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Brain image segmentation is one of the most time-consuming and challenging procedures in a clinical environment.

Recently, a drastic increase in the number of brain disorders has been noted. This has indirectly led to an increased

demand for automated brain segmentation solutions to assist medical experts in early diagnosis and treatment

interventions. This paper aims to present a critical review of the recent trend in segmentation and classification methods

for brain magnetic resonance images. Various segmentation methods ranging from simple intensity-based to high-level

segmentation approaches such as machine learning, metaheuristic, deep learning, and hybridization are included in the

present review. Common issues, advantages, and disadvantages of brain image segmentation methods are also

discussed to provide a better understanding of the strengths and limitations of existing methods. 
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1. Introduction

Brain imaging is important for the diagnosis of brain-related diseases such as neurological disease (Parkinson’s disease),

neurodegenerative disease (Alzheimer’s syndrome), and brain tumors. According to the American Cancer Society and the

National Cancer Institute Report, brain and nervous system cancer is the tenth most common cause of death for both

genders. About 18,020 deaths (10,190 males and 7830 females) and 23,890 new cases (13,590 males 10,300 females)

among adults were estimated due to primary cancerous brain tumors and other nervous system diseases in 2020 in the

United States . Therefore, early detection of brain tumors and related brain structures using effective brain imaging

techniques is important where treatment can be initiated at an early stage of the brain tumor. High-quality brain images

can be produced using magnetic resonance (MR) imaging, a standard non-invasive imaging key technique. MR imaging is

useful for the diagnosis and treatment of brain tumors without inflicting harmful radiation on other brain structures and

skull artifacts of the patients . MR images are used to differentiate suspicious regions of the brain tumor from healthy

brain tissue. Conventionally, location, shape, and type of brain tumors are identified visually using multimodal MR images

by qualified medical doctors.

2. Search Strategy and Selection Criteria

The present review aims to summarize information and identify problems from relevant research articles that utilized

computer vision techniques in the context of automated brain medical imaging over the last five years. The inclusion and

exclusion criteria were applied to conference papers and journal articles published on brain medical imaging in the chosen

databases from 2016 until 2021. Studies that were not written in English, were duplicative, out of the study period, and did

not have the full text available were excluded.

The studies were collected using the search keywords on 11 selected databases (i.e., Scopus, Web of Knowledge,

Science Direct, IEEE Xplore, Springer, Frontiers, Wiley Online Library, Arixiv, ACM Digital Library, Hindawi). These

databases offered comprehensive literature regarding brain image segmentation approaches and are highly appropriate.

First, a search was conducted on the basis of the following keywords/terms: (delineation OR segmentation OR

contouring) AND (brain tumor OR neoplasia OR brain tissues OR brain anatomical structure)) AND (ALL(“automatic

delineation” OR “automatic segmentation” OR “automatic contouring” OR “semi-automatic delineation” OR “semi-

automatic segmentation” OR “semi-automatic contouring”)) AND (brain tumor OR neoplasia OR brain tissues OR brain

anatomical structure)) AND intensity-based methods—((delineation OR segmentation OR contouring) AND (“thresholding”

OR “region” OR “Otsu” “level set” OR “active counter”) (brain tumor OR neoplasia OR brain tissues OR brain anatomical

structure) AND (ALL(“automatic delineation” OR “automatic segmentation” OR “automatic contouring” OR “semi-automatic

delineation” OR “semi-automatic segmentation” OR “semi-automatic contouring”)) AND (PUBYEAR > 2015) AND

(“MRI”))), machine learning methods ((delineation OR segmentation OR contouring) AND (“clustering” OR “classification”

OR “deep learning” OR SVM OR ANN OR K-means OR FCM OR FCN OR CNN OR convolution OR UNet OR U-Net)
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AND (brain tumor OR Neoplasia OR brain tissues OR anatomical structure) AND (ALL(“automatic delineation” OR

“automatic segmentation” OR “automatic contouring” OR “semi-automatic delineation” OR “semi-automatic segmentation”

OR “semi-automatic contouring”) AND (PUBYEAR > 2015) AND (“MRI”))), and so on, as well as for the hybrid method and

its subcategories.

In the beginning, 761 publications were retrieved by searching the selected databases. An additional 15 publications were

identified through cross-referencing. Following duplicate publications removal, the remaining 459 publications were

evaluated via exclusion criteria. Based on screening the title and abstract, 394 publications were excluded. A total of 85

full-text studies were evaluated for eligibility, and 50 papers were included in this review. Then, an additional search was

conducted on all selected publications by using the backward and forward approach for the references search method

introduced by Webster and Watson . Through the backward search, the citations of each publication were assessed to

obtain further publications to be included in the review. Through the forward search, for example, the references were

obtained using Google Scholar were used to obtain further relevant studies. The results reported 10 additional

publications. Overall, a total of 60 publications were selected. Figure 1 illustrates the search strategy with the

publications’ selection methods.

Figure 1. An overview of the study search and selection process according to PRISMA guidelines .

Figure 2 shows the taxonomy of reviewed research papers published in the last 5 years. It was noted that recent

publications predominantly applied deep learning and hybridized metaheuristic-based methods for brain image

segmentation.
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Figure 2. An overview of brain segmentation approaches 

.

3. Brain Segmentation Approaches
3.1. Intensity-Based Approaches

The intensity-based methods for brain segmentation function in the spatial domain and depend on the pixel value, which

can be further classified into a thresholding and region-based approach.

3.1.1. Thresholding

The thresholding approach is one of the conventional and the easiest image segmentation methods where the regions of

the image are categorized by measuring their intensities and compared with one or more intensity thresholds. For

instance, Otsu’s method enables the determination of the global threshold optimal value to distinguish the target object

from the image background. In a previous study, Otsu’s thresholding approach was coupled with morphological operations

to detect brain tumors using MR images . Another study by Khan et al.  presented a grade-wise brain tumor

identification method where segmentation of the tumor was conducted first through the threshold approach. Then, a

logical formula was employed to extract the desired tumor region. Moreover, feature set parameters, such as the angle,

area, density, solidity, size, center of mass, and perimeter, were extracted from the tumor region. The extracted features

were then analyzed using the partial tree (PART) algorithm to grade the brain tumor. However, the thresholding approach

is sensitive to noise and intensity non-homogeneity, which limits its application for the entire tumor region. To overcome

the limitation, statistical optimization of the threshold method was reported by Sharif et al. , where particle swarm

optimization (PSO) was employed to achieve the maximum class variance between the tumor regions and healthy brain

tissues. Then, hand-crafted local binary patterns (LBP) and deep (fine-tuned capsule network) features of segmented

images were extracted, and the best features were selected using a genetic algorithm (GA). Finally, an artificial neural

network (ANN), a support vector machine (SVM), and an ensemble of linear discriminant analysis (LDA) were utilized to

classify the tumor grades.

