered.

Riboflavin (Vitamin B2)-Derived Metabolites

Riboflavin
121 allo-HSCT
adult patients
receiving CBT

Patients with post-HSCT MAIT cells reconstitution had a GM with
higher expression of genes involved in the riboflavin synthesis

pathway.

Polyamines and Breath Metabolites

N-acetylputrescine,
agmatine

184 allo-HSCT
adult patients

Salivary metabolic profile of HSCT patients with and without
severe oral mucositis (grade 0–1 vs. 3–4) was found to be

different. Metabolites such as urea, 5-aminovalerate, N-
acetylputrescine and agmatine, also show differences between

the pre-transplant and the time of mucositis onset.

2-propanol,
acetaldehyde, dimethyl
sulfide, isoprene, and 1-

decene

19 allo-HSCT
adult patients

Comparing patients with and without GI GvHD, the former show
modification in the levels of volatile organic compounds, namely

2-propanol, acetaldehyde, dimethyl sulfide, isoprene, and 1-
decene.

2. Microbiome-Derived Metabolites in Allogeneic Hematopoietic Stem Cell
Transplantation

GM-derived metabolites have emerged as crucial players in mediating crosstalk between GM and host in allo-HSCT

recipients. Several questions should still be addressed in the upcoming studies. Firstly, the different metabolic profiles

should be more precisely characterized and the relationship between specific bacterial strains and derived metabolites

should be investigated. These data should be accomplished with ‘–omics’ approaches, including metabolomics,

metagenomics and metatranscriptomics. Alongside with the aforementioned metabolites, many others have been

demonstrated to have a role in human homeostasis and should thus be investigated in the HSCT setting . Future

collaborative studies on larger cohorts will also clarify whether specific metabolic profiles could be associated with allo-

HSCT outcomes as it has been demonstrated for GM diversity . Lastly, the different metabolic patterns between children

and adults should be directly addressed, considering the differences in GM configuration  and HSCT outcomes .

Certainly, these data pose a new intriguing field of research and substantial opportunities for the near future. GM-derived

metabolites might serve as a feasible surrogate marker for microbiome characterization that may be clinically useful to

predict HSCT-related risk . Furthermore, the modulation of GM-derived metabolites should also appear as a target for

therapeutic interventions. These should include diet, which is known to represent the main strategy to modulate microbial

products m , emphasizing the importance of nutritional support during HSCT . Other strategies should also be

tested in order to modulate metabolites, such as probiotics, prebiotics and other oral supplements alongside FMT. In

conclusion, GM-derived metabolites have proven to be an important field of research in the HSCT setting, also appearing

as a promising therapeutic target for the nearfuture.
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