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Mangrove forest is an important coastal ecosystems for blue carbon. Thus, understanding the carbon dynamic in

mangrove forests will help the management the ecosystem with climate changes. many research studies have been

quantified the potential C storage in mangrove soil to be about 500 Mg C ha . However, mangrove also lost about 43.8

Kg CO  ha  yr  due to its CO  and CH  emissions.
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1. Introduction

There are several reasons why mangrove forest ecosystems have high ecosystem C stocks. Coastal ecosystems

sequester CO  from the atmosphere through plant primary production and store it in plant biomass (mostly for woody

plants) and soil . Although C accumulation rates vary among coastal wetlands, plant primary production in coastal

wetlands in general is comparable to that of terrestrial forests . However, the low decomposition rate of soil C gives

coastal wetlands a higher potential to sequester C in sediments . Thus, coastal ecosystems are generally believed to

accumulate C up to 100 times faster than terrestrial forest ecosystems . Compared to other coastal ecosystems,

mangrove forests are believed to have higher organic C stocks because of their high growth rates . Furthermore, unlike

the herbaceous salt marshes, where most organic C stocks are stored in soil, C stocks in mangrove forests are distributed

more in plant biomass than soil . Previous research found that most mangrove plant-fixed C is stored in biomass and

only 3%–11.7% of it is transferred to and stored in sediment .

The soil C stored in mangrove forests can vary widely, but it is generally higher in the tropical regions than the sub-tropical

ones  (Table 1). Different environmental and soil physicochemical factors may explain this difference.

Different tidal ranges may create different soil anaerobic conditions among mangrove forests, and thus affect C

decomposition rates . Moreover, fine soil texture in some mangrove forests may also reduce groundwater drainage

and facilitate soil C accumulation .

Table 1. Comparison of the soil C stocks in different types of ecosystems.

Study Site Ecosystem Average Soil C Stock (Mg C ha )

Mexico Mangrove 622

Global Mangrove 650

Philippines Mangrove 442

Indonesia Mangrove 572

Malaysia Mangrove 1059

FL, USA Mangrove 307

Global Mangrove 749

Australia

Mangrove 66

Tidal marsh 87

Seagrass 24

Brazil
Mangrove 341

Salt marsh 257
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Study Site Ecosystem Average Soil C Stock (Mg C ha )

MD, USA
Salt marsh (S. patens) 24

Salt marsh (S. alterniflora) 22

FL, USA Salt marsh 72

Aboveground and belowground biomass production in mangrove plants is another major contributor to the ecosystem C

stocks in mangrove forests. Unlike herbaceous plants, which have a fast C turnover rate, mangrove plants may be able to

fix atmospheric CO  and store it as biomass for a long period of time (i.e., up to centuries); this would lead to a

considerable amount of C stock . Mangrove plants have different degrees of root volumes and aboveground structures

that may create a wide range of C storage rates . Indeed, field surveys from previous studies in Atlantic coastal

mangrove forests showed that aboveground plant biomass comprised 50–250 Mg C ha  and the belowground biomass

comprised 10–50 Mg C ha  .

The abundant C that mangrove forests provide facilitates the development of soil microbial communities. Studies have

shown that the microbial genus Bacteroidetes is abundant in the mangrove rhizosphere, which may be due to the high

particulate organic matter in the environment . Furthermore, the abundant root systems of mangrove plants may

create environmental niches for Proteobacteria, one of the important microbial genera for N and S cycling in mangrove

ecosystems .

2. CO  and CH  Emissions in Mangrove Soils

Although mangrove forests provide high ecosystem C stocks, their wide ranges of anoxic soil conditions also make them

a considerable source of greenhouse gases and decrease their net contribution to CO  reduction (Figure 1). In addition,

the presence of sulfate (SO ) in the saline water can serve as an alternative electron acceptor and help soil microbes

yield more energy than methanogens, resulting in CO  efflux in coastal ecosystems . As a result, the ecosystem

respiration rates in tide-influenced coastal forest wetlands are typically higher than those observed in inland freshwater

wetlands . The average CO  emission from mangrove forests was calculated to be 0.7–3 g C m  d  ,

which is comparable to CO  emissions from coastal marshes (0.3–2 g C m  d ) , but slightly higher than those

from inland wetlands (0.8–1.6 g C m  d )  (Table 2).

Figure 1. Possible pathways for CO  and CH  emissions from mangrove forests (modified from Vepraskas and Craft ).

The black arrows indicate the C pathways. The blue arrows indicate the direction in which increases in environmental

factors (salinity, pH) may affect the C pathways.