The above-mentioned methods have several limitations such as (i) low convergence rate and an insufficient local and

global search and (ii) the optimization being trapped into a local minimum that results in low segmentation accuracy. To

improve the local and global search of the multi-level thresholding approach, a new metaheuristic approach of the

differential evolution (DE) technique, which was termed as adaptive differential evolution with Lévy distribution (ALDE),

was introduced by Tarkhaneh and Shen  for brain tissue segmentation. The proposed approach was adopted to resolve

the multi-level threshold issue and achieve optimal results by preventing a local minimum through the establishment of a

balance between exploration and exploitation coupled with the convergence rate boost. However, some of the tested
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images in this model did not segment properly, which could be attributed to the limitation of the thresholding approach that

does not consider the spatial information of images, resulting in insensitivity towards different levels of noise and intensity.

Oliva et al.  proposed an adaptive differential evolution and linear population size reduction (LSHADE) metaheuristic

algorithm to determine the optimal threshold value by employing the minimum cross-entropy as a fitness function for the

segmentation of brain tissue from MR images.

In a different study , Renugambal et al. proposed a new hybridization approach based on the Otsu and new hybrid

water cycle and moth-flame optimization algorithm (WCMFO) for the brain tissue segmentation. The new WCMFO

algorithm was proposed to determine the optimal values for Otsu’s objective functions on various axial T2 modalities of

MR brain images. However, the model cannot convert several parameters, including the water cycle and moth-flame

algorithms.

3.1.2. Region-Based

The region-based approach enables the extraction of a connected region of an image by following pre-defined conditions

such as pixels’/voxels’ information with matching intensities. This approach is performed in three steps: (i) selection of an

initial seed point, (ii) locating the points in objects or regions, and (iii) selection of points connected to the initial point with

similar intensity values. Recently, several studies applied a region-based approach for brain tissue segmentation 

.

A semi-automatic approach, which consists of a localized active contour integrated with a background intensity

compensation, termed LACM-BIC for tumor region segmentation, was presented by Ilunga-Mbuyamba et al. . The T1

contrast and T2 MR images were fused and used to segment the tumors. An automated initialization of the initial contour

in the LACM-BIC method was conducted using the k-means algorithm accompanied by a hierarchical centroid shape

descriptor. This method chose the best initialization number of the cluster, k, for the k-means algorithm, in which wrong

selection of the initialization may lead to unwanted regions in the segmentation. Hence, the contour may be trapped into

the wrong local minimum.

In another region-based study, a 3D-MR image brain symmetry analysis for tumor segmentation was reported by Kermi et

al. . Specifically, the fast-unsupervised bounding box (FBB) and geodesic level-set methods were used. The FBB

algorithm was adopted to locate initial tumor voxels and to manage intensity variations among different MR images

without the use of a training dataset. Subsequently, the region growing method was combined with a 3D level set method

to acquire the final tumor region. The drawbacks of this method include the inability to avoid noise and non-uniform

intensity besides being limited to tumor segmentation.

In a more recent study, Achuthan and Rajeswari  presented an automated point set registration approach to establish a

prior knowledge model with a lower data intensiveness for hippocampus segmentation. In comparison to the usage of the

entire 3D volume as used in the atlas-based methods, this study utilized a collection of representative points on the

boundary of the hippocampus. The prior model was created and integrated into a level set model to perform hippocampus

delineation. Nevertheless, some parameters are required to be specified experimentally, and it is a subjective task that

depends on the target image properties.

Another approach for hippocampus segmentation of MR images using an automated level set method has been proposed

by Safavian et al. . First, prior knowledge was obtained from an affine registration with a non-linear registration stage.

Then, this information was locally integrated into an innovative level-set framework using a binary weighting map. The

image gradient information adaptively utilized both local and global region information of the corresponding image.

However, manual setting of parameters is required, which is very subjective and depends on the target image properties.

In a different study, Virupakshappa and Amarapur  presented a modified level set segmentation method for brain tumor

segmentation that provides an automatic initialization point as indicated by the maximum pixel point that serves as the

initial contour. The maximum pixel was determined from the histogram, and an automatic segmentation was performed

using an anisotropic diffusion filter instead of the Gaussian filter. The utilization of the anisotropic diffusion filter enhanced

the local edges by detecting discontinuity within the local edge. Boundaries formed as a result of noise were removed

completely, and the contours of the object were also improved. However, the manual setting of the initial contour of the

level set is required to be performed based on the maximum pixel point, which is very subjective and depends on the

intensity non-homogeneity.

3.2. Machine Learning
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Another category of brain image segmentation approaches is traditional machine learning, comprising clustering and

classification and deep learning approaches. The sections below detail these approaches.

3.2.1. Traditional Machine Learning

The clustering and classification approaches, being the traditional machine learning methods, are motivated by

multidimensional feature space that may be obtained from different MR modalities. Classifiers are trained using a feature

space that is created by combining different intensity and textural-based features representing the known classes. Then, a

class prediction that the target structure belongs to is performed by assigning a class label, which is most similar to the

target structure’s feature space. Meanwhile, clustering methods are unsupervised pixel-based methods that segregate

unlabeled images into clusters of pixels that have similar features without utilizing training images. Some of the machine

learning-based methods were applied for brain tissue segmentation in recent studies . A 3D super-voxel

learning method for brain tumor segmentation was proposed by Soltaninejad et al. . In the study, the MR images were

partitioned into the equivalent size of patches with similar intensity ranges based on the simple linear iterative clustering

(SLIC) algorithm. Super-voxel clusters were formed by combining information from the MR multimodal images using a

distance metric. For each super-voxel cluster, a set of texton descriptors along with the first-order static features were

extracted from different MR modalities. The features were then used to train a random forest (RF) classifier to classify

each super-voxel into a core tumor, edema, or healthy tissue. This approach was found to effectively combine the

unsupervised SLIC algorithm for initial tumor region localization and the supervised RF method for tumor classification.

