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Among the different mechanisms involved in oxidative stress, protein carbonylation and lipid peroxidation are both

important modifications associated with the pathogenesis of several diseases, including cancer. Hematopoietic cells are

particularly vulnerable to oxidative damage, as the excessive production of reactive oxygen species and associated lipid

peroxidation suppress self-renewal and induce DNA damage and genomic instability, which can trigger malignancy. A

richer understanding of the clinical effects of oxidative stress might improve the prognosis of these diseases and inform

therapeutic strategies. The most common protein carbonylation and lipid peroxidation compounds, including

hydroxynonenal, malondialdehyde, and advanced oxidation protein products, have been investigated for their potential

effect on hematopoietic cells in several studies.
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1. Introduction 

Oxidative stress can be defined as an imbalance between the production of reactive oxygen species (ROS) and the ability

of the cells to detoxify them . ROS production is a common consequence of aerobic metabolism, and can play a dual

role in cells, being either beneficial or harmful. For instance, hydrogen peroxide is a major redox metabolite that operates

in redox signaling, but when produced at high concentrations it can contribute to damage of biomolecules and trigger an

inflammatory response . High levels of ROS are associated with DNA fragmentation, lipid peroxidation, and/or protein

carbonylation, leading to cellular dysfunction and even cell death . Accordingly, cells rely on efficient antioxidant

defenses provided by enzymes and metabolites to maintain low levels of ROS; for example, superoxide dismutase (SOD)

and catalase (CAT) enzymes, and antioxidant molecules such as thiol antioxidants or vitamin E .

As oxidative stress has myriad consequences for cell fate, many analytical procedures have been established both for the

produced ROS and their downstream effects on biomolecules. Although free radicals can be measured in biological

samples, their quantification lacks sensitivity and specificity, and so much effort has been directed at quantifying their

target products, including fragmented DNA, lipid peroxidation products (malondialdehyde (MDA) or 4-hydroxy-2,3-nonenal

(HNE)) and protein carbonylation, an irreversible oxidative modification . As DNA fragmentation does not directly

correlate with ROS levels, the most useful current methods involve the quantification of lipid peroxidation and protein

carbonylation .

Protein carbonylation is one of the most common oxidative modifications. Oxidation of proteins is of particular concern

since it leads to aggregation, polymerization, unfolding, or conformational changes that may confer a loss of structural or

functional activity. Oxidized protein aggregates are not readily degraded in the cell, and their accumulation causes cell

dysfunction . While many different types of protein oxidative modifications are possible, most involve protein carbonyls

(aldehydes and ketones) . As carbonyl groups are chemically stable, they are extremely useful for laboratory analysis,

although their study is methodologically complex. The carbonyl contents of individual proteins may be assessed through

derivatization of the carbonyl group with dinitrophenylhydrazine (DNPH), which forms a stable dinitrophenylhydrazone

(DNP) product that can be analyzed spectrometrically or by immunoblotting . Carbonylation research is characterized

by the application of numerous protocols and proteomics workflows, which allows the measurement of compounds by

several techniques. Protein carbonylation is a major final by-product of multiple oxidation pathways that occur in the cell

and thus, this makes it an appropriate marker of oxidative stress . In contrast, some protein modifications might just

represent cellular antioxidation mechanisms as part of the oxidation-defense system . To deepen into the biological

implication of protein carbonylation, it is important to characterize each specific modification.

Protein carbonylation can be induced directly by the action of oxidative stress or indirectly by reactions of secondary by-

products.
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The main mechanism of protein carbonylation involves the direct action of ROS or the metal-catalyzed oxidation of amino

acid side chains, particularly proline, arginine, lysine, and threonine. Carbonyl derivatives can also be generated through

the α-amidation pathway or through the oxidation of glutamyl side chains, where the peptide is blocked in N-terminal

amino acids by an α-ketoacyl derivative . The indirect mechanism of protein carbonylation involves the carbonylation of

lysine, cysteine, and histidine, which may be caused by their reaction with reactive carbonyl groups produced during the

oxidation of carbohydrates (e.g., glyoxal (GO), methylglyoxal (MGO)) and lipids (e.g., HNE, MDA or acrolein (ACR)). This

process of carbonyl generation is termed glycoxidation (the formation of advanced glycation end-products (AGEs)) and

lipoxidation (the formation of ALEs), respectively . Advanced oxidation protein products (AOPPs) are

modified structures, similar to AGEs, which also serve as oxidative stress markers  (Figure 1).

