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Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrosing interstitial lung disease (ILD) of unknown aetiology,

with a median survival of 2–4 years from the time of diagnosis. Although IPF has unknown aetiology by definition, there

have been identified several risks factors increasing the probability of the onset and progression of the disease in IPF

patients such as cigarette smoking and environmental risk factors. Cigarette smoking together with concomitant

emphysema might predispose IPF patients to lung cancer (LC), mostly to non-small cell lung cancer (NSCLC), increasing

the risk of cancer development. 
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1. Introduction

Interstitial lung diseases represent a broad spectrum of lung pathologies that affect the lung parenchyma causing diffuse

inflammation and fibrosis . Among them, idiopathic pulmonary fibrosis (IPF) is a rare lung disease with an unknown

cause and a median survival of 2–4 years from the time of diagnosis. The onset and progression of IPF leads to massive

changes in the architecture of lungs and their biomechanical properties that often culminate in respiratory failure due to

the impairment of alveolar gas-exchange and the decline of lung functions . Although the diagnosis of IPF can be

extremely challenging due to the heterogenous nature of this disease , it is recognized by clinicopathological criteria,

including the radiographic and histological hallmarks pattern of usual interstitial pneumonia (UIP) . Currently, there are

two antifibrotic drugs used as a therapeutic strategy for IPF patients, Pirfenidone and Nintedanib, that are able to slow

down the respiratory functional decline and improve survival in IPF patients . Despite this, IPF still has a high

mortality rate and the survival times are quite heterogenous . Although IPF is idiopathic by definition and is not

classified as a genetic disease, there are both environmental and genetic risk factors (or “genetic susceptibility”) that can

play a fundamental role in the initiation and progression of IPF . Among them, the most studied and validated

genetic risk factor is represented by the single nucleotide polymorphism in the promoter region of the mucin 5B (MUC5B)

responsible for sporadic and familial IPF . Furthermore, among the environmental risks there are exposure to cigarette

smoke and inhalation of wood and metal dust, which might severely affect “genetically susceptible” patients  with the

resulting alteration in the regulation of key genes contributing to the pathogenesis of IPF. Several studies have

demonstrated that viral infection, including with the recently prominent SARS-CoV-2, might be responsible for the initiation

or exacerbation of pulmonary fibrosis. In particular, it has been postulated that the “cytokine storm” caused by the

exaggerated inflammatory response following SARS-CoV-2 infection, as well as micro-thrombotic hypotheses, may

predispose patients with COVID-19 pneumonia to aberrant mechanisms of repair and fibrosis  culminating in acute

lung injury and interstitial lung disease . Although different prospective studies aiming to investigate the long-term

pulmonary consequences of COVID-19 are still ongoing, it has been observed in the study of Wu et al. that about 40% of

201 patients with COVID-19 pneumonia developed acute respiratory distress syndrome (ARDS) . Indeed, like SARS-

CoV-2, the other two known coronaviruses, both the severe acute respiratory syndrome coronavirus (SARS-CoV; SARS)

and Middle East respiratory syndrome coronavirus (MERS-CoV; MERS), caused in some patients interstitial abnormalities

and lung functional decline. .

In the past few years, there has been growing interest in the role of comorbidities in IPF study. Smoking history, elderly

age, male sex, and emphysema might represent strong risk factors for developing lung cancer (LC) in IPF patients; thus,

besides the concomitant risk factors, IPF itself might be considered a risk factor for lung carcinogenesis . Lung

cancer is the most diffuse cause of cancer death worldwide. It has been estimated that about 85% of LC patients have a

diagnosis of non-small cell lung cancer (NSLC). In the majority of patients, the onset of LC is related to tobacco smoking

 (Figure 1).
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Figure 1. Common pathogenic mechanisms between lung cancer and IPF.

Recent studies have focused on the identification of common molecular pathways between IPF and LC for a better

therapeutic strategy and optimal management of patients with both diseases. There are many common cellular and

molecular mechanisms that might predispose patients to the onset and development of IPF and LC such as the activation

and proliferation of both myofibroblasts (IPF) and cancer-associated fibroblasts (CAFs), and the alteration of growth

factors expression level . Myofibroblasts represent the cellular key players in IPF since their proliferation and activation

under profibrotic stimuli lead to the secretion and deposition of extracellular matrix (ECM) proteins, which are responsible

for causing fibrosis . Thus, this process culminates in increased lung structural rigidity that compromises the lung’s

biomechanical properties and thickens of the alveolar–capillary barrier with aberrant alveolar gas exchange function.

According to recent investigations, the myofibroblasts derive from different lung resident cell populations such as the

interstitial lung fibroblasts, the lipofibroblasts , lung resident mesenchymal stromal cells (LR-MSCs) , the perycites

 and mesothelial cells , ruling out the contribution of both epithelial cells in the so-called epithelial mesenchymal

transition (EMT)  and circulating fibrocytes . In LC, cancer-associated fibroblasts (CAFs) are the cellular key players,

like myofibroblasts in IPF pathogenesis . Several studies have been focused on the identification of the origins,

biological characteristics, and the role of CAFs as the major component of the stroma during carcinogenesis. Intriguingly,

among the components of the tumour microenvironment (TME), CAFs play a fundamental role in drug resistance in