The approach enabled the classification of located regions into sub-regions in a unified system and resulted in promising

segmentation findings. However, this approach limits the segmentation of complex structural boundaries such as the

smaller tumor cores as the super-voxel may include voxels from various tissue types.

In another study, a semi-supervised method based on a co-training technique with clinical and spatial constraints for the

extraction of the glioma region, namely whole tumor (WT), tumor core (TC) and enhancing tumor (ET) from multi-

sequence MR images, was assessed by Zhan et al. . Firstly, the labeled brain MR image was used for both SVM and

sparse representation classification (SRC) classifiers training. This allows the extraction of high confidence data as

pseudo-labeled samples from the test samples. The pseudo-labeled samples that resulted from each classifier were then

added to the training sets of the other side of the classifier to re-train the corresponding classifier. The process was

iteratively repeated until the results of classification remained stable. Finally, a super-pixel graph was plotted on the post-

contrast T1 image to generate spatial and clinical constraints to remove false-positive and interference of noise. This

classification method provides generalization fitting using a limited training set. However, it has a drawback where prior

clinical knowledge is required to refine the segmentation results by manually correcting the pixel labeling, which is

subjective as it depends on the user’s expertise.

Meanwhile, Nitta et al.  investigated an approach for brain tissue segmentation using a modified k-means clustering

algorithm. The researchers proposed a selection of 16 high probabilities of dominant grey-level pixels as initial centroids

to resolve the issue of the arbitrary selection of initial centroids in the standard k-means algorithm. The proposed

approach is sensitive to noise and has a non-uniform intensity distribution.

In a recent study by Imtiaz et al. , a tumor segmentation approach based on super-pixel features extracted from 3D

planes of MR images (FLAIR, T1c, and T2 modalities) was evaluated. Several statistical and Gabor textural features were

extracted from each super-pixel of the three planes to avoid imbalanced planar data and mislabeling of pixel issues in a

plane. Based on feature effectiveness, feature selection was performed using histogram consistency analysis and local

descriptor pattern analysis. The feature vector for each super-pixel was then subjected to extremely randomized trees

(ERT) for binary classification. Then, the voting algorithm was used to assign a class label (tumor or non-tumor) for each

pixel in all three planes. The benefits of this approach include fast computation and high robustness to the scale-invariant

and rotational changes. However, this approach is sensitive to noise and distortions, in addition to leading to the extraction

of redundant features at different scales.

In a different study by Chen et al. , a hybrid two-stage framework of cascaded RF and a dense conditional random field

(CRF) was evaluated for intra-tumor segmentation. Firstly, the appearance features (statistical intensity and template-

based) and contextual features (Gaussian mixture model-based lesion tissue probability maps) were extracted and used

to train the initial RF classifier. The predicted probability map obtained by the RF classifier was used as the prior input into

a dense CRF model for further segmentation improvement. Then, the results of the dense CRF model were used as the

contextual information to train a cascade of RFs by the hierarchy in combination with template-based asymmetrical and

original statistical features. The authors proposed a multi-layer optimization architecture as the post-processing step to

further increase the efficiency of RF. The step is easy to implement and can be effectively incorporated into the local

appearance and global contextual features, which can improve the segmentation outcome. The limitation of this
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framework includes the evaluation was performed using a small dataset, and a post-processing step is required to fine-

tune the extracted tumor regions.

3.2.2. Deep Learning

Recently, the deep learning-based method has attracted much research interest due to its excellent performance and

ability to automatically capture adaptive features, which outperform manually created features. Moreover, these features

were learned in an increasing feature complexity trend, which results in more robust feature learning. During the last few

years, more studies have been designed using a combination of the deep learning-based method and the new brain

tumor segmentation method. Most of the studies utilized convolutional neural networks due to their effectiveness in

detecting patterns in an image, specifically the MR images, with promising results reported. To date, the deep learning-

based segmentation was performed using 2D, 2.5D, or 3D MR images, which is elaborated in the following sections.

Deep Learning-Based Methods Using 2D Images

Deep learning using 2D images requires brain image slices or extracted 2D patches from 3D images as an input for the

2D convolutional kernel. Several studies  have been published on the

deep learning-based method using 2D images. Sergio Pereira et al.  introduced cascade layers using small 3*3

convolutions kernels to reduce overfitting. The study enabled the segmentation of the image into four regions, namely (i)

necrosis, (ii) enhancing tumor, (iii) edema, and (iv) normal tissue. Two convolutional neural network (CNN) architectures

were trained and used in the proposed work to extract the feature maps, which were low-grade glioma and high-grade

glioma. The use of small kernels led to a deeper architecture design, which reduced the number of weights in the network

and significantly affected overfitting. However, for the initial phase, the user has to manually identify the glioma grade

where prior medical knowledge is required, which is one of the limitations. Additionally, the tissue segmentation was

performed as a patch-based task in the study where the local dependency of labels during pixel classification was

ignored. Another drawback of the proposed method is the poor segmentation of tumor core regions in the BRATS 2015

Challenge dataset.

Similarly, the application of another novel Cascade CNN model for fully automatic brain tumor segmentation was reported

by Havaei et al. . Cascade architecture of 2D CNN was used in the study to preserve local dependency of labels during

pixel classification and extract local and global contextual features which deal with imbalanced tumor labels. However, the

model suffers from two drawbacks: (i) poor segmentation between the enhanced and core regions of the brain tumor

inferior to the complete tumor and (ii) only the local dependency of the labeled samples was considered, with the

appearance and spatial consistency neglected when applied on 3D images.

Moeskops et al.  presented an automatic approach based on a multi-scale CNN for segmenting white matter

hyperintensities of presumed vascular origin (WMH) (basal ganglia and thalami, brain stem, cortical grey matter, white

matter, cerebellum, WMH, peripheral cerebrospinal fluid, and lateral ventricular cerebrospinal fluid) from MRI modalities

(T1, T2, FLAIR, and T1inversion recovery). The proposed multi-scale CNN model was claimed to be the first modern MRI

segmentation method that applies CNN for additional WMH segmentation. Furthermore, the model was assessed in two

large MRI datasets of older patients that were affected by motion artifacts and varying degrees of brain abnormalities.

