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Brain image segmentation is one of the most time-consuming and challenging procedures in a clinical environment.

Recently, a drastic increase in the number of brain disorders has been noted. This has indirectly led to an

increased demand for automated brain segmentation solutions to assist medical experts in early diagnosis and

treatment interventions. This paper aims to present a critical review of the recent trend in segmentation and

classification methods for brain magnetic resonance images. Various segmentation methods ranging from simple

intensity-based to high-level segmentation approaches such as machine learning, metaheuristic, deep learning,

and hybridization are included in the present review. Common issues, advantages, and disadvantages of brain

image segmentation methods are also discussed to provide a better understanding of the strengths and limitations

of existing methods. 
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1. Introduction

Brain imaging is important for the diagnosis of brain-related diseases such as neurological disease (Parkinson’s

disease), neurodegenerative disease (Alzheimer’s syndrome), and brain tumors. According to the American

Cancer Society and the National Cancer Institute Report, brain and nervous system cancer is the tenth most

common cause of death for both genders. About 18,020 deaths (10,190 males and 7830 females) and 23,890 new

cases (13,590 males 10,300 females) among adults were estimated due to primary cancerous brain tumors and

other nervous system diseases in 2020 in the United States . Therefore, early detection of brain tumors and

related brain structures using effective brain imaging techniques is important where treatment can be initiated at an

early stage of the brain tumor. High-quality brain images can be produced using magnetic resonance (MR)

imaging, a standard non-invasive imaging key technique. MR imaging is useful for the diagnosis and treatment of

brain tumors without inflicting harmful radiation on other brain structures and skull artifacts of the patients . MR

images are used to differentiate suspicious regions of the brain tumor from healthy brain tissue. Conventionally,

location, shape, and type of brain tumors are identified visually using multimodal MR images by qualified medical

doctors.

2. Search Strategy and Selection Criteria

The present review aims to summarize information and identify problems from relevant research articles that

utilized computer vision techniques in the context of automated brain medical imaging over the last five years. The

inclusion and exclusion criteria were applied to conference papers and journal articles published on brain medical
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imaging in the chosen databases from 2016 until 2021. Studies that were not written in English, were duplicative,

out of the study period, and did not have the full text available were excluded.

The studies were collected using the search keywords on 11 selected databases (i.e., Scopus, Web of Knowledge,

Science Direct, IEEE Xplore, Springer, Frontiers, Wiley Online Library, Arixiv, ACM Digital Library, Hindawi). These

databases offered comprehensive literature regarding brain image segmentation approaches and are highly

appropriate. First, a search was conducted on the basis of the following keywords/terms: (delineation OR

segmentation OR contouring) AND (brain tumor OR neoplasia OR brain tissues OR brain anatomical structure))

AND (ALL(“automatic delineation” OR “automatic segmentation” OR “automatic contouring” OR “semi-automatic

delineation” OR “semi-automatic segmentation” OR “semi-automatic contouring”)) AND (brain tumor OR neoplasia

OR brain tissues OR brain anatomical structure)) AND intensity-based methods—((delineation OR segmentation

OR contouring) AND (“thresholding” OR “region” OR “Otsu” “level set” OR “active counter”) (brain tumor OR

neoplasia OR brain tissues OR brain anatomical structure) AND (ALL(“automatic delineation” OR “automatic

segmentation” OR “automatic contouring” OR “semi-automatic delineation” OR “semi-automatic segmentation” OR

“semi-automatic contouring”)) AND (PUBYEAR > 2015) AND (“MRI”))), machine learning methods ((delineation OR

segmentation OR contouring) AND (“clustering” OR “classification” OR “deep learning” OR SVM OR ANN OR K-

means OR FCM OR FCN OR CNN OR convolution OR UNet OR U-Net) AND (brain tumor OR Neoplasia OR brain

tissues OR anatomical structure) AND (ALL(“automatic delineation” OR “automatic segmentation” OR “automatic

contouring” OR “semi-automatic delineation” OR “semi-automatic segmentation” OR “semi-automatic contouring”)

AND (PUBYEAR > 2015) AND (“MRI”))), and so on, as well as for the hybrid method and its subcategories.

In the beginning, 761 publications were retrieved by searching the selected databases. An additional 15

publications were identified through cross-referencing. Following duplicate publications removal, the remaining 459

publications were evaluated via exclusion criteria. Based on screening the title and abstract, 394 publications were

excluded. A total of 85 full-text studies were evaluated for eligibility, and 50 papers were included in this review.

Then, an additional search was conducted on all selected publications by using the backward and forward

approach for the references search method introduced by Webster and Watson . Through the backward search,

the citations of each publication were assessed to obtain further publications to be included in the review. Through

the forward search, for example, the references were obtained using Google Scholar were used to obtain further

relevant studies. The results reported 10 additional publications. Overall, a total of 60 publications were selected.

Figure 1 illustrates the search strategy with the publications’ selection methods.

[3]



Brain Image Segmentation | Encyclopedia.pub

https://encyclopedia.pub/entry/13717 3/26

Figure 1. An overview of the study search and selection process according to PRISMA guidelines .

Figure 2 shows the taxonomy of reviewed research papers published in the last 5 years. It was noted that recent

publications predominantly applied deep learning and hybridized metaheuristic-based methods for brain image

segmentation.
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Figure 2. An overview of brain segmentation approaches 

.

3. Brain Segmentation Approaches

3.1. Intensity-Based Approaches

The intensity-based methods for brain segmentation function in the spatial domain and depend on the pixel value,

which can be further classified into a thresholding and region-based approach.

3.1.1. Thresholding

The thresholding approach is one of the conventional and the easiest image segmentation methods where the

regions of the image are categorized by measuring their intensities and compared with one or more intensity

thresholds. For instance, Otsu’s method enables the determination of the global threshold optimal value to

distinguish the target object from the image background. In a previous study, Otsu’s thresholding approach was
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coupled with morphological operations to detect brain tumors using MR images . Another study by Khan et al. 

presented a grade-wise brain tumor identification method where segmentation of the tumor was conducted first

through the threshold approach. Then, a logical formula was employed to extract the desired tumor region.