Figure 1. (a) The most common mechanisms of protein carbonylation. Direct processes include reactive oxygen species

(ROS) attack, metal-catalyzed oxidation (MCO), and by oxidative cleavage of protein backbone (via the α-amidation

pathway or through oxidation of glutamine side chains). The indirect mechanisms involve the reaction with (b) advanced

glycation end-products (AGEs) and (c) advanced lipid peroxidation end-products (ALEs).

Lipid peroxidation is also a widely used biomarker of oxidative stress. The polyunsaturated fatty acyls (PUFAs) chains

found in membranes and lipoproteins are particularly susceptible to free radical chain autoxidation, leading to a variety of

unsaturated lipid hydroperoxides . PUFAs may also be enzymatically oxidized, although these are regio- and stereo-

controlled processes involved in normal intermediary metabolism . The nonenzymatic lipoxidation-derived

hydroperoxides can decompose, usually in the presence of reduced metals or ascorbate , to generate mono- and

bifunctional reactive carbonyl-containing moieties, producing aldehydes such as MDA, GO, ACR, 4-HNE, and 4-oxo-2-

nonenal (ONE) . The reaction of MDA with thiobarbituric acid to form thiobarbituric reactive substances (TBARS) is a

common estimator of oxidative damage. The TBARS assay is, however, nonspecific for MDA, and fatty peroxide-derived

decomposition products other than MDA are thiobarbituric acid-positive .

The potential effects of ROS as well as their target products on hematopoietic cells are particularly relevant, as these cells

are acutely sensitive to oxidative damage associated with the accumulation of free radicals . The resultant lipid

peroxidation produced by the excessive production of ROS and reactive nitrogen species can suppress self-renewal,

limiting the number of hematopoietic stem cells, and directly induce DNA damage and genomic instability .

2. Lymphoma

Lymphoma are a heterogenous group of hematological malignancies derived from different types of lymphocytes and

occur predominantly in lymph nodes or other lymphoid structures ; as such, they are considered as the solid tumors of

the immune system . While their etiology is not well understood, it is likely multifactorial as abnormal genetic
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alterations, disordered epigenetic regulation, aberrant pathway activation, or infections like Epstein–Barr virus have been

reported .

There is growing evidence that oxidative stress and an imbalance in reduction–oxidation might play a significant role in

lymphoma carcinogenesis and patient prognosis, either by generating a more favorable environment for cancer cells to

proliferate or by modifying the efficiency of oncological treatments, which are largely based on the generation of ROS .

Hypoxia is a characteristic feature of solid tumors and, accordingly, its role in hematological malignancies was initially

presumed to be inconsequential . As mentioned above, however, lymphoma present with solid tumor-like features

 and normal lymph nodes exhibit low oxygen tension . Thus, ROS production might be induced in lymphoma by

hypoxic stress, whereas in other hematological diseases it might be due to impaired antioxidant defenses .

3. Multiple Myeloma

Multiple myeloma (MM) is the second most common hematological cancer after lymphoma and is characterized by the

accumulation of clonal malignant plasma cells in the bone marrow (BM). In fact, the BM microenvironment (niche) plays a

key role in supporting tumor cell growth, disease progression, and drug resistance of myeloma plasma cells . One of

the main causes of MM is indeed oxidative stress, and it has been known for almost three decades that

oxidant/antioxidant parameters are misbalanced in this disease  which might continuously stimulate an inflammatory

milieu at the tumor microenvironment . The enhanced oxidative state, in turn, increases the rate of genetic mutation,

leading to the acquisition of a malignant phenotype and subsequent cancer progression, as also observed in HL .

Commonly, MM is preceded by asymptomatic premalignant stages including monoclonal gammopathy of uncertain

significance (MGUS) and/or a symptomatic stage such as smoldering multiple myeloma (SMM). Important proteins for the

progression of MM, such as c-MYC, have been shown to regulate ROS levels through the modulation of mitochondrial

activity . Myeloma cells increase their metabolic demand when the disease progresses, and, consequently, there is a

disproportionate production of free radicals or ROS.