Another study by Chen et al.  proposed a 2D novel method based on a CNN architecture identified as Dense-Res-

Inception Net (DRINet) for multi-class brain tumor segmentation. The DRINet consisted of three blocks, namely, (i)

convolutional, (ii) deconvolutional, and (iii) unpooling blocks. The convolutional block carried out dense connections and

was used to alleviate the effect of vanishing gradients. Meanwhile, the deconvolutional block carries out the residual

inception modules to aggregate feature maps from different branches. The unpooling block was used for the aggregation

of different sampled feature maps. The use of this method resulted in accurate findings on segmenting complex,

challenge, multivariate domains (tumor and cerebrospinal fluid (CSF)), and multi-organ segmentation on abdominal CT

images. Nevertheless, the DRINet approach has a complex network structure that requires millions of parameters (i.e.,

billions of connections between neurons and millions of weights), which could lead to a difficult training phase, and testing

can be slower depending on the ground truth label requirements.

Iqbal et al.  proposed three different improved network architectures for intra-tumor segmentation, which were an

extended version of SegNet (deep convolution encoder-decoder architecture), as follows: (i) Interpolated Network, (ii)

SkipNet, and (iii) SE-Net. All three structures consisted of decoder/encoder architecture, and four sub-blocks were used in

each phase. A batch of normalization layers was added next to each convolution to avoid the disappearance or explosion

of convolutional gradients and to maintain the stability of the training phase. The advantage of this approach includes the

use of simple network structures as an intermediate convolutional map along with interpolation methods to produce a
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quick model with a smaller memory space. However, the method has a limitation where the segmentation performance

could be affected if the model is trained with limited ground truth samples.

In the same year, Cui et al.  reported on a hybridized cascade of a deep convolution neural network (DCNN)

architecture that can segment 2D brain images automatically in two major steps. Firstly, the tumor region was localized

immediately using the pixel-wise fully convolution network (FCN) from the MR images. Then, the patch-wise CNN with

smaller kernels and deeper architecture was adopted for further classification of the localized tumor region into multiple

sub-regions. This approach alleviates the imbalanced data issue using a hybrid CNN. However, the approach is time-

consuming during model training, and inference is required for operating the image patches.

In a different approach, Chen et al.  presented a combination of prior knowledge and a DCNN to enrich the extracted

features of DCNN for brain tumor sub-compartment identification. This model requires an analysis of a left-right similarity

mask (LRSM) in the constructed feature space and uses LRSM as the location weight of the DCNN features. These

features were then used to train the model to determine the asymmetrical location information of the input images via a

similarity metric. This approach was found to provide about 3.6% of dice similarity coefficient (DSC) improvement of

complete tumor segmentation over the conventional DCNN. The advantage of the proposed method includes the ability to

combine the symmetric masks in several layers of DCNN to assign location weight for the extracted features. However,

the method could not differentiate between the tumor core regions and the enhanced tumor region as the LRSM mask can

reflect a complete tumor situation.

Li et al.  presented an automatic approach based on the improved version of U-Net for multiclass brain tumor

segmentation from 2D MR image slices. Firstly, the up-skip connection between the encoding and the decoding elements

was proposed to further enhance the information flow and the network connectivity. Then, in each block, an inception

module was implemented to assist the network in learning richer representations. Nevertheless, the model suffers from

poor segmentation of enhancing tumor region as the whole brain slices were used for model training. This led to a data

imbalance issue due to a small number of pixels that belong to enhance tumor and core regions inferior to other brain

tissue.

Another approach was reported by Guo et al. , where a supervised multimodal image analysis was performed with

three cross-modality of fusion level strategies, which were feature learning, classification, and decision making. The three

fusion strategies were implemented and tested in three different patches-based CNNs with corresponding variations in the

network structures. Four modalities of imaging (CT, PET, T1, and T2) were used as fused inputs for brain tumor

segmentation. Comparison between the single model and multimodality showed that the CNN-based fusion network

performed better on PET, CT, and T2 modalities. This approach provides methodological guidelines for designing and

applying multimodal image analysis fusion strategies through different implementations of CNN architecture. However,

this approach is limited for complete tumor detection. Another limitation is the dramatic decrease in the segmentation

performance within the misaligned regions based on the number of affected modalities and severity of the misalignment.

An automated hybrid DCNN model for brain tumor segmentation was presented by Sajid et al.  for different modalities

of MR. This model extracted 27 × 27 sized patches from four axial MR modalities to consider both spatial and contextual

knowledge for predicting segmentation labels of pixels. The proposed hybrid DCNN model combined the output feature

maps of two- and three-CNN paths. The model successfully addressed local dependencies between the output labels,

which was the major drawback of the two- and three-CNN paths. By integrating the two- and three-CNN networks, an

increase in the effect of neighboring pixels was noted, and the output was recognized based on the local and contextual

features. Morphological operations were used to further enhance the segmentation performance by eliminating minor

false positives along the edges of the expected outputs. The proposed model segmented the core and enhanced tumor

regions better compared to the complete tumor regions. This could be attributed to the fuzzy boundaries of edema that

limit the detection of the whole tumor region compared to other regions. However, this approach has a limitation where a

large amount of training data and parameters are required for model training.

In addition to the various methods proposed, Zhang et al.  presented a residual U-Net and attention mechanism in a

unified architecture named AGResU-Net for patch-wise brain tumor segmentation. Attention gate units were added into

the up-skip connection of the U-Net structure to highlight the important feature details along with disambiguates in noise

and irrelevant feature responses. The AGResU-Net was found to enhance feature learning by extracting important

semantic features focusing on the details of small-scale brain tumor sub-regions, which improves the segmentation

performance of the brain tumors. Nevertheless, the AGResU-Net model has a drawback, where an amount of contextual

information and local details among different intra-slices were not included due to modeling based on 2D U-Net.
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In the same year, Zhang et al.  proposed another new method using attention residual U-Net (AResU-Net) for end-to-

end 2D brain tumor segmentation. The AResU-Net embedded a series of attention and residual units among

corresponding down-sampling and up-sampling processes. The system simultaneously improved the local responses of

down-sampling and the recovery effects of the up-sampling process. However, the model neglects contextual and local

details of different intra-slices due to modeling based on 2D slices.