Moreover, feature set parameters, such as the angle, area, density, solidity, size, center of mass, and perimeter,

were extracted from the tumor region. The extracted features were then analyzed using the partial tree (PART)

algorithm to grade the brain tumor. However, the thresholding approach is sensitive to noise and intensity non-

homogeneity, which limits its application for the entire tumor region. To overcome the limitation, statistical

optimization of the threshold method was reported by Sharif et al. , where particle swarm optimization (PSO) was

employed to achieve the maximum class variance between the tumor regions and healthy brain tissues. Then,

hand-crafted local binary patterns (LBP) and deep (fine-tuned capsule network) features of segmented images

were extracted, and the best features were selected using a genetic algorithm (GA). Finally, an artificial neural

network (ANN), a support vector machine (SVM), and an ensemble of linear discriminant analysis (LDA) were

utilized to classify the tumor grades.

The above-mentioned methods have several limitations such as (i) low convergence rate and an insufficient local

and global search and (ii) the optimization being trapped into a local minimum that results in low segmentation

accuracy. To improve the local and global search of the multi-level thresholding approach, a new metaheuristic

approach of the differential evolution (DE) technique, which was termed as adaptive differential evolution with Lévy

distribution (ALDE), was introduced by Tarkhaneh and Shen  for brain tissue segmentation. The proposed

approach was adopted to resolve the multi-level threshold issue and achieve optimal results by preventing a local

minimum through the establishment of a balance between exploration and exploitation coupled with the

convergence rate boost. However, some of the tested images in this model did not segment properly, which could

be attributed to the limitation of the thresholding approach that does not consider the spatial information of images,

resulting in insensitivity towards different levels of noise and intensity.

Oliva et al.  proposed an adaptive differential evolution and linear population size reduction (LSHADE)

metaheuristic algorithm to determine the optimal threshold value by employing the minimum cross-entropy as a

fitness function for the segmentation of brain tissue from MR images.

In a different study , Renugambal et al. proposed a new hybridization approach based on the Otsu and new

hybrid water cycle and moth-flame optimization algorithm (WCMFO) for the brain tissue segmentation. The new

WCMFO algorithm was proposed to determine the optimal values for Otsu’s objective functions on various axial T2

modalities of MR brain images. However, the model cannot convert several parameters, including the water cycle

and moth-flame algorithms.

3.1.2. Region-Based

The region-based approach enables the extraction of a connected region of an image by following pre-defined

conditions such as pixels’/voxels’ information with matching intensities. This approach is performed in three steps:

(i) selection of an initial seed point, (ii) locating the points in objects or regions, and (iii) selection of points
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connected to the initial point with similar intensity values. Recently, several studies applied a region-based

approach for brain tissue segmentation .

A semi-automatic approach, which consists of a localized active contour integrated with a background intensity

compensation, termed LACM-BIC for tumor region segmentation, was presented by Ilunga-Mbuyamba et al. .

The T1 contrast and T2 MR images were fused and used to segment the tumors. An automated initialization of the

initial contour in the LACM-BIC method was conducted using the k-means algorithm accompanied by a hierarchical

centroid shape descriptor. This method chose the best initialization number of the cluster, k, for the k-means

algorithm, in which wrong selection of the initialization may lead to unwanted regions in the segmentation. Hence,

the contour may be trapped into the wrong local minimum.

In another region-based study, a 3D-MR image brain symmetry analysis for tumor segmentation was reported by

Kermi et al. . Specifically, the fast-unsupervised bounding box (FBB) and geodesic level-set methods were used.

The FBB algorithm was adopted to locate initial tumor voxels and to manage intensity variations among different

MR images without the use of a training dataset. Subsequently, the region growing method was combined with a

3D level set method to acquire the final tumor region. The drawbacks of this method include the inability to avoid

noise and non-uniform intensity besides being limited to tumor segmentation.

In a more recent study, Achuthan and Rajeswari  presented an automated point set registration approach to

establish a prior knowledge model with a lower data intensiveness for hippocampus segmentation. In comparison

to the usage of the entire 3D volume as used in the atlas-based methods, this study utilized a collection of

representative points on the boundary of the hippocampus. The prior model was created and integrated into a level

set model to perform hippocampus delineation. Nevertheless, some parameters are required to be specified

experimentally, and it is a subjective task that depends on the target image properties.

Another approach for hippocampus segmentation of MR images using an automated level set method has been

proposed by Safavian et al. . First, prior knowledge was obtained from an affine registration with a non-linear

registration stage. Then, this information was locally integrated into an innovative level-set framework using a

binary weighting map. The image gradient information adaptively utilized both local and global region information of

the corresponding image. However, manual setting of parameters is required, which is very subjective and

depends on the target image properties.

In a different study, Virupakshappa and Amarapur  presented a modified level set segmentation method for brain

tumor segmentation that provides an automatic initialization point as indicated by the maximum pixel point that

serves as the initial contour. The maximum pixel was determined from the histogram, and an automatic

segmentation was performed using an anisotropic diffusion filter instead of the Gaussian filter. The utilization of the

anisotropic diffusion filter enhanced the local edges by detecting discontinuity within the local edge. Boundaries

formed as a result of noise were removed completely, and the contours of the object were also improved. However,

the manual setting of the initial contour of the level set is required to be performed based on the maximum pixel

point, which is very subjective and depends on the intensity non-homogeneity.

[11][12][13][14][15]

[11]

[12]

[13]

[14]

[15]



Brain Image Segmentation | Encyclopedia.pub

https://encyclopedia.pub/entry/13717 7/26

3.2. Machine Learning

Another category of brain image segmentation approaches is traditional machine learning, comprising clustering

and classification and deep learning approaches. The sections below detail these approaches.

3.2.1. Traditional Machine Learning

The clustering and classification approaches, being the traditional machine learning methods, are motivated by

multidimensional feature space that may be obtained from different MR modalities. Classifiers are trained using a

feature space that is created by combining different intensity and textural-based features representing the known

classes. Then, a class prediction that the target structure belongs to is performed by assigning a class label, which

is most similar to the target structure’s feature space. Meanwhile, clustering methods are unsupervised pixel-based

methods that segregate unlabeled images into clusters of pixels that have similar features without utilizing training

images. Some of the machine learning-based methods were applied for brain tissue segmentation in recent studies

. A 3D super-voxel learning method for brain tumor segmentation was proposed by Soltaninejad et

al. . In the study, the MR images were partitioned into the equivalent size of patches with similar intensity ranges

based on the simple linear iterative clustering (SLIC) algorithm. Super-voxel clusters were formed by combining

information from the MR multimodal images using a distance metric. For each super-voxel cluster, a set of texton

descriptors along with the first-order static features were extracted from different MR modalities. The features were

then used to train a random forest (RF) classifier to classify each super-voxel into a core tumor, edema, or healthy

tissue. This approach was found to effectively combine the unsupervised SLIC algorithm for initial tumor region

localization and the supervised RF method for tumor classification. The approach enabled the classification of

located regions into sub-regions in a unified system and resulted in promising segmentation findings. However, this

approach limits the segmentation of complex structural boundaries such as the smaller tumor cores as the super-

voxel may include voxels from various tissue types.