4. Leukemia

Leukemia is known to be a heterogeneous disease and four major subtypes are recognized: acute lymphoblastic

leukemia (ALL), chronic lymphoblastic leukemia (CLL), acute myeloid leukemia (AML), and chronic myeloid leukemia

(CML). ALL is the most frequent cause of death from cancer before the age of 20  and presents genomic alterations

implicated in the proliferation and maturation of lymphoid progenitor cells . CLL is the most common leukemia

worldwide and is characterized by the accumulation of B (B-CLL) or T (T-CLL) cells arrested in the early phase of cell

division , although its ontogeny is unknown . AML is the most common acute leukemia in adults and is defined by the

clonal expansion of abnormally differentiated blasts of the myeloid lineage . Finally, CML is a myeloproliferative

disorder with a unique genetic rearrangement, the Philadelphia chromosome (BCR-ABL1) which causes the disease .

Oxidative stress is a prominent feature in many leukemias , and they are characterized by a higher level of ROS than

nonleukemic cells. The implication of ROS in the course of leukemias has been scarcely studied .

5. Myelodysplastic Syndromes

Myelodysplastic syndromes (MDS) are also a heterogeneous group of onco-hematological cell disorders that are

characterized by the presence of immature myeloid precursors (blasts), dysplastic hematopoiesis in the BM, and

peripheral cytopenias . Approximately one-third of MDS cases progress to AML .

Although its origin is not well understood, the role of oxidative stress in the pathogenesis of the MDS have been

investigated in several studies . Approximately 60–80% of patients experience symptomatic anemia and 80–

90% require red blood cell transfusion support . For this reason, many patients with MDS develop transfusion-

dependent iron overload (IOL) . When present in excess, cellular iron leads to toxicity and cell death via free radical

formation and lipid peroxidation . It has been reported that the development of IOL significantly worsens the survival of

patients with MDS, and it is associated with a higher risk of leukemic transformation . While the role of ROS in MDS is

established, the role played by lipoxidation products in the disease and its progression is unclear . High concentrations

of the HNE adduct have significant cytotoxic effects on DNA synthesis and mitochondrial activity in leukemic cells, but not

in normal hematopoietic precursor cells . However, a recent study examining protein carbonylation in MDS found no

significant differences in HNE adducts in BM samples between the MDS and the control group . Analysis of the lipid

peroxidation products MDA and nitrite revealed significantly higher levels in patients with MDS and IOL compared with
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peers without IOL and the control group, and both parameters positively correlated with the levels of ferritin  (Figure 2).

The same authors later confirmed the increase in MDA levels and higher levels of antioxidant enzymes , suggesting

that increases in lipid peroxidation is followed by an increase in antioxidant capacity.

Figure 2. Oxidative damage in transfusion-dependent patients with MDS. Frequent transfusions in patients with MDS

leads to iron overload in serum, which plays a key role in the generation of highly reactive oxygen species (ROS) . The

increase of ROS could directly oxidize proline (Pro), Arginine (Arg), Lysine (Lys), and Threonine (Thr) residues. ROS-

induced lipid peroxidation of long-chain polyunsaturated fatty acids (PUFAs) also promotes protein carbonylation by

reaction with lipid peroxidation end-products such as malondialdehyde (MDA) and 4-hydroxy-2-nonenal (HNE).

6. BCR/ABL Negative Myeloproliferative Neoplasms

BCR/ABL negative myeloproliferative neoplasms (MPNs) are unique hematopoietic stem-cell disorders that share

mutations that constitutively activate the physiologic signal-transduction pathways responsible for hematopoiesis .

MPNs are clonal disorders that are mainly characterized by hyperproliferative BM with varying degrees of

reticulin/collagen fibrosis, extramedullary hematopoiesis, abnormal peripheral blood count, and constitutional symptoms.

They include polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF) .

An imbalanced oxidative status, higher ROS levels, and lower total antioxidant capacity levels compared with controls was

found in patients with myelofibrosis by Verner et al. Additionally, the oxidative stress and MDA levels were increased,

whereas the total antioxidant status was lower . Following therapy, oxidative stress index and MDA values were

significantly lower than the pretreatment values . Higher plasma levels of MDA together with significantly higher protein

carbonyls content was also recently reported in patients with MPNs compared with healthy subjects .

In patients with PV and ET, Musolino et al. evaluated oxidative stress, finding higher levels of advanced oxidated protein

products and S-nitrosylated proteins in both diseases and an increase of AGEs in patients with ET with respect to

controls. The authors found a correlation between S-nitrosylated proteins and hemoglobin values in patients with PV, and

between AGEs and thrombotic events in patients with ET, suggesting a potential role of ROS in the onset of

myeloproliferative-associated thrombotic risk .