Recently, an innovative brain tissue segmentation method from MR images was proposed by Lee et al. , where a

patch-wise U-net architecture was used to divide the MR image slices into non-overlapping patches. Corresponding

patches of ground truth were incorporated into the U-net model, and input patches were predicted individually. The model

was found to retain the local spatial information better compared to the conventional U-Net model. The design

successfully fixed the drawback, specifically the limited memory problem, which was caused by multiple down and

upsampling stages. The memory problem was attributed to the storage of parameter values at each stage and difficulty in

maintaining local details as the entire image is incorporated into the network. Although the memory problem was resolved

using the proposed model, computational complexity was higher in the training phase.

In another study, Silva et al.  proposed a three-stage cascade FCN architecture based on the deep layer aggregation

technique to gather further spatial and semantic information for intra-tumor segmentation. The output features of one FCN

are directly fed to the next layer for extending the feature hierarchy over different depths for better segmentation

refinement. However, the model requires high computational resources and post-processing to refine the extracted tumor

regions.

In addition to the various proposed methods, Wu et al.  suggested a multifeatures refinement and aggregation network

(termed MRANet) based on CNN for end-to-end brain tumor segmentation. The model fully utilized the hierarchical

features by adopting the feature fusion concept at several levels, which extracts low-level, mid-level, and high-level

features by sampling similar hierarchical features of encoder and decoder. These features were then aggregated and re-

extracted for better segmentation refinement.

Ribalta Lorenzo et al.  proposed a deep learning method for brain tumor delineation from the FLAIR modality of MR

using the fully convolution neural network (FCNN) inspired by U-Net. The authors trained the model on 256 × 256 patches

extracted from the intra-tumor regions that belong to only positive (tumorous) full-sized FLAIR MR image sequences.

Firstly, data augmentation methods were used to expand the dataset and achieve a robust algorithm against the

heterogeneity of small training datasets. Subsequently, the FCNN was trained using the DSC to maximize the model

training to improve the quality of the segmentation. The proposed FCNN model was claimed to be the best modern FLAIR

MR image segmentation method that applied hand-crafted features and was classified using extreme random trees. This

model offers controllable training time and instant robust segmentation using the FCNN that was trained on

heterogeneous and imbalanced datasets. Nevertheless, this model exhibited potential drawbacks caused by the rapid

data augmentation process, as the unnatural increasing number of training patches resulted in a reduction in overall

average data accuracy.

Gunasekara et al.  proposed cascaded algorithms for glioma and meningioma brain tumor segmentation and

classification. Firstly, CNN was implemented to classify meningioma and glioma regions. Then, the classified images were

fed to R-CNN to localize the tumor regions of interest, which was accompanied by active contouring to delineate the exact

tumor boundary. Finally, the Chan–Vese level set model was used to segment the target tumor boundary.

Deep Learning-Based Methods Using 3D Images

The second category of deep learning-based tumor segmentation approaches uses 3D MR images for segmentation to

overcome the limitation of neglecting contextual information in 2D CNN. Several studies  have reported

the approaches under this sub-class.

The intra-tumor region segmentation method from 3D MR images based on the asymmetric encoder-decoder network

was presented by Myronenko . The researchers adopted CNN’s encoder-decoder structure with an asymmetrical large

encoder to extract deep features and reconstruct the dense segmentation masks using a decoder. To tackle the issue of a

small training dataset, a variational auto-encoder was added to the endpoint of the encoder, and the input image was

reconstructed together with the segmentation to regularize the shared encoder at the inference time. This model enables

accurate intra-tumor segmentation based on the unsupervised feature learning method with a lower requirement for

ground truth labels and without the post-processing step. However, the proposed method requires high computational

resources to accelerate tumor annotation in MR images.
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To decrease the dependency on the ground truth images during the training stage, Nema et al.  proposed a RescueNet

approach for multi-class brain tumor segmentation utilizing both residual and mirroring principles. Different training was

performed to segment whole, core, and enhancing tumors using three different networks. The proposed RescueNet

approach was trained based on the unpaired generative adversarial network (GAN) method, which was utilized to enrich

data for the training stage with better segmentation results obtained using a larger amount of testing data. Finally, a scale-

invariant algorithm was suggested as a post-processing stage to improve the segmentation accuracy. The pros of this

approach include robustness to the appearance variations in brain tumors, the minimum requirement of labeled datasets

for model training, and that the model is 10% trained and 90% tested. However, this approach requires a post-processing

step for further segmentation refinement.

In a more recent study by Baid et al. , an effective weighted patch extraction was combined with a new 3D U-Net

architecture for a fully automatic brain tumor segmentation. The authors proposed a weighted patch-based segmentation

approach to address the imbalance of class among tumor and non-tumorous patches. The 3D weighted patch-based

method and a unique number of feature maps were designed to train the architecture, which enables the accurate

segmentation of intra-tumor structures. Finally, a 3D connected component analysis was used as the post-processing

method to improve the accuracy of the tumor delineation. However, this approach failed to segment some of the tumor

parts with a small necrotic tumor cavity from the MR images due to a large variance in the training and validation dataset

features. This can be resolved by increasing the number of training data to overcome the inter-patient variations.

To address the two main challenges, namely, exploding and vanishing gradients affecting the traditional DCNNs

performance, Zhou et al.  proposed a novel three-phase framework for automatic brain tumor segmentation of the 3D

MR images. Firstly, a dense three-dimensional networking architecture was adopted to construct the features to be re-

used. Secondly, 3D atrous convolutional layers were used to design a new feature pyramid module, which was added to

the backbone end to fuse the multiscale contexts. Finally, for further training promotion, a supervision 3D deep

mechanism was equipped to enhance the network convergence by adding auxiliary classifiers to alleviate the problem of

exploding and vanishing gradients by utilizing dense connectivity. Overall, this framework is considered a complete

architecture without additional post-processing stages. Furthermore, simple implementation and the use of adjustable

parameters are the main advantages of this framework. However, the segmentation of cores and enhancing tumors are

inferior compared to the complete tumor, which requires considerable improvement.

In another study, Sun et al.  presented a multipath way 3D FCN architecture for brain tumor segmentation. The model

extracts different receptive fields of feature maps from multi-modal MR images using the 3D dilated convolution in each

pathway and fuses these features spatially using skip connections. This model helps FCN architectures to better locate

the boundaries of tumor regions. However, the model requires a post-processing step, as direct connections between

high- and low-level features will lead to unpredictable consequences and the semantic gap between the encoder and

decoder.