In another study, a semi-supervised method based on a co-training technique with clinical and spatial constraints

for the extraction of the glioma region, namely whole tumor (WT), tumor core (TC) and enhancing tumor (ET) from

multi-sequence MR images, was assessed by Zhan et al. . Firstly, the labeled brain MR image was used for both

SVM and sparse representation classification (SRC) classifiers training. This allows the extraction of high

confidence data as pseudo-labeled samples from the test samples. The pseudo-labeled samples that resulted from

each classifier were then added to the training sets of the other side of the classifier to re-train the corresponding

classifier. The process was iteratively repeated until the results of classification remained stable. Finally, a super-

pixel graph was plotted on the post-contrast T1 image to generate spatial and clinical constraints to remove false-

positive and interference of noise. This classification method provides generalization fitting using a limited training

set. However, it has a drawback where prior clinical knowledge is required to refine the segmentation results by

manually correcting the pixel labeling, which is subjective as it depends on the user’s expertise.

Meanwhile, Nitta et al.  investigated an approach for brain tissue segmentation using a modified k-means

clustering algorithm. The researchers proposed a selection of 16 high probabilities of dominant grey-level pixels as
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initial centroids to resolve the issue of the arbitrary selection of initial centroids in the standard k-means algorithm.

The proposed approach is sensitive to noise and has a non-uniform intensity distribution.

In a recent study by Imtiaz et al. , a tumor segmentation approach based on super-pixel features extracted from

3D planes of MR images (FLAIR, T1c, and T2 modalities) was evaluated. Several statistical and Gabor textural

features were extracted from each super-pixel of the three planes to avoid imbalanced planar data and mislabeling

of pixel issues in a plane. Based on feature effectiveness, feature selection was performed using histogram

consistency analysis and local descriptor pattern analysis. The feature vector for each super-pixel was then

subjected to extremely randomized trees (ERT) for binary classification. Then, the voting algorithm was used to

assign a class label (tumor or non-tumor) for each pixel in all three planes. The benefits of this approach include

fast computation and high robustness to the scale-invariant and rotational changes. However, this approach is

sensitive to noise and distortions, in addition to leading to the extraction of redundant features at different scales.

In a different study by Chen et al. , a hybrid two-stage framework of cascaded RF and a dense conditional

random field (CRF) was evaluated for intra-tumor segmentation. Firstly, the appearance features (statistical

intensity and template-based) and contextual features (Gaussian mixture model-based lesion tissue probability

maps) were extracted and used to train the initial RF classifier. The predicted probability map obtained by the RF

classifier was used as the prior input into a dense CRF model for further segmentation improvement. Then, the

results of the dense CRF model were used as the contextual information to train a cascade of RFs by the hierarchy

in combination with template-based asymmetrical and original statistical features. The authors proposed a multi-

layer optimization architecture as the post-processing step to further increase the efficiency of RF. The step is easy

to implement and can be effectively incorporated into the local appearance and global contextual features, which

can improve the segmentation outcome. The limitation of this framework includes the evaluation was performed

using a small dataset, and a post-processing step is required to fine-tune the extracted tumor regions.

3.2.2. Deep Learning

Recently, the deep learning-based method has attracted much research interest due to its excellent performance

and ability to automatically capture adaptive features, which outperform manually created features. Moreover,

these features were learned in an increasing feature complexity trend, which results in more robust feature

learning. During the last few years, more studies have been designed using a combination of the deep learning-

based method and the new brain tumor segmentation method. Most of the studies utilized convolutional neural

networks due to their effectiveness in detecting patterns in an image, specifically the MR images, with promising

results reported. To date, the deep learning-based segmentation was performed using 2D, 2.5D, or 3D MR images,

which is elaborated in the following sections.

Deep Learning-Based Methods Using 2D Images

Deep learning using 2D images requires brain image slices or extracted 2D patches from 3D images as an input

for the 2D convolutional kernel. Several studies  have been

published on the deep learning-based method using 2D images. Sergio Pereira et al.  introduced cascade layers
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using small 3*3 convolutions kernels to reduce overfitting. The study enabled the segmentation of the image into

four regions, namely (i) necrosis, (ii) enhancing tumor, (iii) edema, and (iv) normal tissue. Two convolutional neural

network (CNN) architectures were trained and used in the proposed work to extract the feature maps, which were

low-grade glioma and high-grade glioma. The use of small kernels led to a deeper architecture design, which

reduced the number of weights in the network and significantly affected overfitting. However, for the initial phase,

the user has to manually identify the glioma grade where prior medical knowledge is required, which is one of the

limitations. Additionally, the tissue segmentation was performed as a patch-based task in the study where the local

dependency of labels during pixel classification was ignored. Another drawback of the proposed method is the poor

segmentation of tumor core regions in the BRATS 2015 Challenge dataset.

Similarly, the application of another novel Cascade CNN model for fully automatic brain tumor segmentation was

reported by Havaei et al. . Cascade architecture of 2D CNN was used in the study to preserve local dependency

of labels during pixel classification and extract local and global contextual features which deal with imbalanced

tumor labels. However, the model suffers from two drawbacks: (i) poor segmentation between the enhanced and

core regions of the brain tumor inferior to the complete tumor and (ii) only the local dependency of the labeled

samples was considered, with the appearance and spatial consistency neglected when applied on 3D images.

Moeskops et al.  presented an automatic approach based on a multi-scale CNN for segmenting white matter

hyperintensities of presumed vascular origin (WMH) (basal ganglia and thalami, brain stem, cortical grey matter,

white matter, cerebellum, WMH, peripheral cerebrospinal fluid, and lateral ventricular cerebrospinal fluid) from MRI

modalities (T1, T2, FLAIR, and T1inversion recovery). The proposed multi-scale CNN model was claimed to be the

first modern MRI segmentation method that applies CNN for additional WMH segmentation. Furthermore, the

model was assessed in two large MRI datasets of older patients that were affected by motion artifacts and varying

degrees of brain abnormalities.

