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Periods of muscle disuse promote diminished muscle quality along with muscle atrophy that is characterized by

reductions in muscle fiber cross-sectional area (CSA). Skeletal muscle disuse may be brought about by chronic

sedentarism, periods of immobilization due to injury, bed rest as result of illness, or even exposure to microgravity.

Such inactivity elicits functional and metabolic derangements in the affected tissue including marked mitochondrial

alterations that contribute to the impaired metabolic health and degree of atrophy in the muscle. These

impairments within the tissue prompt a net increase in catabolic processes in conjunction with reductions in

skeletal muscle protein synthesis. Skeletal muscle mitochondrial decline and atrophy are underlying features of

many diseases and they exacerbate disease progression and reduced mobility with aging. Thus, understanding the

molecular underpinnings of muscle mitochondrial deficits with prolonged inactivity is of considerable interest.

skeletal muscle atrophy  mitochondrial quality control  mitochondrial biogenesis  mitophagy

autophagy

1. Introduction

The adaptability of skeletal muscle to various external stimuli has profound ramifications for overall health. It is

well-established that chronic exercise supports favourable adaptions in muscle that contribute to improved

metabolic fitness, longevity and the absence of various diseases. In contrast, chronic muscle inactivity promotes

diminished muscle quality along with muscle atrophy that is characterized by reductions in muscle fiber cross-

sectional area (CSA), the net result of increased catabolism concomitant with reduced skeletal muscle protein

synthesis . Indeed, muscle atrophy is a prominent feature of numerous pathophysiological conditions,

including metabolic diseases, cancers, AIDS, and respiratory diseases, among numerous others, and leads to

further disease progression and reduced mobility with aging . In the absence of disease, skeletal muscle disuse

may be brought about by chronic sedentarism, periods of immobilization due to injury, bed rest as result of illness,

or for a select few, exposure to microgravity. In these cases, muscle atrophy may occur in the affected limb or more

broadly throughout the body, creating functional and metabolic derangements in the affected tissue. Given the

frequent recruitment and activation of slow-twitch oxidative fibers for the maintenance of posture and other routine

tasks, muscles with a predominantly type I fiber composition such as the soleus are more susceptible to chronic

disuse than muscles with a more mixed fiber complexion, such as the gastrocnemius . Prolonged inactivity

promotes the acquisition of the structural, biochemical and mechanical properties of a glycolytic tissue within these

type I fibers, and generates metabolic dysfunction emanating from the mitochondrial network. Thus, the effects of
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muscle atrophy with prolonged inactivity are variable and determined, in part, by the composition of fiber types

within the affected tissue .

The World Health Organization posits that insufficient physical activity is the leading risk factor for the

advancement of non-communicable diseases and diminished quality of life, and is a global phenomenon that

requires a substantial and coordinated effort among nations to remediate the pervasive sedentarism . The

consequences of muscle atrophy are substantial, with implications in functional decline, disability, disease and

premature death. Even during prescribed periods of muscle disuse, as part of therapeutic intervention following

injury or illness, the resultant atrophy in the muscle can prove detrimental by delaying, impairing or even preventing

adequate recovery, often despite rehabilitative intervention strategies .

2. Models of Muscle Disuse

2.1. Human Models of Muscle Disuse

Chronic inactivity in humans provides the most direct study of the conditions that bring about muscle wasting in

patient populations. Unilateral limb immobilization/casting, as well as bed rest studies present the two most

commonly used approaches for studying muscle wasting conditions in human subjects, and are particularly useful

in studying muscle decline in the absence of associated comorbidities. Unilateral limb immobilization involves fixing

a joint, such as the elbow or knee, in the flexed position while maintaining the limb suspended above the ground.

This approach has been used for decades to compare the effects of muscle disuse in one limb, compared to the

contralateral, unaffected limb . The ability to localize muscle disuse with this model closely mimics the unloading

that occurs following musculoskeletal injuries in the clinical setting, and allows for direct comparisons within the

same subject, while eliciting pronounced reductions in CSA and muscle mass . In fact, reports indicate that

limb immobilization is capable of inducing 0.44% reduction in vastus lateralis mass per day . Bed rest

studies have also long been employed to simulate, not only prolonged periods of inactivity following injury or

illness, but additionally, the muscle wasting conditions brought about by space flight . Dry-immersion bed rest

studies go one step further by positioning a subject in the supine position within a waterproof barrier and

