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The targeted liposomes have been developed and utilized to deliver drugs to the tumor or tumor microenvironment with

minimal non-specific distribution in normal tissues or organs. Various tumor-targeting ligands, such as small molecules,

oligonucleotides, peptides, monoclonal antibodies (mAbs) and antigen-binding fragments (Fabs), have been conjugated

with liposomes. 
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1. Introduction

Triple-negative breast cancers (TNBCs) are the breast cancers that lack expression of estrogen receptor (ER),

progesterone receptor (PR) and human epidermal growth factor receptor (HER)-2/neu. Currently chemotherapeutic

agents are the most common clinical treatment strategies employed to suppress tumor growth, but TNBC patient

responses differ from case to case. For instance, drug resistance due to drug efflux , apoptosis dysregulation ,

activation of survival, growth and invasion signaling pathways  or others  significantly limits their clinical efficacy and

also leads to tumor recurrence and progression . In addition, patients usually suffer from side effects, such as fatigue,

emesis, hair loss, and anemia, due to a lack of an effective tumor targeting method.

The U.S. Food and Drug Administration (FDA) has approved liposomes as a drug delivery vehicle with guidance of

“Chemistry, manufacturing, and controls; human pharmacokinetics and bioavailability; and labeling documentation” (FDA-

2016-D-2817). The targeted liposomes have been developed and utilized to deliver drugs to the tumor or tumor

microenvironment with minimal non-specific distribution in normal tissues or organs. Various tumor-targeting ligands, such

as small molecules, oligonucleotides, peptides, monoclonal antibodies (mAbs) and antigen-binding fragments (Fabs),

have been conjugated with liposomes. For example, the anti-epidermal growth factor receptor (EGFR) , HER2 

and vascular endothelial growth factor (VEGF)  antibodies or peptides have been linked to liposomal system to

deliver doxorubicin or other medicines to breast cancers and other tumors. The fibronectin-mimetic peptide-PR_b ,

estrogen receptor-antagonist Tamoxifen  and peptide SP90  have been used as linkers in liposomal drug formulation

to treat breast cancers. Moreover, GAH mAb conjugated immunoliposomes have been fabricated to targeting deliver

doxorubicin to treat human gastrointestinal cancers .

The EGFR, which stimulates the cancer proliferation via PI3K/RAS signaling, the repair of DNA damage and metastasis

, is overexpressed in various tumors, e.g., TNBC (52–54%) , lung cancer (40%) , glioblastoma

(50%), head and neck cancer (80–90%) , ovarian, cervical, bladder, gastric, endometrial and colorectal cancers

. EGFR is more predominant in TNBCs than other breast cancers , and usually correlates with tumor invasion and

poor prognosis. From this perspective, anti-EGFR mAb was utilized in this study as a ligand to target TNBC. The targeted

liposomal drug formulation is expected to prolong the circulation half-life and enhance the maximum tolerated dose.

Many innovative anti-cancer drugs failed in phase II clinical trials  although the pre-clinical results are promising. This

could be attributed to the limitation of preclinical animal models such as lacking heterogeneity and tumor

microenvironment. This challenge can be partially solved by applying patient-derived xenograft (PDX) models in the in

vivo evaluation of the anti-tumor efficacy of new medicines. PDX models have been established by transplanting the

cancerous cells or tissues from primary patient tumors and served as a good preclinical platform to predict the possible

patient responses to new cancer medicine.

2. Targeted Liposomal Chemotherapies to Treat Triple-Negative Breast
Cancer

Chemotherapies are still the major strategy to treat TNBC in clinics. We identified a new formulation of combined

chemotherapies and also established a targeted delivery method for TNBC treatment, which could address the challenges
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of drug resistance or poor clinical efficacy as well as treatment related toxicities. We have evaluated a highly potent drug

and several standard chemotherapies for cancer treatment, including DM1, GC, AC, and PTX , and two combinations

of these drugs. Combining standard GC and potent DM1 can kill over 90% TNBC cells with significantly reduced IC

value and also effectively inhibit TNBC tumor growth in both cell line-derived xenograft models and patient-derived

xenograft models. In addition to the improved cytotoxicity, GC and DM1 have different anti-cancer mechanisms so the

combination could reduce the possibility of drug resistance development during long-term treatment compared to

monotherapy. Therefore, the combination of GC and DM1 has great potential to treat TNBC.

We established and optimized the procedures of neutral liposomes synthesis to pack chemotherapies, surface tagging of

TNBC-targeting antibody (mAb-Lipo), PEGylation, drugs packing, purification and characterization following the published

guideline and protocols  with optimization. Non-targeting liposomes  have

been used to deliver chemotherapies and other therapies, but the mAb-Lipo has multiple advantages, such as cancer-

specific targeting, high packing capability with the developed all-in-one synthesis procedure, and high plasma stability and

prolonged half-life with integrated PEG. Importantly, our surface tagging technology enables conjugating single or two

(even multiple) antibodies to achieve dual-targeting to cover more patients with heterogeneous tumors. In addition to

chemotherapies, the cationic liposomes encapsulated plasmid DNA (named as lipoplexes) have been evaluated in clinical

trials for cystic fibrosis , non-small-cell lung cancer , metastatic melanoma , and epithelial ovarian, fallopian

tube or primary peritoneal cancers  treatment.

Literature , clinical data  and our immunohistochemistry staining of patient tissue microarray show that

EGFR is an excellent surface receptor in human  and mouse  TNBCs. For example, the anti-EGFR

cetuximab and panitumumab are used in clinic to treat head and neck cancer  and colorectal cancer .

Moreover, the cetuximab mediates antibody-dependent cell cytotoxicity (ADCC) in the intratumoral space and primes

adaptive and innate cellular immunity . By tagging anti-EGFR mAb (cetuximab) to the surface of liposomes, we not only

achieve TNBC tumor targeting but also could integrate the immunotherapy of the mAb. Of course, further investigation is

needed to delineate the possible integrated anti-TNBC mechanisms of the tagged mAb and delivered GC and DM1 in

future.

The TNBC xenograft models derived from various cell lines have been widely used in vivo to evaluate the tumor treatment

efficacy. The PDX models are more advanced to evaluate new therapies as they have multiple advantages such as

capturing TNBC heterogeneity and tumor microenvironment. For instance, PDX tumors can accurately recapitulate the

phenocopy and mutation status of patient tumors, and resemble and maintain the biological behavior correlating with high

metastasis, high heterogeneity and poor survival of TNBC patient tumors. Limited by the fresh patient tissues assessment

and pathology analysis, many research labs have difficulty to establish in-house TNBC PDX models. We evaluated the

Jackson lab commercial PDX lines and established a robust procedure to passage and maintain PDX lines in the

research lab. The identified EGFR overexpressing PDX lines can be used as a good model to evaluate the therapeutic

efficiency of newly developed therapies.

3. Conclusions

The combination of chemotherapies with different anti-cancer mechanisms (gemcitabine and mertansine in this study) has

great potential to treat the highly aggressive TNBC. The technical challenges to apply combined chemotherapies,

including circulation stability and side effects, can be overcome by the application of a targeted liposomal delivery vehicle.

Importantly, different drug combinations can be easily adapted to this system for the treatment of recurrent cancer.

Despite the promising results, the developed new formulation needs further evaluation in the future, such as

pharmacokinetics, dosage optimization, metastatic tumor treatment and immune modulatory response.
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