Another study by Chen et al.  proposed a 2D novel method based on a CNN architecture identified as Dense-

Res-Inception Net (DRINet) for multi-class brain tumor segmentation. The DRINet consisted of three blocks,

namely, (i) convolutional, (ii) deconvolutional, and (iii) unpooling blocks. The convolutional block carried out dense

connections and was used to alleviate the effect of vanishing gradients. Meanwhile, the deconvolutional block

carries out the residual inception modules to aggregate feature maps from different branches. The unpooling block

was used for the aggregation of different sampled feature maps. The use of this method resulted in accurate

findings on segmenting complex, challenge, multivariate domains (tumor and cerebrospinal fluid (CSF)), and multi-

organ segmentation on abdominal CT images. Nevertheless, the DRINet approach has a complex network

structure that requires millions of parameters (i.e., billions of connections between neurons and millions of

weights), which could lead to a difficult training phase, and testing can be slower depending on the ground truth

label requirements.

Iqbal et al.  proposed three different improved network architectures for intra-tumor segmentation, which were

an extended version of SegNet (deep convolution encoder-decoder architecture), as follows: (i) Interpolated

Network, (ii) SkipNet, and (iii) SE-Net. All three structures consisted of decoder/encoder architecture, and four sub-
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blocks were used in each phase. A batch of normalization layers was added next to each convolution to avoid the

disappearance or explosion of convolutional gradients and to maintain the stability of the training phase. The

advantage of this approach includes the use of simple network structures as an intermediate convolutional map

along with interpolation methods to produce a quick model with a smaller memory space. However, the method has

a limitation where the segmentation performance could be affected if the model is trained with limited ground truth

samples.

In the same year, Cui et al.  reported on a hybridized cascade of a deep convolution neural network (DCNN)

architecture that can segment 2D brain images automatically in two major steps. Firstly, the tumor region was

localized immediately using the pixel-wise fully convolution network (FCN) from the MR images. Then, the patch-

wise CNN with smaller kernels and deeper architecture was adopted for further classification of the localized tumor

region into multiple sub-regions. This approach alleviates the imbalanced data issue using a hybrid CNN. However,

the approach is time-consuming during model training, and inference is required for operating the image patches.

In a different approach, Chen et al.  presented a combination of prior knowledge and a DCNN to enrich the

extracted features of DCNN for brain tumor sub-compartment identification. This model requires an analysis of a

left-right similarity mask (LRSM) in the constructed feature space and uses LRSM as the location weight of the

DCNN features. These features were then used to train the model to determine the asymmetrical location

information of the input images via a similarity metric. This approach was found to provide about 3.6% of dice

similarity coefficient (DSC) improvement of complete tumor segmentation over the conventional DCNN. The

advantage of the proposed method includes the ability to combine the symmetric masks in several layers of DCNN

to assign location weight for the extracted features. However, the method could not differentiate between the tumor

core regions and the enhanced tumor region as the LRSM mask can reflect a complete tumor situation.

Li et al.  presented an automatic approach based on the improved version of U-Net for multiclass brain tumor

segmentation from 2D MR image slices. Firstly, the up-skip connection between the encoding and the decoding

elements was proposed to further enhance the information flow and the network connectivity. Then, in each block,

an inception module was implemented to assist the network in learning richer representations. Nevertheless, the

model suffers from poor segmentation of enhancing tumor region as the whole brain slices were used for model

training. This led to a data imbalance issue due to a small number of pixels that belong to enhance tumor and core

regions inferior to other brain tissue.

Another approach was reported by Guo et al. , where a supervised multimodal image analysis was performed

with three cross-modality of fusion level strategies, which were feature learning, classification, and decision

making. The three fusion strategies were implemented and tested in three different patches-based CNNs with

corresponding variations in the network structures. Four modalities of imaging (CT, PET, T1, and T2) were used as

fused inputs for brain tumor segmentation. Comparison between the single model and multimodality showed that

the CNN-based fusion network performed better on PET, CT, and T2 modalities. This approach provides

methodological guidelines for designing and applying multimodal image analysis fusion strategies through different

implementations of CNN architecture. However, this approach is limited for complete tumor detection. Another
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limitation is the dramatic decrease in the segmentation performance within the misaligned regions based on the

number of affected modalities and severity of the misalignment.

An automated hybrid DCNN model for brain tumor segmentation was presented by Sajid et al.  for different

modalities of MR. This model extracted 27 × 27 sized patches from four axial MR modalities to consider both

spatial and contextual knowledge for predicting segmentation labels of pixels. The proposed hybrid DCNN model

combined the output feature maps of two- and three-CNN paths. The model successfully addressed local

dependencies between the output labels, which was the major drawback of the two- and three-CNN paths. By

integrating the two- and three-CNN networks, an increase in the effect of neighboring pixels was noted, and the

output was recognized based on the local and contextual features. Morphological operations were used to further

enhance the segmentation performance by eliminating minor false positives along the edges of the expected

outputs. The proposed model segmented the core and enhanced tumor regions better compared to the complete

tumor regions. This could be attributed to the fuzzy boundaries of edema that limit the detection of the whole tumor

region compared to other regions. However, this approach has a limitation where a large amount of training data

and parameters are required for model training.

In addition to the various methods proposed, Zhang et al.  presented a residual U-Net and attention mechanism

in a unified architecture named AGResU-Net for patch-wise brain tumor segmentation. Attention gate units were

added into the up-skip connection of the U-Net structure to highlight the important feature details along with

disambiguates in noise and irrelevant feature responses. The AGResU-Net was found to enhance feature learning

by extracting important semantic features focusing on the details of small-scale brain tumor sub-regions, which

improves the segmentation performance of the brain tumors. Nevertheless, the AGResU-Net model has a

drawback, where an amount of contextual information and local details among different intra-slices were not

included due to modeling based on 2D U-Net.

In the same year, Zhang et al.  proposed another new method using attention residual U-Net (AResU-Net) for

end-to-end 2D brain tumor segmentation. The AResU-Net embedded a series of attention and residual units

among corresponding down-sampling and up-sampling processes. The system simultaneously improved the local

responses of down-sampling and the recovery effects of the up-sampling process. However, the model neglects

contextual and local details of different intra-slices due to modeling based on 2D slices.

