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Lysophosphatidic acid receptor 3 (LPA3) is implicated in different physiological and pathological functions through

activation of different signal pathways, the result of the regulation process of this receptor. The knowledge of

regulating LPA3 could be a crucial element for defined their roles in health and disease.

lysophosphatidic acid 3 receptor  receptor phosphorylation  lysophosphatidic acid  PKC

GRK

1. Introducción

Lysophosphatidic acid (LPA) is a simple lipid comprising a phosphate group and a fatty acid, linked by ester bonds

to glycerol residue, which is considered the backbone of this molecule ( Figure 1 ). LPA has a wide distribution

in the body. It is found in tissues and fluids, probably due to its chemical and physical characteristics, particularly its

low molecular weight and solubility in water .

Figura 1. LPA structure. Chemical structure of 1-oleoyl-2-hydroxy-sn-glycerol-3-phosphate (LPA 18: 1). Atoms in

the chemical structure: carbon (gray), hydrogen (white), oxygen (red) and phosphorus (orange)

https://pubchem.ncbi.nlm.nih.gov/compound/Lysophosphatidic-acid ) ( https: / /molview.org ). Retrieve June 4,

2021.

Two pathways synthesize LPA. In the intracellular pathway, phospholipids (phosphatidylcholine,

phosphatidylserine, or phosphatidylethanolamine) or diacylglycerol are the metabolic precursors of LPA through the
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action of phospholipase D or diacylglycerol kinase, respectively. These enzymes promote the synthesis of

phosphatidic acid, which is converted into LPA through catalysis by cytoplasmic lysophospholipases A1 or A2 .

Other molecules from which LPA is synthesized include glycerol-3-phosphate and monoacyl-glycerol. In these

processes, we find the participation of the enzymes glycerophosphate acyltransferase and monoacyl-glycerol

kinase, respectively .

In the extracellular pathway, LPA is generated from lysophosphatidylcholine, which is found in the extracellular

leaflet of plasma membranes or bound to proteins (such as albumin). In this case, secreted lysophospholipases A1

or A2 split a fatty acid from phosphatidylcholine, synthesizing lysophosphatidylcholine, and then converting it into

LPA by a phospholipase D, generally denominated Autotaxin .

LPA is degraded by various enzymes, including LPA acyltransferase, which transfers an acyl group from acyl-CoA

to LPA, generating phosphatidic acid; LPA lipid phosphatase, which can remove the phosphate group from LPA,

generating monoacylglycerol, and lysophospholipases, which lead to the hydrolysis of the acyl group of LPA,

producing a free fatty acid and glycerol 3-phosphate .

LPA is considered a “bioactive lipid”, implying that it, in addition to its role in phospholipid metabolism, regulates a

diverse range of cellular and organism responses such as angiogenesis ,  neuritic retraction , cell

migration , cell proliferation , reorganization of the cytoskeleton  [10,20], development of the

central nervous system , neuronal myelination , pain , obesity , and cancer , among

many others. These functions are performed by LPA through the activation of six receptors .

These receptors are called lysophosphatidic or LPA receptors and are classified into two families. The first family is

the lysophospholipid family of receptors, related to those for other phospholipids and including the LPA , LPA , and

LPA  receptors. The second family is phylogenetically related to the purinergic receptors and includes the LPA ,

LPA , and LPA  receptors .

These LPA receptors belong to the G protein-coupled receptor (GPCR) superfamily. They are structurally

constituted of seven transmembrane hydrophobic domains connected by three intracellular loops and three

extracellular loops, with an extracellular amino-terminal group and an intracellular carboxyl terminus. According to

the classification criteria in the GRAFS (Glutamate, Rhodopsin, Adhesion, Frizzled/Taste2, and Secretin groups)

system  and in the AF system, all of these receptors belong to family A . These receptors are associated

for their signaling with heterotrimeric GTPases or “G” proteins. LPA receptors can activate different Gα proteins

(Gα   Gα , Gα , Gα ); some of these receptors are considered promiscuous because they can activate

different G proteins and downstream signaling pathways that regulate various physiological functions as well as

being involved in the pathogenesis of different diseases  (Figure 2).
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Figure 2.  LPA receptors and G proteins. LPA receptors couple with different G proteins that activate distinct

signaling pathways. PLC, phospholipase C; PI3K. phosphoinositide 3-kinase; AC, adenylyl cyclase. Created with

BioRender.com.