Table 2. Comparison of greenhouse gas effluxes across various salinity ranges. (The absence of data means that the

study analyzed did not report these data.)
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Study Ecosystem Salinity CO  Efflux (mg
C m  h )

CH  Efflux (mg C
m  h )

N O Efflux (mg N
m  h )

Global Warming
Potential (GWP)
(mg CO  m
h )

Mangrove
(Taiwan)   0.14   

Mangrove (China)  31–74    

Mangrove (India)    0.018–0.034  

Mangrove
(Australia)  −11–128    

Mangrove (Hong
Kong) 15–21 10–1,374  0.032–0.534  

Mangrove
(Australia) 17–25 * 36.9–59.0 0–0.06 0–0.05 136–245

Mangrove (China)  16–267    

Mangrove (New
Caledonia)  36–44    

Mangrove
(Colombia) 2.7–23.4  0–23.68 0.009–0.375  

Mangrove
(Philippines) 16.8–79.3 108–151 0.06–0.12 0–0.084 396–604

Mangrove (China) 12–14 −9–140 0–4.02 0–0.016 −33–889

Mangrove (China) 10–21 0–55 0.35–23.09 0–0.017 32–2,326

Mangrove
(Vietnam) 7–16 Wet season: 112

Dry season: 25    

Mangrove (New
Caledonia)  40.2 0.22   

Mangrove
(Australia)  28    

Mangrove
(Australia) 9–35 *  0.04–1.18 0.004–0.13  

Mangrove (China) 8.4–14.8  0.63–4.12   

Mangrove (China) 12–26 11–114 0–0.17   

Mangrove
(Indonesia) 25–34 −16.8–46.6 −0.003–0.007 −0.17–0.37 −139–344

Brackish salt
marsh (NC, USA) 22.5 −45–88 −0.17–0.23 −0.046–0.048 −202–366

Tidal freshwater
wetland (GA, USA) 0.4–2.1 15–59 0.04–0.24 −0.009–0.012 54–244

Rice paddies
(Vietnam)   0–75 0–0.132  

Rice paddies
(China)   0–630   

Ponds (Sweden)   0.75–40.50   

CH  efflux in coastal wetlands is considerably lower than in freshwater wetlands, mostly because of the presence of SO

. The CH  fluxes reported from previous literature show a decreasing trend with increasing salinity (Table 2).

Compared to other coastal ecosystems, mangrove forests generally emit 0–23.68 mg C m  h  of CH  

, which is generally higher than in brackish marshes (−0.17–0.23 mg C m  h ) , but lower than in tidal freshwater

marshes (0.01–10.8 mg C m  h )  and freshwater ecosystems such as rice paddies (0–630 mg C m  h ) 

 or ponds (0.75–40.5 mg C m  h )  (Table 2). In addition, species in mangroves with pneumatophores had
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significantly lower CH  emission rates than in mangroves without pneumatophores because pneumatophores increase

soil aeration . Moreover, anthropogenic nutrient loading from upland drainage also contributes to the high CH  emission

rates .

CO  in mangrove soils is generated by chemoheterotrophs during respiration, but the CH  fluxes are mainly attributed to

methane-producing archaea in soils. However, until now, few studies have focused specifically on identifying the quantity,

composition, and environmental niches of methanogenic communities in mangrove soils. The soil total organic C

concentrations may stimulate CH  production and increase the mcrA gene expression (i.e., methanogenic population) in

soil . Furthermore, studies on other coastal ecosystems also found that methanogens may be sensitive to soil pH and

showed optimum growth at soil pH 6.5–7.5 .

Along with high SO  concentrations, CH  efflux can be reduced by methanotrophs in surface mangrove soils that use

CH  as an energy source and oxidize it into CO  (Figure 1) . This mechanism can reduce CH  before it reaches the

atmosphere . However, most previous studies on methanotrophs have been performed in freshwater, not coastal,

ecosystems. In fact, mangrove soils may have high CH  oxidation potentials that are comparable to those of freshwater

ecosystems, such as rice paddies and lakes .

Compared to freshwater ecosystems, mangrove forest soils typically contain more Type I methanotrophic communities

, which are believed to have higher CH  oxidation potentials, than Type II methanotrophs, which are typically found in

freshwater ecosystems . Moreover, the Type I methanotrophs Methylosarcina, Methylomonas, and Methylobacter
in mangrove forest soils contained the most active CH -oxidizing genes, despite the fact that the dominant methanotrophs

in mangrove soils were uncultured and their genes belong to the deep-sea 5 cluster, which is one of the five major

sequence clusters retrieved from marine environments . The presence of NaCl in mangrove soils was proven to be one

of the reasons why this environmental niche contains more Type I methanotrophs than Type II ones . As shown in a

previous study, Methylobacter is better adapted to various salinity conditions and can be found in water with NaCl

concentrations up to 3% . In addition, alkaline environmental conditions may also be an important factor influencing the

growth of Type I and Type II methanotrophs . Previous studies revealed that the Type I methanotrophs Methylomonas
and Methylobacter are mostly adapted to pH 6.5–7.55, which is generally the pH of saline ecosystems . This

ecological niche provided by the coastal mangrove forests may be one of the key factors resulting in the large Type I

methanotrophic populations and low CH  emissions in this ecosystem.
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