Recently, an innovative brain tissue segmentation method from MR images was proposed by Lee et al. , where

a patch-wise U-net architecture was used to divide the MR image slices into non-overlapping patches.

Corresponding patches of ground truth were incorporated into the U-net model, and input patches were predicted

individually. The model was found to retain the local spatial information better compared to the conventional U-Net

model. The design successfully fixed the drawback, specifically the limited memory problem, which was caused by

multiple down and upsampling stages. The memory problem was attributed to the storage of parameter values at

each stage and difficulty in maintaining local details as the entire image is incorporated into the network. Although

the memory problem was resolved using the proposed model, computational complexity was higher in the training

phase.
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In another study, Silva et al.  proposed a three-stage cascade FCN architecture based on the deep layer

aggregation technique to gather further spatial and semantic information for intra-tumor segmentation. The output

features of one FCN are directly fed to the next layer for extending the feature hierarchy over different depths for

better segmentation refinement. However, the model requires high computational resources and post-processing to

refine the extracted tumor regions.

In addition to the various proposed methods, Wu et al.  suggested a multifeatures refinement and aggregation

network (termed MRANet) based on CNN for end-to-end brain tumor segmentation. The model fully utilized the

hierarchical features by adopting the feature fusion concept at several levels, which extracts low-level, mid-level,

and high-level features by sampling similar hierarchical features of encoder and decoder. These features were then

aggregated and re-extracted for better segmentation refinement.

Ribalta Lorenzo et al.  proposed a deep learning method for brain tumor delineation from the FLAIR modality of

MR using the fully convolution neural network (FCNN) inspired by U-Net. The authors trained the model on 256 ×

256 patches extracted from the intra-tumor regions that belong to only positive (tumorous) full-sized FLAIR MR

image sequences. Firstly, data augmentation methods were used to expand the dataset and achieve a robust

algorithm against the heterogeneity of small training datasets. Subsequently, the FCNN was trained using the DSC

to maximize the model training to improve the quality of the segmentation. The proposed FCNN model was

claimed to be the best modern FLAIR MR image segmentation method that applied hand-crafted features and was

classified using extreme random trees. This model offers controllable training time and instant robust segmentation

using the FCNN that was trained on heterogeneous and imbalanced datasets. Nevertheless, this model exhibited

potential drawbacks caused by the rapid data augmentation process, as the unnatural increasing number of

training patches resulted in a reduction in overall average data accuracy.

Gunasekara et al.  proposed cascaded algorithms for glioma and meningioma brain tumor segmentation and

classification. Firstly, CNN was implemented to classify meningioma and glioma regions. Then, the classified

images were fed to R-CNN to localize the tumor regions of interest, which was accompanied by active contouring

to delineate the exact tumor boundary. Finally, the Chan–Vese level set model was used to segment the target

tumor boundary.

Deep Learning-Based Methods Using 3D Images

The second category of deep learning-based tumor segmentation approaches uses 3D MR images for

segmentation to overcome the limitation of neglecting contextual information in 2D CNN. Several studies 

 have reported the approaches under this sub-class.

The intra-tumor region segmentation method from 3D MR images based on the asymmetric encoder-decoder

network was presented by Myronenko . The researchers adopted CNN’s encoder-decoder structure with an

asymmetrical large encoder to extract deep features and reconstruct the dense segmentation masks using a

decoder. To tackle the issue of a small training dataset, a variational auto-encoder was added to the endpoint of the

encoder, and the input image was reconstructed together with the segmentation to regularize the shared encoder
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at the inference time. This model enables accurate intra-tumor segmentation based on the unsupervised feature

learning method with a lower requirement for ground truth labels and without the post-processing step. However,

the proposed method requires high computational resources to accelerate tumor annotation in MR images.

To decrease the dependency on the ground truth images during the training stage, Nema et al.  proposed a

RescueNet approach for multi-class brain tumor segmentation utilizing both residual and mirroring principles.

Different training was performed to segment whole, core, and enhancing tumors using three different networks. The

proposed RescueNet approach was trained based on the unpaired generative adversarial network (GAN) method,

which was utilized to enrich data for the training stage with better segmentation results obtained using a larger

amount of testing data. Finally, a scale-invariant algorithm was suggested as a post-processing stage to improve

the segmentation accuracy. The pros of this approach include robustness to the appearance variations in brain

tumors, the minimum requirement of labeled datasets for model training, and that the model is 10% trained and

90% tested. However, this approach requires a post-processing step for further segmentation refinement.

In a more recent study by Baid et al. , an effective weighted patch extraction was combined with a new 3D U-Net

architecture for a fully automatic brain tumor segmentation. The authors proposed a weighted patch-based

segmentation approach to address the imbalance of class among tumor and non-tumorous patches. The 3D

weighted patch-based method and a unique number of feature maps were designed to train the architecture, which

enables the accurate segmentation of intra-tumor structures. Finally, a 3D connected component analysis was

used as the post-processing method to improve the accuracy of the tumor delineation. However, this approach

failed to segment some of the tumor parts with a small necrotic tumor cavity from the MR images due to a large

variance in the training and validation dataset features. This can be resolved by increasing the number of training

data to overcome the inter-patient variations.

To address the two main challenges, namely, exploding and vanishing gradients affecting the traditional DCNNs

performance, Zhou et al.  proposed a novel three-phase framework for automatic brain tumor segmentation of

the 3D MR images. Firstly, a dense three-dimensional networking architecture was adopted to construct the

features to be re-used. Secondly, 3D atrous convolutional layers were used to design a new feature pyramid

module, which was added to the backbone end to fuse the multiscale contexts. Finally, for further training

promotion, a supervision 3D deep mechanism was equipped to enhance the network convergence by adding

auxiliary classifiers to alleviate the problem of exploding and vanishing gradients by utilizing dense connectivity.

Overall, this framework is considered a complete architecture without additional post-processing stages.

Furthermore, simple implementation and the use of adjustable parameters are the main advantages of this

framework. However, the segmentation of cores and enhancing tumors are inferior compared to the complete

tumor, which requires considerable improvement.

In another study, Sun et al.  presented a multipath way 3D FCN architecture for brain tumor segmentation. The

model extracts different receptive fields of feature maps from multi-modal MR images using the 3D dilated

convolution in each pathway and fuses these features spatially using skip connections. This model helps FCN

architectures to better locate the boundaries of tumor regions. However, the model requires a post-processing step,
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as direct connections between high- and low-level features will lead to unpredictable consequences and the

semantic gap between the encoder and decoder.