An effective mapping from MR volumes to voxel-level brain tissue segments was proposed by Ramzan et al. . A 3D

CNN, which utilized the concept of residual learning, skip connections, and dilated convolutions, was applied in the study.

Dilated convolutions were utilized to decrease the computational cost by computing spatial features with a high resolution.

However, the space complexity of this model was higher as dilated convolution was used, and down-sampling of input

volumes was neglected, which led to an increase in the number of parameters and kernels by a certain factor.

Deep Learning-Based Methods Using 2.5D Images

Although 3D deep neural network (DNN)-based segmentation can better exploit 3D features of 3D MR image information

data, this approach has limitations related to network intensiveness and memory consumption. Therefore, another

category of 2.5D DNN was researched. In comparison to the 2D and 3D DNN, 2.5 DNN has inter-slice characteristics and

lower memory demand.

An automated 2.5D patch-wise Hough-CNN model based on a voting strategy for localizing and segmenting brain

anatomies of interest (26 regions of the basal ganglia and the midbrain) was presented by F. Milletari et al.  for different

modalities of MRI and ultrasound slices. The patch-based voting strategy was designed and integrated into the Hough-

CNN model to localize and segment brain structures that are corrupted by artifacts or are partially visible.

To overcome network complexity and memory consumption of the 3D based-segmentation methods, Wang et al. 

suggested a cascade of 2.5D CNN voxel-wise architecture for sequential segmentation of brain tumors from MR images.

The task of multiclass segmentation was largely divided into a sequence of binary hierarchical tasks to segment complete,

core, and enhancing tumors for better utilization of hierarchical features of brain tumor structures. The resultant segments
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were then used as a crisp mask to identify tumor cores and enhancing tumors, which could lead to anatomical constraints

during the final segmentation. The predicted tumor core was constrained to be within the whole tumor, while the

enhancing tumor region was within the core tumor region. Additionally, the test-time augmentation technique was used to

obtain structure-wise and voxel-wise uncertainty estimation of the segmentation results. Finally, a CRF was proposed as

the post-processing stage to smoothen the segmentation results. A robust segmentation resulted in a balanced property of

memory consumption, model complexity, and multi-view fusion. However, the method has two main limitations: (i) it is

highly dependent on the voxel-wise annotations technique and (ii) time-consuming for large datasets. Additionally, this

approach requires post-processing for segmentation tuning. The advantages and disadvantages of all of the discussed

segmentation approaches are summarized in Table 1.

Table 1. Strengths and limitations of intensity-based and machine learning approaches for brain segmentation.

Categories Ref Strengths Limitations

Thresholding

Simple implementation.

Low computation time.

Low performance in heterogeneous

regions.

Influenced by noise.

The setting of the optimal threshold is

very subjective.

Requires skillful user.

Region based

High segmentation accuracy

required for tumor regions.

Low computation time.

High segmentation efficiency

for 3D images.

High segmentation

performance in complex

regions.

Influenced by noise.

Requires post-processing step.

Requires prior knowledge for

parameter initialization.

Traditional
machine
learning

High segmentation for whole

target cases.

Simple implementation.

Low computation time.

Parameter initialization is subjective.

Requires skillful users.

Low segmentation performance for

semantic type segmentation.

Optimum representation features

determination is very subjective.

Model trapped in a local minimum due

to imbalance between exploration and

exploitation.
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Categories Ref Strengths Limitations

Deep learning

Adaptive feature map.

High performance of

semantic-based

segmentation.

High performance in

complex regions.

Best segmentation results

compared to other

categories.

Complex network architecture.

Difficult to understand.

High computation time.

Requires high computational

resources.

3.3. Hybrid Segmentation Approaches

Hybrid segmentation is the fourth category of brain image segmentation, which includes the integration of different

methods to improve the segmentation performance and achieve the segmentation objectives. Therefore, hybrid

approaches refer to the combination of two or more related methods by utilizing their advantages to achieve high

segmentation accuracy. In general, hybrid-based approaches perform well, possess better designs, have shorter

computational time, and have adaptive modulations towards the target task in comparison to other segmentation

approaches. Hybrid segmentation can be divided into three sub-categories, namely, (i) contour-based and machine

learning, (ii) metaheuristic, and machine learning and (iii) deep learning and machine learning. Each sub-category

contains several approaches that aim to segment the required MR image.

3.3.1. Contour-Based and Machine Learning

The combination of the contour-based and machine learning approach can improve initialization parameters, perform

further spatial constraints, direct the evolution of intensity-based pipelines, and enhance data mining algorithms by

refining the process. There are several previous studies  that were conducted based on this sub-category.

Ma et al.  hybridized concatenated and connected random forests (ccRFs) and multi patch active contour (mpAC)

methods to automate the segmentation of glioma structures from volumetric multimodal MR images and impose a contour

evolution on the voxel classification, which was considered as the local dependency of labels. The ccRFs were used to

represent the adaptive features iteratively and efficiently to handle data imbalance issues by exploring both local and

contextual information from multimodal images. Meanwhile, the mpAC technique was used for the final segmentation of

the initially inferred tumor structure from the voxel classification of the ccRFs model. Although the proposed method

resulted in promising findings, there are some drawbacks. Firstly, the hybridized approach highly depends on the labeled

training data. Secondly, the use of multiple imaging modalities for model training on a specific feature of learning kernels

and aggregation of feature maps by the max-out process is not optimal for the aggregation of imaging modalities.

In another hybridization study, Lim and Mandava  proposed a semi-automatic method that incorporated both prior

knowledge and image statistics in three major phases for the detection of brain abnormalities in the MR image. For the

first phase, a user was permitted to determine the regions of interest using a modified random walks algorithm to perform

initial segmentation and produce a feature map from each image. Then, the feature maps were incorporated into the

image information and combined using the weighted averaging method. Finally, information-theoretic rough sets (ITRS)

were used for the post-processing phase to locate the ambiguous boundary regions between the tumor and its

background. However, the user-based interaction approach requires users to place seeds manually to distinguish

between the objects and backgrounds. The inappropriate initialization of the seed can produce poor and inaccurate

results. Moreover, the proposed model was only tested using limited real brain images.

Recently, Tripathi et al.  proposed an integrated Otsu k-means method for tumor components segmentation. This

method integrated Otsu thresholding and k-means clustering to generate tumors using T2-W and FLAIR image modalities.

Although this model addressed the data limitation problem, it is highly influenced by noise.