The activation of GPCRs by their agonists leads to conformational changes promoting heterotrimeric G protein

interaction and the exchange of GDP for GTP in their G  subunits, favoring the dissociation of these heterotrimeric

proteins into their G  subunits, and the βγ complexes, which separately mediate the activation of downstream

proteins . The termination/attenuation of signaling is associated with receptor phosphorylation by different

protein kinases (including G protein-coupled receptor kinases (GRKs) and second messenger-activated kinases,

among others) . Such phosphorylations facilitate interaction with β-arrestins, disfavoring

receptor-G protein interaction (therefore, decreasing G protein-mediated signaling), recruiting the endocytic

machinery, promoting receptor internalization (Figure 3), and activating alternative signaling processes

.
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Figure 3. Internalization of agonist-activated LPA  receptors. (1) Activation of LPA  with LPA and recruitment of a G

protein. (2) Exposure of GPCR phosphorylation sites. (3) Recruitment of β-arrestin through interaction with

phosphorylated sites. (4) Recruitment of the endocytic machinery that initiates receptor endocytosis. (5)

Endocytosis of LPA  via endosomes. (6) Receptor-endosomal traffic to (7) lysosomal receptor degradation or (8)

receptor recycling to the plasma membrane. Question marks indicate that there is little information on these

processes, which are postulated in similarity to what has been defined for other receptors. Created with BioRender.

As indicated, the LPA receptors belonging to the lysophospholipid family include the LPA   receptors. These

receptors have been studied in more detail (reviewed in ). The LPA  receptor is a 364 amino acid protein, which

interacts mainly with G , G , and G . In mice, knocking out the expression of this receptor subtype markedly

affects the development of the central nervous system and decreases survival (50% perinatal death). Alteration of

LPA  expression has been associated with cancer, neuropathic pain, and fibrosis of the lungs. LPA  is a protein of

348 amino acid residues that interacts with G , G , and G . Constitutive receptor loss in mice produces an

essentially normal phenotype; however, this receptor contributes to the development and function of synapsis in

embryos and adult mice. It has also been associated with some types of cancer and lung functional alterations,

such as asthma. The LPA   receptor is a GPCR whose activation mainly promotes the recruitment of two G

proteins: Gα   and Gα ; therefore, it is considered promiscuous. The LPA   receptor regulates different signal

pathways, as depicted in  Figure 4. It should be mentioned that LPA receptors (LPA  form homo- and

heterodimers within the subgroup and heterodimers with other receptors such as those of the sphingosine 1-

phosphate receptor (S1P ) and the proton-sensing GPCR, GPR4 . This adds a new level of complexity in

signaling and regulation, which we consider important to mention, but it is not considered in the present review.
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Figure 4.  Signaling pathway of LPA   receptors. Activation of this receptor subtype with LPA promotes

conformational changes favoring intense interaction with G  and G  which lead to activation of downstream

signaling molecular entities. Abbreviations as in Figure 2. Created with BioRender.

2. The LPA  Receptor: Structure and Function

The human LPA  receptor (https://www.uniprot.org/uniprot/Q9UBY5; Accessed on 12 May 2021) is constituted of

353 amino acids (mouse and rat orthologs, 354 amino acids), and its calculated molecular weight is ≈40 KDa

(39,998 Da) . As previously indicated, according to the classification systems GRAFS and A-F, this receptor

belongs to the A family . LPA  is mainly coupled to two G proteins, Gα  and Gα ; therefore, the G protein-

binding motif of this receptor subtype is considered promiscuous. This property allows this receptor to activate

different signal pathways, which might explain why it does participate in a large variety of physiological functions

and, as previously mentioned, in the pathogenesis of diseases .