An effective mapping from MR volumes to voxel-level brain tissue segments was proposed by Ramzan et al. . A

3D CNN, which utilized the concept of residual learning, skip connections, and dilated convolutions, was applied in

the study. Dilated convolutions were utilized to decrease the computational cost by computing spatial features with

a high resolution. However, the space complexity of this model was higher as dilated convolution was used, and

down-sampling of input volumes was neglected, which led to an increase in the number of parameters and kernels

by a certain factor.

Deep Learning-Based Methods Using 2.5D Images

Although 3D deep neural network (DNN)-based segmentation can better exploit 3D features of 3D MR image

information data, this approach has limitations related to network intensiveness and memory consumption.

Therefore, another category of 2.5D DNN was researched. In comparison to the 2D and 3D DNN, 2.5 DNN has

inter-slice characteristics and lower memory demand.

An automated 2.5D patch-wise Hough-CNN model based on a voting strategy for localizing and segmenting brain

anatomies of interest (26 regions of the basal ganglia and the midbrain) was presented by F. Milletari et al.  for

different modalities of MRI and ultrasound slices. The patch-based voting strategy was designed and integrated

into the Hough-CNN model to localize and segment brain structures that are corrupted by artifacts or are partially

visible.

To overcome network complexity and memory consumption of the 3D based-segmentation methods, Wang et al.

 suggested a cascade of 2.5D CNN voxel-wise architecture for sequential segmentation of brain tumors from

MR images. The task of multiclass segmentation was largely divided into a sequence of binary hierarchical tasks to

segment complete, core, and enhancing tumors for better utilization of hierarchical features of brain tumor

structures. The resultant segments were then used as a crisp mask to identify tumor cores and enhancing tumors,

which could lead to anatomical constraints during the final segmentation. The predicted tumor core was

constrained to be within the whole tumor, while the enhancing tumor region was within the core tumor region.

Additionally, the test-time augmentation technique was used to obtain structure-wise and voxel-wise uncertainty

estimation of the segmentation results. Finally, a CRF was proposed as the post-processing stage to smoothen the

segmentation results. A robust segmentation resulted in a balanced property of memory consumption, model

complexity, and multi-view fusion. However, the method has two main limitations: (i) it is highly dependent on the

voxel-wise annotations technique and (ii) time-consuming for large datasets. Additionally, this approach requires

post-processing for segmentation tuning. The advantages and disadvantages of all of the discussed segmentation

approaches are summarized in Table 1.

Table 1. Strengths and limitations of intensity-based and machine learning approaches for brain segmentation.
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Categories Ref Strengths Limitations

Thresholding

Simple implementation.

Low computation time.

Low performance in

heterogeneous regions.

Influenced by noise.

The setting of the optimal

threshold is very subjective.

Requires skillful user.

Region based

High segmentation

accuracy required for

tumor regions.

Low computation time.

High segmentation

efficiency for 3D images.

High segmentation

performance in complex

regions.

Influenced by noise.

Requires post-processing step.

Requires prior knowledge for

parameter initialization.

Traditional
machine
learning

High segmentation for

whole target cases.

Simple implementation.

Low computation time.

Parameter initialization is

subjective.

Requires skillful users.

Low segmentation performance

for semantic type segmentation.

Optimum representation features

determination is very subjective.

Model trapped in a local minimum

due to imbalance between

exploration and exploitation.

[5][6][7][8][9][10]
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3.3. Hybrid Segmentation Approaches

Hybrid segmentation is the fourth category of brain image segmentation, which includes the integration of different

methods to improve the segmentation performance and achieve the segmentation objectives. Therefore, hybrid

approaches refer to the combination of two or more related methods by utilizing their advantages to achieve high

segmentation accuracy. In general, hybrid-based approaches perform well, possess better designs, have shorter

computational time, and have adaptive modulations towards the target task in comparison to other segmentation

approaches. Hybrid segmentation can be divided into three sub-categories, namely, (i) contour-based and machine

learning, (ii) metaheuristic, and machine learning and (iii) deep learning and machine learning. Each sub-category

contains several approaches that aim to segment the required MR image.

3.3.1. Contour-Based and Machine Learning

The combination of the contour-based and machine learning approach can improve initialization parameters,

perform further spatial constraints, direct the evolution of intensity-based pipelines, and enhance data mining

algorithms by refining the process. There are several previous studies  that were conducted based on

this sub-category.

Ma et al.  hybridized concatenated and connected random forests (ccRFs) and multi patch active contour

(mpAC) methods to automate the segmentation of glioma structures from volumetric multimodal MR images and

impose a contour evolution on the voxel classification, which was considered as the local dependency of labels.

The ccRFs were used to represent the adaptive features iteratively and efficiently to handle data imbalance issues

by exploring both local and contextual information from multimodal images. Meanwhile, the mpAC technique was

used for the final segmentation of the initially inferred tumor structure from the voxel classification of the ccRFs

model. Although the proposed method resulted in promising findings, there are some drawbacks. Firstly, the

hybridized approach highly depends on the labeled training data. Secondly, the use of multiple imaging modalities

for model training on a specific feature of learning kernels and aggregation of feature maps by the max-out process

is not optimal for the aggregation of imaging modalities.

In another hybridization study, Lim and Mandava  proposed a semi-automatic method that incorporated both

prior knowledge and image statistics in three major phases for the detection of brain abnormalities in the MR

Categories Ref Strengths Limitations

Deep learning

Adaptive feature map.

High performance of

semantic-based

segmentation.

High performance in

complex regions.

Best segmentation results

compared to other

categories.

Complex network architecture.

Difficult to understand.

High computation time.

Requires high computational

resources.
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image. For the first phase, a user was permitted to determine the regions of interest using a modified random walks

algorithm to perform initial segmentation and produce a feature map from each image. Then, the feature maps

were incorporated into the image information and combined using the weighted averaging method. Finally,

information-theoretic rough sets (ITRS) were used for the post-processing phase to locate the ambiguous

boundary regions between the tumor and its background. However, the user-based interaction approach requires

users to place seeds manually to distinguish between the objects and backgrounds. The inappropriate initialization

of the seed can produce poor and inaccurate results. Moreover, the proposed model was only tested using limited

real brain images.

Recently, Tripathi et al.  proposed an integrated Otsu k-means method for tumor components segmentation.