Another recent work by Khalil et al.  adapted the dragonfly algorithm (DA) to perform a clustering-based contouring

approach for brain tumor segmentation. First, the two-step DA-based clustering was used to extract tumor edge as initial

tumor contour for the MR image sequence. Instead of using a random initial position in DA, k-means was employed to
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identify the initial swarm centroids. Finally, the level set model was used to extract the tumor region from all volume slices.

However, the usage of k-means to determine the initial centroids for DA may lead to non-stable performance because k-

means is known to suffer from (i) dependency on initialization and (ii) the tendency to terminate in local optima.

3.3.2. Metaheuristic and Machine Learning

The combination of metaheuristic and machine learning methods is the second sub-category of the hybridization method

that can be used to optimize the separation characteristics of the machine learning method in segmented images.

Additionally, this type of hybridized approach is generally used to solve or reduce the major drawbacks of machine

learning segmentation methods, such as the possibility of being trapped in a local minimum and sensitivity to noise.

Several studies  have employed a combination of metaheuristic and machine learning methods.

A new hybridization method for brain tissue segmentation, which is a combination of metaheuristic particle swarm

optimization (PSO) method and kernelized fuzzy entropy clustering with Baize correction method and spatial information

(PSO-KFECSB), was introduced by Pham et al. . The approach was developed to partially overcome clustering-based

segmentation problems such as (i) intensity non-uniformity (INU) artifact and sensitivity to noise and (ii) dependency on

the initial clustering centroids and being trapped in local minima. However, the performance of this approach decreased

with the co-existence of high noise levels and INU artifacts in the MR image data. Moreover, only one KFECSB criterion

was used to direct the solution search process where the global optimum of standards may not be optimum for

segmentation. The issue was solved as reported in a different study by the same group of researchers, Pham et al. . A

multi-objective optimization strategy was carried out to exploit the strengths of other criteria to enhance the trade-off

property between preserving image details and restraining noise for image segmentation. A modified multi-objective

particle swarm optimization (MOPSO) approach was proposed to optimize both objective functions of fuzzy c-means

(FCM) and a region-based active contour method simultaneously to solve major drawbacks of this hybrid segmentation

approach for segmenting brain tissue. This approach aimed to achieve compactness and separation by optimizing the

separation between the clusters/regions from each other and consider both bias correction and spatial information in the

objective functions to reduce noise effects and intensity non-uniformity artifacts. Nevertheless, this approach requires high

computational time to specify the two-scale parameters (ρ, ζ), where ρ is the level of intensity inhomogeneity, and ζ is the

level of noise. These parameters control the influence of global and local fitting energy force that is subjective and highly

dependent on the degree of noise and INU artifact of the input images.

In another study, a hybridized model based on the combination of FCM, particle swarm optimization (PSO), and the level

set method for the segmentation of the brain tumor was investigated by Ali et al. . The PSO algorithm was found to

improve the conventional FCM clustering algorithm by selecting the optimal centers of clusters for initial contour

determination. Then, the level set methods were introduced for final tumor dissection considering the spatial information.

However, the noise and non-homogeneity affect the performance of this method.

Recently, Boulanouar and Lamiche  introduced a new hybrid method based on a modified fuzzy bat optimization

algorithm (MFBA) and the FCM clustering approach termed MFBAFCM for brain tissue classification. The MFBA algorithm

was utilized to obtain the optimal cluster centers, which were subsequently utilized as the adaptive initial seed for the

conventional FCM. This hybrid approach addressed the problem of the conventional FCM clustering algorithm, which falls

into a local, optimal solution. However, the method is still partially sensitive to noise as well as requiring high

computational resources and a post-processing step to refine the extracted tumor regions.

Mishro et al.  introduced type-2 adaptive weighted spatial FCM (AWSFCM) to overcome the problems of the

conventional FCM clustering method, namely, (i) intensity non-uniformity (INU) artifact and sensitivity to noise, (ii) model

trapping in local minima, (iii) the problem of equidistant pixels, and (iv) dependency on initial clustering centroids. The

type-2 FCM consisted of three main steps. First, noisy pixel misclassification was reduced by embedding neighboring

spatial information in the membership function of FCM. Secondly, the effect of INU artifacts was reduced by the

incorporation of adaptive weights into the centroids of clusters. The issue of equidistant pixels was resolved by assigning

them to a specified cluster by providing higher weights to the pixel closer to the expected decision boundary. Thirdly, the

trapping in local minima was avoided by comparing the value of the fitness function with succeeding iterative stages. The

approach to segment brain tissue achieved promising results when tested with healthy brain images, but the method was

not tested with images containing lesions that affect the normal tissue intensity and cause high INU artifacts.

In another novel study of brain tissue segmentation, an integrated method of the hidden Markov random field (HMRF)

method with a combination of metaheuristic algorithms based on cuckoo search (CS) and PSO was reported by Pham et

al. . The model adopted metaheuristic approaches to specify adaptive parameters to perform balancing between the

segmented regions, spatial information, and local intensity. Besides, the HMRF method aims to improve the efficiency of
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searching solutions in the maximum posteriori estimation. This method utilized spatial information and local intensity to

control the INU artifacts and the high level of noise existing in the images. However, the model suffers from two

drawbacks: (i) the high computational cost due to the problem in setting the appropriate value of parameters and (ii) the

difficulty in converting a large number of parameters, including CS and PSO algorithms.

3.3.3. Deep Learning and Traditional Machine Learning

The third sub-category is the hybridization of deep learning and other traditional machine learning methods such as

clustering or classification in the segmentation of brain tissue. This hybridized approach was developed to overcome the

limitations of promising deep learning-based methods, and the segmentation results are increasingly aggregated using

the machine learning methods in the post-processing stage. Various studies  have applied

this combination of methods. Kamnitsas et al.  proposed a dual 3D-CNN pathway to extract both local and contextual

information from the 3D brain tumor images. A fully connected 3D CRFs was used to post-process the soft segmentation

and effectively removes false positives. This approach uses a dense training strategy to overcome memory requirements

but still has relatively poor inference efficiency and a longer computational time owing to the multi-scale patch-based

analysis. Similarly, Zhao et al.  proposed a new hybridized model of FCNNs and CRFs for semantic segmentation of

brain tumors. This model was trained using the 2D image patches in the following three steps: (i) the training of FCNNs

model using image patches, (ii) the training of CRFRNNs with FCNNs parameters using image slices, and (iii) the refining

of FCNNs and CRFRNN outcomes using image slices. However, the approach is time-consuming during model training

and requires CRFs for further structured outputs.