7. Oxidative Stress Modulators for the Treatment of Hematological
Malignancies

As discussed earlier, the misbalance of ROS production in cancer cells can alter cell survival mechanisms. Accordingly, a

number of studies have focused on developing new treatment strategies by targeting the redox system in tumor cells.

Interestingly, while some of the tested agents exert antioxidant properties, a large number of them are also documented to
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increase the levels of intracellular ROS in addition to blocking a biochemical target . Given the large number of

targeted therapies tested, we focused only on those agents that have a modulatory effect on oxidative stress, by affecting

either protein carbonylation or lipid peroxidation (Figure 3).

Figure 3. Oxidative stress modulators for the treatment of hematological malignancies. Several antioxidants such as

resveratrol, melatonin, and curcumin exert both antioxidant and pro-oxidant activities. By modulating different antioxidant

enzymes and transcription factors (TFs), these compounds reduce protein carbonylation and/or lipid peroxidation and

inhibit tumor progression. They present cytotoxic effects by enhancing reactive oxygen species (ROS) production. Iron

chelators such as deferasirox (DFX) inhibit ROS production directly or indirectly by suppressing the active redox forms of

iron and regulating mitochondrial activity and can significantly decrease lipid peroxidation and protein carbonylation in a

mechanism dependent on the cell cycle and p21. It will be interesting to explore whether DFX exerts its control on p21

through NF-κB  or by inhibiting signaling pathways activated by oxidative stress that control the cell cycle via p53 .

COX, cyclooxygenase; LO, lipoxygenase; MM, multiple myeloma; NOS, nitric oxide synthase.

7.1. Potential Antioxidant Drugs

As the total cellular antioxidant capacity is generally compromised in hematologic malignancies, administration of

antioxidant drugs might represent a successful way to restore the redox balance. Several antioxidants have been already

evaluated as potent anticarcinogenic agents in different kinds of tumors, both in monotherapy or in combination with other

antioxidants or classical chemotherapeutics and some of them even revealed promising results in clinical trials. Compared

to classical treatment, these compounds possess several important advantages. Beside lower costs they do not exert

serious side effects on normal tissues and can be used for chemoprevention .

Antioxidants, such as spirulina , Enhydra fluctuans extracts , and selenium  can re-establish hematological

parameters while simultaneously reducing protein carbonylation and/or lipid peroxidation levels.

In the context of hematological tumors, the antitumor activity of the natural polyphenol resveratrol has been tested in

virtually all types of blood cancer cells, including leukemias, lymphomas, and MM . Resveratrol protects

phospholipids from oxidation , although it is able to inhibit all stage of carcinogenesis (e.g., initiation, promotion, and

progression)  by modulating transcription factors, upstream kinases, and their regulators . As resveratrol has

no impact on hematopoiesis  its potential utility for ex vivo pharmacological purging of leukemia cells from BM

autografts before transplantation has been proposed . Resveratrol has also been shown to reverse drug resistance

in a broad range of in vitro cell systems by sensitizing tumor cells to drug-mediated effects in combination with other

chemotherapeutic agents . Nevertheless, a phase 2 clinical trial of resveratrol with or without bortezomib for patients

with relapsed and/or refractory MM highlighted side effects and an unacceptable safety profile in combination with

bortezomib in these patients .

The pituitary hormone melatonin (N-acetyl-5-methoxytryptamine) is of great interest as an endogenous redox modulator

with anticancer activity. Melatonin acts directly as a chelator of ROS , and indirectly by regulating the

expression and activities of antioxidant enzymes and nitric oxide synthase . Melatonin has been shown to have

a synergistic cytotoxicity effect in combination with lymphoblastic leukemia drugs such as doxorubicin, decreasing ROS

and carbonyl formation. Interestingly, this combination is safe for normal lymphocytes, pointing to melatonin as a

promising adjuvant for anticancer therapy by allowing lower doses of the anticancer drugs, minimizing their side-effects
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In in vitro models of lymphoma, a reduction in lipid peroxidation and/or protein carbonylation products have also been

reported using a variety of antioxidants, including 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), ascorbic acid (vitamin C),

α-tocopherol, β-carotene , flavonols such as quercetin and rutin , canthaxanthin  or mangiferin, a C-glycosyl

xanthone . Interestingly, extracts of Cocculus hirsutus , β-carotene , and α-Tocopherol  increased survival

time in vivo.