This method integrated Otsu thresholding and k-means clustering to generate tumors using T2-W and FLAIR

image modalities. Although this model addressed the data limitation problem, it is highly influenced by noise.

Another recent work by Khalil et al.  adapted the dragonfly algorithm (DA) to perform a clustering-based

contouring approach for brain tumor segmentation. First, the two-step DA-based clustering was used to extract

tumor edge as initial tumor contour for the MR image sequence. Instead of using a random initial position in DA, k-

means was employed to identify the initial swarm centroids. Finally, the level set model was used to extract the

tumor region from all volume slices. However, the usage of k-means to determine the initial centroids for DA may

lead to non-stable performance because k-means is known to suffer from (i) dependency on initialization and (ii)

the tendency to terminate in local optima.

3.3.2. Metaheuristic and Machine Learning

The combination of metaheuristic and machine learning methods is the second sub-category of the hybridization

method that can be used to optimize the separation characteristics of the machine learning method in segmented

images. Additionally, this type of hybridized approach is generally used to solve or reduce the major drawbacks of

machine learning segmentation methods, such as the possibility of being trapped in a local minimum and sensitivity

to noise. Several studies  have employed a combination of metaheuristic and machine learning

methods.

A new hybridization method for brain tissue segmentation, which is a combination of metaheuristic particle swarm

optimization (PSO) method and kernelized fuzzy entropy clustering with Baize correction method and spatial

information (PSO-KFECSB), was introduced by Pham et al. . The approach was developed to partially

overcome clustering-based segmentation problems such as (i) intensity non-uniformity (INU) artifact and sensitivity

to noise and (ii) dependency on the initial clustering centroids and being trapped in local minima. However, the

performance of this approach decreased with the co-existence of high noise levels and INU artifacts in the MR

image data. Moreover, only one KFECSB criterion was used to direct the solution search process where the global

optimum of standards may not be optimum for segmentation. The issue was solved as reported in a different study

by the same group of researchers, Pham et al. . A multi-objective optimization strategy was carried out to exploit

the strengths of other criteria to enhance the trade-off property between preserving image details and restraining

noise for image segmentation. A modified multi-objective particle swarm optimization (MOPSO) approach was
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proposed to optimize both objective functions of fuzzy c-means (FCM) and a region-based active contour method

simultaneously to solve major drawbacks of this hybrid segmentation approach for segmenting brain tissue. This

approach aimed to achieve compactness and separation by optimizing the separation between the clusters/regions

from each other and consider both bias correction and spatial information in the objective functions to reduce noise

effects and intensity non-uniformity artifacts. Nevertheless, this approach requires high computational time to

specify the two-scale parameters (ρ, ζ), where ρ is the level of intensity inhomogeneity, and ζ is the level of noise.

These parameters control the influence of global and local fitting energy force that is subjective and highly

dependent on the degree of noise and INU artifact of the input images.

In another study, a hybridized model based on the combination of FCM, particle swarm optimization (PSO), and the

level set method for the segmentation of the brain tumor was investigated by Ali et al. . The PSO algorithm was

found to improve the conventional FCM clustering algorithm by selecting the optimal centers of clusters for initial

contour determination. Then, the level set methods were introduced for final tumor dissection considering the

spatial information. However, the noise and non-homogeneity affect the performance of this method.

Recently, Boulanouar and Lamiche  introduced a new hybrid method based on a modified fuzzy bat optimization

algorithm (MFBA) and the FCM clustering approach termed MFBAFCM for brain tissue classification. The MFBA

algorithm was utilized to obtain the optimal cluster centers, which were subsequently utilized as the adaptive initial

seed for the conventional FCM. This hybrid approach addressed the problem of the conventional FCM clustering

algorithm, which falls into a local, optimal solution. However, the method is still partially sensitive to noise as well as

requiring high computational resources and a post-processing step to refine the extracted tumor regions.

Mishro et al.  introduced type-2 adaptive weighted spatial FCM (AWSFCM) to overcome the problems of the

conventional FCM clustering method, namely, (i) intensity non-uniformity (INU) artifact and sensitivity to noise, (ii)

model trapping in local minima, (iii) the problem of equidistant pixels, and (iv) dependency on initial clustering

centroids. The type-2 FCM consisted of three main steps. First, noisy pixel misclassification was reduced by

embedding neighboring spatial information in the membership function of FCM. Secondly, the effect of INU artifacts

was reduced by the incorporation of adaptive weights into the centroids of clusters. The issue of equidistant pixels

was resolved by assigning them to a specified cluster by providing higher weights to the pixel closer to the

expected decision boundary. Thirdly, the trapping in local minima was avoided by comparing the value of the

fitness function with succeeding iterative stages. The approach to segment brain tissue achieved promising results

when tested with healthy brain images, but the method was not tested with images containing lesions that affect

the normal tissue intensity and cause high INU artifacts.

In another novel study of brain tissue segmentation, an integrated method of the hidden Markov random field

(HMRF) method with a combination of metaheuristic algorithms based on cuckoo search (CS) and PSO was

reported by Pham et al. . The model adopted metaheuristic approaches to specify adaptive parameters to

perform balancing between the segmented regions, spatial information, and local intensity. Besides, the HMRF

method aims to improve the efficiency of searching solutions in the maximum posteriori estimation. This method

utilized spatial information and local intensity to control the INU artifacts and the high level of noise existing in the
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images. However, the model suffers from two drawbacks: (i) the high computational cost due to the problem in

setting the appropriate value of parameters and (ii) the difficulty in converting a large number of parameters,

including CS and PSO algorithms.

3.3.3. Deep Learning and Traditional Machine Learning

The third sub-category is the hybridization of deep learning and other traditional machine learning methods such as

clustering or classification in the segmentation of brain tissue. This hybridized approach was developed to

overcome the limitations of promising deep learning-based methods, and the segmentation results are increasingly

aggregated using the machine learning methods in the post-processing stage. Various studies 

 have applied this combination of methods. Kamnitsas et al.  proposed a dual 3D-CNN pathway to

extract both local and contextual information from the 3D brain tumor images. A fully connected 3D CRFs was used

to post-process the soft segmentation and effectively removes false positives. This approach uses a dense training

strategy to overcome memory requirements but still has relatively poor inference efficiency and a longer

computational time owing to the multi-scale patch-based analysis. Similarly, Zhao et al.  proposed a new

hybridized model of FCNNs and CRFs for semantic segmentation of brain tumors. This model was trained using

the 2D image patches in the following three steps: (i) the training of FCNNs model using image patches, (ii) the

training of CRFRNNs with FCNNs parameters using image slices, and (iii) the refining of FCNNs and CRFRNN

outcomes using image slices. However, the approach is time-consuming during model training and requires CRFs

for further structured outputs.