As a member of the GPCR superfamily, the LPA  receptor is constituted of seven hydrophobic transmembrane

domains (TM), which are joined through three extracellular and three intracellular loops (Figure 5). It is worth

mentioning that transmembrane regions are essential for this receptor, as has been observed for others that also

belong to the A family. These regions or domains are frequently conserved . 
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Figure 5.  LPA   receptor structure, domains and sites that regulate this receptor. Image shows the amino acid

sequence and the organization of the LPA   receptor with three extracellular loops, three intracellular loops, the

seven transmembrane domains, the extracellular amino terminus (-NH ), and the intracellular carboxyl terminus (-

COOH). Colored boxes indicate conserved motifs putatively relevant for activation and regulation of the

LPA   receptor. Putative sites where LPA interacts with LPA  are shown in green, while proposed places where

GPCRs could be recruiting G proteins are marked in blue and purple (R, arginine that is also part of the ERH

motif). “Y” indicates a potential glycosylation site, and the line joining one of the cysteines to the membrane is a

putative palmitoylation site.

Available information on LPA  receptor structure/function is scarce. Therefore, in order to obtain some information,

we performed  in silico analyses. This allowed us to identify different domains observed in other GPCRs. Among

these are the following: an ERH (Glutamic acid-Arginine-Intrahelical hydrogen bonding residue) domain (analogous

to the DRY (Aspartic acid-Arginine-Tyrosine) motif) in the transition between the end of TM3 and the initiation of

ICL2, a CWXP domain within TM6, an NPXXY domain near the end of TM7, and a di-cysteine domain within the

carboxyl terminus (Figure 5). Studies on these domains in other receptors have shown that they are important for

the activation and regulation of the GPCRs receptors of the A family . Additionally, an AP2-binding

domain is present in the carboxyl terminus .

It is noteworthy to mention that the mutation of these domains usually reduces or abolishes agonist-activation of

GPCRs. Studies employing molecular docking showed that ligand binding at GPCRs produced the packaging of

TM3-5-6-7 domains; this event was promoted by destabilization of an ionic interaction , initiating a

displacement of TM7 toward TM3 and promoting activation involving the tyrosine residue present in the DRY motif,
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which is associated with the rotation of the cytoplasmic extreme of TM6 and which promotes the activation of these

receptors .

Additionally, the asparagine residue of the NPXXY motif establishes interactions with other residues, facilitating the

movement of TM7 toward TM3  and promoting the stability of the activated receptor. Finally, the DRY motif

forms a salt bridge with surrounding residues and with TM6; this salt bridge breaks at the moment the ligand binds.

The DRY motif creates a new interaction with TM5, stabilizing the receptor in its active conformation, breaking

contacts between TM3 and TM6, thus promoting a movement toward the cellular cytoplasm of TM6, which

increases the receptor binding to the G  protein. These events initiate signaling, favor receptor phosphorylation,

and later favor association with β-arrestins, all of which are relevant for receptor desensitization .

The CWXP domain is a motif found in TM6 which seems to participate in the binding of agonists. Rotation of the

tryptophan residue causes movements within the binding pocket, promoting the accommodation of the ligand into

the receptor. In contrast, the proline residue induces a bend that serves as a pivot for helical movement during

receptor activation . Other motifs that appear to participate in the activation of GPCRs include the

PIF (GPCR microswitch; Proline-Isoleucine-Phenylalanine) motif that is usually found in TM4 and the NPXXY motif

found in TM7, both of which are also related to the activation of Gα , Gα , Gα  and β-arrestins . It has

been shown that in some receptors (such as the histamine 2 receptor , the formyl peptide receptor ,

and α- and β-adrenoceptors , among others), this domain could be regulating agonist-induced internalization,

which affects MAPK pathway activation and intracellular calcium mobilization.