suspending them in thermoneutral water, in order to most accurately recreate the complete unloading that is

experienced by astronauts in space . The additional benefit of dry-immersion bed rest is the higher rate and

greater extent at which neuromuscular adaptations are achieved, compared to traditional bed rest . Both bed

rest and limb immobilization studies allow effective countermeasures to be tested, in order to prevent, offset, or

reverse the decline in muscle observed with disuse, while also providing a relevant model of the wasting

associated with diseases and aging. In a clinical setting, brought into recent focus as a result of the COVID-19

pandemic, is the significant respiratory muscle atrophy and dysfunction resulting from mechanical ventilation in the

intensive care unit. Respiratory muscle atrophy and dysfunction can occur in just 18 h following assisted ventilation

. Samples derived from these patients, although scarce, allow for direct study of the myopathy that makes

these subjects unable to return to normal, unsupported ventilation .

2.2. Animal Models of Muscle Disuse
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In many cases employing animal models of muscle inactivity offers greater flexibility and the ability to control for

potential confounding variables, while also mimicking many of the relevant disuse atrophy-generating conditions

that may affect humans . In animals, hindlimb suspension and hindlimb immobilization are two common

approaches for inducing disuse-atrophy, particularly in mice and rats. Hindlimb suspension involves affixing

orthopedic tape to the tail of the animal and attaching the tape to a metal swivel located at the top of the cage,

thus, allowing for unhindered 360° rotation and movement around the cage using the forelimbs . The

hindlimb suspension technique was first developed nearly 50 years ago by the National Aeronautics and Space

Agency, in order to simulate weightlessness, and thus, makes the approach particularly useful for studying the

effects of musculoskeletal unloading . Similar to immobilization in humans, rodent hindlimb immobilization

involves fixing one limb with a plastic brace, or within a plastic tube, in order to maintain the joint in a flexed

position . In this way, disuse can be accomplished by using, either a fixed dorsiflexion of the ankle joint to induce

atrophy of the tibialis anterior and extensor digitorum longus, or fixed plantarflexion to produce atrophy of the

gastrocnemius, plantaris, and soleus . The benefits of employing hindlimb immobilization include the ability

to compare the effects of disuse to the contralateral limb of the same animal, while restricting muscle contraction.

Additionally, these techniques offer a relatively simple, cost effective approach to induce reductions in muscle CSA,

mass, and strength in as little as one week . Another model that may be applied to rodents involves confined

housing via small cages that restrict movement, and thus, limit physical activity so as to replicate chronic

sedentarism . This model of restricted movement is useful in studies interested in observing the

systemic effects of muscle inactivity such as the changes in glucose metabolism and insulin resistance, along with

the muscle atrophy and myopathy that ensues . Likewise, an added benefit to any of these

aforementioned rodent models is the ability to study corrective interventions, such as re-training to minimize or to

reverse the detrimental effects of muscle disuse.

In contrast to these relatively non-invasive techniques, denervation, or similarly, nerve crushing and tetrodotoxin

(TTX) cuffing, provide surgical methods of inducing muscle disuse, and have applicability to severe spinal cord or

neuronal injury, as well as aging . Denervation involves the excision of a small (~2–3 mm) segment of the nerve

innervating the target muscle. Generally the tibial nerve is targeted in rats, while the sciatic nerve is used in mice,

thus, affecting the lower hindlimb muscles . Denervation of the nerve completely abolishes nerve-muscle

communication via neuromotor and neurotrophic inputs, leading to rapid atrophy of the tissue. Nerve crushing is

similar to denervation, however it requires the application of a force to the nerve with adequate pressure to

temporarily ablate neural input to the muscle, while still allowing for neural regeneration and re-innervation to occur

over time . Alternatively, treatment with the sodium channel blocking drug TTX provides a chemical

approach to denervation. TTX cuffing around the nerve maintains axonal continuity to the muscle and vascular

beds, along with the flow of trophic factors that are otherwise lost with mechanical denervation, yet eliminates the

impulse conduction from the nerve to muscle in order to prevent muscle contraction . Each of these

approaches are both suitable and sufficient for inducing muscle disuse-induced atrophy as well as metabolic

myopathy. However, the choice of which model is best depends on the context and application of the experiments,

and any conclusions made using one technique should be carefully applied and contrasted with those obtained via

other disuse methodologies or model organisms.
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