In addition, in a murine lymphoma model, ellagic acid inhibits lipid peroxidation and protein carbonylation, decreases

PKCα c-Myc expression, and improves TGF-β1 expression in addition to decreasing cell viability, supporting its

anticarcinogenic action .

Another natural product belonging to the group of polyphenols is curcumin or diferuloylmethane, which inhibits free

radicals from mediating peroxidation of membrane lipids or oxidative DNA damage . The chemotherapeutic potential of

curcumin has been also tested in mice with lymphoma. Results showed that curcumin administration leads to a decrease

in lipid peroxidation and protein carbonylation levels, and an increase in the expression and activity of antioxidant

enzymes, which in turn modulate the activation of NF-κB, overall reducing lymphoma growth .

In conclusion, antioxidants are promising drugs in the management of hematological malignancies. Nevertheless, further

studies are necessary in order to confirm their role as anticancer compounds. It should be noted that there are conflicting

opinions on the administration of antioxidants during cancer therapy. It is still largely unaccepted by the clinical community

as some oncologists believe that it may reduce the effectiveness of chemotherapies, which are mostly based on

increasing oxidative stress .

7.2. Potential Pro-Oxidant Drugs

In addition to antioxidants, several pro-oxidant drugs capable of modulating cellular ROS contents are currently being

tested for their possible use in hematological malignancies. Some of them exert both antioxidant and pro-oxidant

properties. Remarkably, the aforementioned antioxidants, melatonin, curcumin, and resveratrol, have also been described

as potent pro-oxidants in cancer treatment .

Resveratrol has also dose-dependent pro-oxidant effects, measured as protein carbonylation, which is followed by

apoptosis and cell damage . Likewise, Gautam et al. demonstrated that resveratrol induces apoptotic DNA

fragmentation in three leukemia cell lines (32Dp210, L1210, HL-60) but not in normal BM cells . The pro-oxidant activity

of resveratrol has also been linked to the induction of cell cycle arrest . Resveratrol also suppresses growth of myeloid

cells. Lee et al. demonstrated that resveratrol inhibits proliferation of promyelocytic leukemia cells and nonmalignant B-cell

lymphoblastoid cells by blocking cell cycle progression in G0/G1, and also induces apoptosis in promyelocytic leukemia

cells and acute lymphocytic leukemia cells . Interestingly, leukemic lymphoblasts isolated from pediatric patients

with ALL undergo apoptosis when treated with resveratrol .

Melatonin seems to stimulate the production of ROS in human myeloid HL-60 cells, eliciting cytotoxic effects . It also

increases the activity of lipoxygenases and cyclooxygenase and promotes the production of ROS in Burkitt lymphoma

BL41 cells . Similarly, it enhances cell death in Jurkat leukemia cells via a pro-oxidant pathway . When used on

tumoral leukocytes, melatonin produces a rapid and transient stimulation of intracellular ROS, but does not lead to

oxidative stress, as revealed by absence of protein carbonylation and the maintenance of free thiols .

Curcumin also shows pro-oxidant anticarcinogenic mechanisms that are concentration dependent: whereas low

concentrations decrease ROS production in human leukemia cells, higher concentrations have the opposite effect and

favor ROS generation, measured as increased MDA levels . Curcumin exerts cytotoxic activity on human T-cell

leukemia cells without affecting normal cells . Mechanistically, curcumin seems to affect histone acetyltransferase 

and thioredoxin reductase, converting the latter into a pro-oxidant . Moreover, curcumin induces an increase in GSH

levels, responsible for the induction of an apoptotic death pathway in lymphoid Jurkat cells .

Despite the promising anticancer effects of these natural products, contradictory results responsible for its dual effects are

continuously described . Chemically unstable structure, feeble pharmacokinetic, and low bioavailability are reasons for

the broad bioactivity profile of these compounds, blocking them from reaching maturity as a drug lead. Moreover, the

potential health benefits are still questioned. It is important to highlight there is an urgent need to better characterize the

polypharmacology of their degradation products. The lack of chemical standardization of potential drugs like resveratrol

and curcumin limits an adequate control of biological assays, leading to unpredictable or potentially irreproducible results
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A novel redox active mediator that selectively targets tumor cells is motexafin gadolinium, which is a synthetic compound

that directly inhibits the activity of Trx and protects against protein carbonylation and lipid peroxidation by inducing

apoptosis in malignant cells through oxidative stress. Motexafin gadolinium is being tested clinically for the treatment of

lymphoma (NCT00089284, NCT00086034) and leukemia .