The majority of the motifs that generally regulate the activation of GPCRs, including those in the LPA  receptor,

have also been found in the LPA   receptor (Figure 5). Only the PIF domain could not be found in the receptor

sequence. Therefore, it appears likely that other receptor region(s) could replace the role of PIF in receptor

activation.

This illustrates the putative importance of the motifs present in the LPA  receptor at the time of its activation when

the ligand binds to it; however, we must recall that the intracellular loops and the carboxyl-terminal region play

essential roles, particularly in receptor desensitization and internalization. Current ideas suggest key roles in the

phosphorylation of specific residues, mediated by GRKs, second messenger-activated, and other protein

kinases .

Other important regions of the LPA  structure are the transmembrane domains, which contain residues that take

part in ligand binding. It is worth mentioning that the LPA receptors that belong to the lysophospholipid subfamily

entertain an ≈81% similarity among themselves .

Few studies have reported the participation of these residues during the binding of the ligand in LPA receptors. The

residues where LPA has been shown to interact with LPA receptors include arginine 105, glutamine 106,

tryptophan 153, arginine 185, lysine 279, and arginine 276 (Figure 5, residues in green). These sites are

conserved in the LPA , LPA , and LPA  receptors, but differences appear to exist between these . In
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the case of tryptophan 153, when it was mutated to alanine in the LPA   receptor, it induced a decrease in the

potency and efficacy of LPA; such changes were not observed when the LPA  and LPA  receptors were similarly

mutated. Likewise, when arginine 279 was substituted with alanine, a decrease in the activation of LPA  and LPA ,

but not in the LPA  receptor, was observed .

Another structure important is an amphipathic α-helix, frequently denominated helix 8, that maintains
the F (R/K) XX (F/L) XXX (L/F)sequence that is conserved in GPCRs of the A family  and has been
reported to participate in the maintenance of the receptor on the cell surface promoting GPCR
trafficking, and participating in the activation of the G proteins and the receptor’s interaction with the
β-arrestins .

However, there are receptors of the same family that do not present this sequence that could be involved in the

recruitment of the G protein, how is the LPA , so according to studies carried out by Zhou and coworkers, in which

it is proposed that in response to agonist-induced conformational changes, residues in transmembrane domains 3,

5, and 6 interact with and activate G proteins . These residues were found in the structure of the LPA  receptor

as shown in Figure 5 (indicated in cerulean).

The GRKs are a family of protein kinases that appears to play a major role in the phosphorylation of agonist-

occupied GPCRs (Table 1). This family is made up of seven different isoforms that are constituted of a central

catalytic domain which is conserved in all GRKs; an amino-terminal area and the carboxyl terminus, both of which

differ among these protein kinases, seem to confer them selectivity in their action, and participate in their

regulation. These domains constitute the structural basis for their classification into subfamilies; in addition, some

GRKs exhibit selective expression in some tissues . The visual GRKs (GRK1 and GRK7) are mainly

expressed in the retina, GRK4 is mainly expressed in the testis, whereas the other GRKs (2, 3, 5, and 6) are

ubiquitously expressed; visual GRKs have short prenylation sequences (see reviews in  and references

therein). The second subfamily, denominated GRK2 and also, for historical reasons, the β-adrenergic receptor

kinase (or βARK) subfamily, exhibits a Pleckstrin homology domain that interacts with G protein βγ dimers and

phosphatidylinositol 4, 5-bisphosphate. These kinases are cytoplasmic and their interaction with the plasma

membrane seems to occur through these domains. The GRK4 subfamily seems to be bound to the plasma

membrane through palmitoylation and/or the presence of positively charged lipid-binding elements . It

has been proposed that lipids covalently bound to the carboxyl terminus of these proteins, the Pleckstrin homology

domain that associates with phosphoinositides, and the polybasic/hydrophobic regions permit these kinases to be

recruited to the membrane and to catalyze GPCR phosphorylation at specific residues .