Likewise, Hu et al.  combined the multi-cascade convolutional neural network (MCCNN) and CRFs for sub-region

segmentation of brain tumors. The segmentation process involves two steps where a multi-cascade network architecture

was proposed to consider local label dependency and exploitation of multi-scale features for coarse segmentation as the

first step. Secondly, CRFs were used to maintain spatial contextual information of tumor edges and eliminate false

positives for refining segmentation results. The method effectively segmented whole tumors using 2D patches obtained

from the Flair, T1c, and T2 modalities with lower computational complexity and fewer training parameters. However, this

approach suffers from a sample imbalance issue that could affect the segmentation performance for both tumor cores and

enhance tumors as they are smaller in size relative to whole tumors.

A different approach of intra-tumor segmentation was detailed by Yang et al. , where a small kernel two-path

convolutional neural network (SK-TPCNN) was combined with RFs. The SK-TPCNN system combined both small and

large convolution kernels to promote non-linear mapping ability, which can prevent over-fitting and can extract multi-form

features. The extracted features were then subjected to an RF classifier to perform joint optimization, which can reduce

feature redundancy, hence improving classification accuracy. The RF classifier successfully incorporated redundant

features and voxels of each MR image, which were classified into normal brain tissue and different tumor parts. However,

the SK-TPCNN produced an over-segmentation result, requiring more training data and a longer computational time.

Moreover, the post-processing step is also required for further segmentation enhancement.

Ito et al.  presented another semi-supervised hybrid method with the combination of expectation-maximization (EM)

and DNN for the brain tissue segmentation using a probabilistic method to address the labeling error issue. The EM

algorithm was used to determine the true label of the unlabeled image, and the expected label was estimated by applying

a special noise to the true label. The combination of the EM algorithm and the DNN model uses a small number of

annotated images and a high number of unlabeled images to train the probabilistic model. This method improved the

accuracy of small region segmentation even with a limited amount of ground truth samples since unlabeled images were

incorporated in the training process. However, the proposed work suffers from high computational cost for the training

procedure and poor segmentation results, as training the DNN with exact EM uses imbalanced label datasets. A recent

study by Khan et al.  presented a cascade method for automatic brain tumor segmentation using IoT-generated

images. First, three handcrafted features were extracted and subjected to SVM for binary pixel classification to generate

confidence surface modality (CSM). The CSM was then exploited as the prior knowledge to address the dynamic

appearance challenge of a brain tumor. Then, the CSM, along with MR images, was incorporated into three novel

pathways of the CNN architecture. However, the model showed poor performance on intra-tumor region segmentation as

the CSM that resulted from SVM-based pixel classification presented information only for two classes (tumor or non-

tumor) instead of providing information on individual intra-tumor regions.

Another study by Jiang and Guo  highlighted the hybrid of a 3D fully CNN based on U-net and CRF for multi-class

semantic segmentation of brain tumor and the hippocampus. Firstly, the 3D DNN based on U-net was designed to learn

the mapping between image volume and labeling volume considering the early fusion of all MR modalities of the training

samples. The learned mappings were then fused and applied to the new batch of samples to jointly determine the tissue
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marking. Moreover, a fully connected CRF was also proposed as the post-processing step to obtain spatially consistent

segmentation results. This method effectively combined multiple predictions of the structure’s prior information and

ranking of labels. Nevertheless, the proposed method suffers from two major drawbacks, which are (i) the high

computational time for training and testing and (ii) the post-processing requirements for further structured segmentation

output.

In a more recent study, the 3D DCNN combined with 3D atrous convolution filters, termed AFPNet, was proposed by

Zhou, He and Jia  for intra-tumor segmentation. The combination of methods aimed to avoid spatial information loss

caused by striding and pooling operations of traditional DCNNs and also to enrich the learning features of brain tumors.

The 3D atrous convolution layers were applied at various atrous rates to construct an atrous convolution feature pyramid.

Then, a 3D fully connected CRF was adopted as the post-processing step to perform more structural segmentation.

Despite the advantages, the approach has some disadvantages, including the limited performance of tiny lesion tissue

segmentation. Therefore, it has a relatively low segmentation rate for enhancing and core tumor regions in comparison to

complete tumor segmentation. Additionally, it also requires a post-processing step for further segmentation enhancement.

An automated segmentation and tumor severity level classification algorithm was suggested by Mahesh et al.  based

on PSO for tumor segmentation and meta-classifiers, termed FJODCNN, for severity analysis of gliomas. The model

consists of three main steps: Firstly, the segmentation of the core and edema regions was performed using the PSO as a

clustering algorithm. Secondly, the features were extracted from these regions, and, finally, the classification was

performed using the DCNN and optimally tuned by the fractional Jaya opKtimizer algorithm. However, no qualitative or

quantitative results were observed for PSO-based segmentation.

A unified Incremental DCNN model based on Heterogeneous CNNs (HCNN) and CRF for brain tumor segmentation was

proposed by Deng et al. . The steps involved in the method include the following: (i) training of the HCNN using image

patches, (ii) training of the CRF-recurrent regression-based neural network (RRNN) using image slices with fixed

variables of the HCNN, and (iii) adjustment of the whole network with image slices. Three segmentation models were

trained, especially with axial, sagittal, and coronal image patches and slices, and finally combined in a voting fusion

technique.

Table 2 displays the strengths and limitations of each sub-category of hybrid methods.

Table 2. Strengths and limitations of hybrid segmentation approaches.

Categories Approaches Strengths Limitations

Contour-based and
machine learning

Provides automatic parameter

initialization.

Prevents contour-based issues.

The parameter setting is

subjective.

Requires skillful users.

Metaheuristic and
machine learning

Optimizes separation features.

Provides automatic parameter

idealization.

Improves response-to-noise ratio.

Prevents local minimum to

produce optimal results.

Poor performance for local

optimization.

High system complexity.
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Categories Approaches Strengths Limitations

Deep learning and
clustering or
classification

High performance for intra-tumor

segmentation.

Encodes spatial information to

obtain the further structured

output.

Requires high

computational time and

resources.

Needs a post-processing

step.

Not for real-time

applications.

Requires a large amount of

labeled datasets.
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