Arsenic trioxide is used successfully for the treatment of APL, and both induction and consolidated therapy have resulted

in complete remission. Kumar et al. demonstrated that arsenic trioxide induces significant oxidative stress (lipid

peroxidation), DNA damage, and caspase 3 activity in HL-60 cells in a dose-dependent manner, and reduces GSH levels

. It also activates the intrinsic pathway of apoptosis by modulating the translocation of apoptotic molecules such as

Bax and cytochrome c and decreasing the mitochondrial membrane potential.

Finally, targeting copper in cancer cells can also serve as an effective anticancer strategy. Copper is an important metal

ion associated with the chromatin DNA. Unlike normal cells, cancer cells have elevated copper levels, which play an

integral role in angiogenesis. The interaction between Cu(II) and the phytoestrogen coumestrol in lymphocytes results in

lipid peroxidation, protein carbonylation, DNA fragmentation, and apoptosis .

These data reinforce the necessity of studying the role of oxidative stress modulating compounds in hematological

tumors, characterizing not only their pro/antioxidant effects, but also their molecular mechanism. Although the anticancer

potential of some natural products is controversial, some compounds (e.g., motexafin gadolinium) present promising

results. Moreover, the clinical efficacy of these agents would be assessed by using biomarkers such as carbonylation and

lipid peroxidation.

7.3. Iron Chelators

Iron homeostasis is an effective target in the treatment of different hematological tumors, particularly MDS. As discussed

earlier, most patients with MDS develop transfusion dependence and IOL, which has a negative impact increasing

oxidative stress parameters . In this setting, iron chelation, mainly by Deferasirox (DFX) appears to

improve survival in patients with lower-risk MDS and in stem cell transplant settings . Moreover, it has been shown

to reduce mortality and cytopenia and improve the hematological response .

Deferasirox is an iron chelator commonly used as a treatment in patients with MDS relying on blood transfusions .

DFX is a powerful NF-κB inhibitor in myelodysplastic cells acting independently of cell iron deprivation by chelation, and

ROS scavenging  and the inhibition of the de novo generation of free radicals through the suppression of the active

redox forms of iron . DFX constrains ROS damage in hematopoietic progenitor cells by activating transcription factors

and mitochondrial biogenesis , the dysfunction of which has been observed in cases of MDS with IOL .

Interestingly, a significant decrease in the mean levels of ROS and membrane lipid peroxidation has been reported during

DFX therapy . In addition, patients under DFX treatment have lower levels of protein carbonylation in BM with

respect to untreated patients, which is accompanied by a reduction in the expression of the p53 target gene, p21 . It

would be interesting to explore whether DFX exerts its control on p21 through NF-κB  or, alternatively, by inhibiting

signaling pathways activated by oxidative stress that control the cell cycle via p53 .

Despite the paucity of studies investigating the beneficial effects of iron chelation on protein carbonylation in other

hematological diseases, its effect on ROS levels, and thus, on disease control seem robust.

Iron chelating therapy in myeloid leukemias induces the differentiation of leukemia blasts and normal BM precursors into

monocytes/macrophages, in a manner involving the modulation of ROS expression . Moreover, the cytotoxic effects of

iron chelating therapy on myeloid blasts has been reported in vitro, in vivo, and ex vivo , presenting

a synergistic effect with AML drugs such as decitabine and 5-azacytidine . In contrast to the effects of decitabine,

DFX decreases the ROS levels to varying degrees . Human studies have demonstrated a protective role of DFX after

allogenic-hematopoietic stem cell transplantation in AML  and in a patient with chemotherapy-resistant AML .

DFX has also been reported to inhibit mantle cell lymphoma cell proliferation , and iron deprivation is cytotoxic to

malignant B- and T-cells . Moreover, in ALL and T-cell lymphoma, DFX displayed synergistic activity with three

ALL-specific drugs: dexamethasone, doxorubicin, and L-asparaginase. Iron chelation appears to act through a ROS-

dependent DNA damage response and potentiates the action of an inhibitor of the PARP pathway of DNA repair .

Finally, in the context of MM, chelation of intracellular iron induces cell death in myeloma cells . Deferasirox also

induces apoptosis in MM cells by targeting oncogenic Pyk2/β-catenin signaling . Conversely, iron loading impairs cell

proliferation in MM and increases the efficacy of bortezomib, as iron causes lipid oxidation and inhibits proteasome

function .
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