Table 1. GRKs that putatively phosphorylate different sites in GPCRs.
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Such specificity in the GPCR phosphorylation pattern appears to be critical to define subsequent signaling

(frequently associated with β-arrestin activation), vesicular trafficking, and the receptor’s fate (rapid or slow

recycling to the plasma membrane, or degradation). This has been named the “GPCR phosphorylation barcode,”

and numerous research groups are actively working to understand (i.e., to break) this code, which currently is only

partially understood . Obviously, initial steps include knowing that the GPCR of interest is

actually phosphorylated, the conditions under which that takes place, and the definition of the specific sites affected

by such covalent modification. At present, there is evidence that LPA  receptors are phosphorylated in response to

agonists and other agents (associated respectively with homologous and heterologous desensitizations) .

However, to date, the phosphorylation pattern(s) of this receptor is (are) unknown, which seems to be an important

gap in our knowledge.

Studies conducted  in silico showed that the LPA  receptor can be phosphorylated by different protein kinases .

Not surprisingly, different isoforms of GRK and PKC are predicted to be responsible for many such

phosphorylations; however, other protein kinases such as PKA, PKB/AKT, and some protein tyrosine kinases were

present in this  in silico analysis . Many of these predicted phosphorylation sites could be targeted by several

protein kinases .

Considering the vital role that GRKs play in homologous desensitization/phosphorylation, the putative sites for the

action of this family of kinases on LPA  receptor phosphorylation are presented in Figure 6. These residues were

obtained in a new analysis employing different and/or updated software programs, including GPS5

(http://gps.biocuckoo.cn; Accessed on 3 April 2021), netphorest (http://netphorest.info; Accessed on 3 April 2021),

quokka (https://quokka.erc; Accessed on 4 April 2021) and NetPhos 3.1 (http://www.cbs.dtu.dk; Accessed on 4 April

2021). The criterion used to carry out each study was a high threshold. Only residues that were putative targets of

GRK, PKA, or PKC and that obtained a high score were considered. Subsequently, we carried out an analysis on

the results obtained and chose the residues that were consistently observed in these analyses; these are

presented in Figure 6. The majority of the GRK putative phosphorylation-target residues were found in intracellular

loop 3 and the carboxyl terminus region. Not surprisingly, the different software programs used suggested roles of

isoforms of the GRK2 and GRK4 subfamilies (Table 1).

Subfamilies GRKs Domains of Interest
GRK4 GRK4, GRK5 and GRK6 Palmitoylation, polybasic hydrophobic domains

[46][50][92][93][94][95][96]
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Figure 6. In silico prediction of serine and threonine sites phosphorylated by GRK, PKA and PKC. LPA  structure is

represented, showing (in red) the putative sites targeted by GRK and (in cerulean) putative sites phosphorylated by

PKA or PKC.

The possibility that different GRK isoforms may participate in LPA   phosphorylation is provocative. It has been

proposed that GRK 2 and 3 promote receptor endocytosis by the β-arrestin/clathrin pathway more efficiently than

other isoforms. At the same time, GRK 5 and 6 appear to mediate β-arrestin-triggered ERK 1/2 signaling

. It is important to mention that GRKs, in addition to carrying out GPCR phosphorylation, can

phosphorylate other proteins in the cell cytoplasm that are involved in cell signaling, as well as receptor trafficking

proteins such as G  and G , PI3K, clathrin, caveolin, MEK, and AKT/PKB, among others

.

It is noteworthy that the  in silico  analysis suggested that PKA and PKC could participate in LPA   receptor

phosphorylation (Figure 6 and Table 2); this result is of interest because it might indicate the involvement of these

protein kinases in the heterologous desensitization of this receptor. It has been reported previously that LPA

  receptors can be phosphorylated in response to the pharmacological activation of PCK with phorbol myristate

acetate . However, to the extent of our knowledge, there is no evidence of PKA-induced LPA   receptor

phosphorylation. It should be noted that the  in silico. Detailed analysis shows a marked overlap between GRK,

PKA and PKC, suggesting that some sites could be the target of these clusters of kinases. ( Tabla 1  y  Tabla 2 ).

Tabla 2. In silico prediction of residues of LPA  phosphorylated by PKC and PKA.
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