Likewise, Hu et al.  combined the multi-cascade convolutional neural network (MCCNN) and CRFs for sub-

region segmentation of brain tumors. The segmentation process involves two steps where a multi-cascade network

architecture was proposed to consider local label dependency and exploitation of multi-scale features for coarse

segmentation as the first step. Secondly, CRFs were used to maintain spatial contextual information of tumor

edges and eliminate false positives for refining segmentation results. The method effectively segmented whole

tumors using 2D patches obtained from the Flair, T1c, and T2 modalities with lower computational complexity and

fewer training parameters. However, this approach suffers from a sample imbalance issue that could affect the

segmentation performance for both tumor cores and enhance tumors as they are smaller in size relative to whole

tumors.

A different approach of intra-tumor segmentation was detailed by Yang et al. , where a small kernel two-path

convolutional neural network (SK-TPCNN) was combined with RFs. The SK-TPCNN system combined both small

and large convolution kernels to promote non-linear mapping ability, which can prevent over-fitting and can extract

multi-form features. The extracted features were then subjected to an RF classifier to perform joint optimization,

which can reduce feature redundancy, hence improving classification accuracy. The RF classifier successfully

incorporated redundant features and voxels of each MR image, which were classified into normal brain tissue and

different tumor parts. However, the SK-TPCNN produced an over-segmentation result, requiring more training data

and a longer computational time. Moreover, the post-processing step is also required for further segmentation

enhancement.
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Ito et al.  presented another semi-supervised hybrid method with the combination of expectation-maximization

(EM) and DNN for the brain tissue segmentation using a probabilistic method to address the labeling error issue.

The EM algorithm was used to determine the true label of the unlabeled image, and the expected label was

estimated by applying a special noise to the true label. The combination of the EM algorithm and the DNN model

uses a small number of annotated images and a high number of unlabeled images to train the probabilistic model.

This method improved the accuracy of small region segmentation even with a limited amount of ground truth

samples since unlabeled images were incorporated in the training process. However, the proposed work suffers

from high computational cost for the training procedure and poor segmentation results, as training the DNN with

exact EM uses imbalanced label datasets. A recent study by Khan et al.  presented a cascade method for

automatic brain tumor segmentation using IoT-generated images. First, three handcrafted features were extracted

and subjected to SVM for binary pixel classification to generate confidence surface modality (CSM). The CSM was

then exploited as the prior knowledge to address the dynamic appearance challenge of a brain tumor. Then, the

CSM, along with MR images, was incorporated into three novel pathways of the CNN architecture. However, the

model showed poor performance on intra-tumor region segmentation as the CSM that resulted from SVM-based

pixel classification presented information only for two classes (tumor or non-tumor) instead of providing information

on individual intra-tumor regions.

Another study by Jiang and Guo  highlighted the hybrid of a 3D fully CNN based on U-net and CRF for multi-

class semantic segmentation of brain tumor and the hippocampus. Firstly, the 3D DNN based on U-net was

designed to learn the mapping between image volume and labeling volume considering the early fusion of all MR

modalities of the training samples. The learned mappings were then fused and applied to the new batch of samples

to jointly determine the tissue marking. Moreover, a fully connected CRF was also proposed as the post-processing

step to obtain spatially consistent segmentation results. This method effectively combined multiple predictions of

the structure’s prior information and ranking of labels. Nevertheless, the proposed method suffers from two major

drawbacks, which are (i) the high computational time for training and testing and (ii) the post-processing

requirements for further structured segmentation output.

In a more recent study, the 3D DCNN combined with 3D atrous convolution filters, termed AFPNet, was proposed

by Zhou, He and Jia  for intra-tumor segmentation. The combination of methods aimed to avoid spatial

information loss caused by striding and pooling operations of traditional DCNNs and also to enrich the learning

features of brain tumors. The 3D atrous convolution layers were applied at various atrous rates to construct an

atrous convolution feature pyramid. Then, a 3D fully connected CRF was adopted as the post-processing step to

perform more structural segmentation. Despite the advantages, the approach has some disadvantages, including

the limited performance of tiny lesion tissue segmentation. Therefore, it has a relatively low segmentation rate for

enhancing and core tumor regions in comparison to complete tumor segmentation. Additionally, it also requires a

post-processing step for further segmentation enhancement.

An automated segmentation and tumor severity level classification algorithm was suggested by Mahesh et al. 

based on PSO for tumor segmentation and meta-classifiers, termed FJODCNN, for severity analysis of gliomas.

The model consists of three main steps: Firstly, the segmentation of the core and edema regions was performed
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using the PSO as a clustering algorithm. Secondly, the features were extracted from these regions, and, finally, the

classification was performed using the DCNN and optimally tuned by the fractional Jaya opKtimizer algorithm.

However, no qualitative or quantitative results were observed for PSO-based segmentation.

A unified Incremental DCNN model based on Heterogeneous CNNs (HCNN) and CRF for brain tumor

segmentation was proposed by Deng et al. . The steps involved in the method include the following: (i) training

of the HCNN using image patches, (ii) training of the CRF-recurrent regression-based neural network (RRNN)

using image slices with fixed variables of the HCNN, and (iii) adjustment of the whole network with image slices.

Three segmentation models were trained, especially with axial, sagittal, and coronal image patches and slices, and

finally combined in a voting fusion technique.

Table 2 displays the strengths and limitations of each sub-category of hybrid methods.

Table 2. Strengths and limitations of hybrid segmentation approaches.

[65]

Categories Approaches Strengths Limitations

Contour-based and
machine learning

Provides automatic parameter

initialization.

Prevents contour-based

issues.

The parameter setting is

subjective.

Requires skillful users.

Metaheuristic and
machine learning

Optimizes separation

features.

Provides automatic parameter

idealization.

Improves response-to-noise

ratio.

Prevents local minimum to

produce optimal results.

Poor performance for

local optimization.

High system complexity.

Deep learning and
clustering or
classification

High performance for intra-

tumor segmentation.

Encodes spatial information to

obtain the further structured

Requires high

computational time and

resources.
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