NSCLC, protecting tumours from the effects of chemotherapeutic drugs . As is the case with IPF, there are several

hypotheses still under debate regarding the cellular sources of CAFs in tumours; among them are (1) the resident

fibroblasts, which can differentiate to CAFs during the course of tumour progression under the orchestration of specific

signalling pathways; (2) cancer associated adipocytes (CAAs) that are present in tumour stroma and might derive from

circulating progenitors in the bone marrow ; (3) bone-marrow-derived mesenchymal stromal cells (BM-MSCs) and

hematopoietic stem cells (HSCs) ; (4) epithelial cells through the epithelial mesenchymal transition (EMT) ; (5)

vascular endothelial cells through the endothelial–mesenchymal transition (EndMT), crucial for tumour angiogenesis 

(Figure 2) Thus, CAFs exhibit high heterogeneity in terms of origin as well as surface markers and resident organs.

During malignancy while the tumour progresses, CAFs contribute to promote tumour growth, metastasis, and drug

resistance. Here, tumor cells together with non-malignant stromal cells trigger CAF activation through inflammatory

mediators such as transforming growth factor beta (TGF-β), interleukin (IL)-1, and interleukin (IL)-6 that contribute to

inflammation and carcinogenesis . To this purpose, TGF-β that can be considered as a master molecular regulator of

profibrotic signaling, promoting lung cancer progression and triggering mitogenic stimuli to lung cancer cells. Furthermore,

among the common signalling pathways characterizing both IPF and LC progression, there is the Wnt/β-catenin pathway

that has been involved both in cancer progression and the EMT process through its target genes, cyclin-D1 and matrix

metalloproteinase (MMP)-7, contributing to the pathogenesis of IPF . Aberrant activation of phosphoinositide 3-kinase

(PI3K)/protein kinase B (AKT) causes cancer invasion and the progression of lung fibrosis  with the activation of

profibrotic downstream signalling mediators such as TGF-β  and platelet-derived growth factor (PDGF). The sonic

hedgehog (Shh) pathway is also activated both in bronchial epithelial cells of honeycomb cysts and in cancer fibroblasts,

being responsible for resistance to fibroblast apoptosis, tumour growth, metastasis, and chemotherapy resistance .

(Figure 2) Furthermore, cellular senescence is associated with the progression of pulmonary fibrosis through different
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mechanisms and central players in the lung niche. Among them, Wiley et al.  demonstrated that the biologically active

profibrotic lipids, namely the leukotrienes (LT), are involved in the senescence-associated secretory phenotype (SASP)

which represents one of the mechanisms responsible for the progression of pulmonary fibrosis. They demonstrated that

the LT-rich conditioned medium (CM) of senescent lung fibroblasts triggered profibrotic signalling in modified fibroblasts

treated with inhibitors of ALOX5, the main enzyme in LT biosynthesis . To this purpose, another recent study from Li et

al. , stated that blocking the biosynthesis of leukotriene B4 (LTB4) would be an efficient therapeutic strategy in the

treatment of both IPF and acute lung injury (ALI). They performed in vivo experiments, where they observed a decreased

neutrophilic inflammation in an IPF mouse model at early stage, as well as decreased LPS-induced ALI through LTB4

blocking biosynthesis in vivo. Indeed, several works have been published about the role of LT in lung cancer progression.

Among them, Poczobutt et al.  showed a selective production of leukotrienes by inflammatory cells of the

microenvironment during lung cancer progression through an orthotopic model of lung cancer progression and by liquid

chromatograph coupled with tandem mass spectrometry (LC/MS/MS) .

Figure 2. Origin and signalling pathway leading to the activation of myofibroblasts in IPF and CAFs in LC.

Indeed, there are also common genetic mechanisms shared by both diseases based on mutations in surfactant protein

genes (SFTPA2-A1) that lead to impaired protein secretion, endoplasmic reticular stress, and apoptosis, culminating in

the onset and progression of IPF or adenocarcinoma . (Figure 1) To date, the approved IPF therapies, Pirfenidone and

Nintedanib, are also active in LC. In particular, Nintedanib is approved as a treatment in NSCLC, and Pirfenidone has

shown anti-neoplastic effects in preclinical studies .

2. Diagnostic Approaches for Idiopathic Pulmonary Fibrosis and Lung
Cancer

Idiopathic pulmonary fibrosis (IPF) is a rare pulmonary disease with an incidence ranging from 0.09 to 0.49 in Europe .

Among these patients, there is an increased risk of developing lung cancer (LC), with a relative prevalence reported from

2.7% to 48% . The correlation between IPF and lung cancer is still being debated , although recent studies have

demonstrated possible connections . In particular, Ozawa et al.  showed an increased incidence of lung cancer in

a retrospective study of 103 patients with IPF. Similar results have been described by Tomassetti et al. , with cancer

occurring in 30% of studied patients. One of the most interesting approaches was to analyze the period of onset of lung

cancer in IPF-LC patients. In 2021, Alomaish H. et al.  reported a LC incidence of 13,5% IPF patients. Because lung

cancer has a high incidence in patients with IPF having an important impact on the survival of these patients, the scientific

community has focused its attention on identifying predictive factors for lung cancer in IPF patients . These

characteristics are mainly described in older patients with IPF at diagnosis who have a history of smoking and

emphysema . However, the causes inducing lung cancer in this population of patients have not been clarified yet
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. One of the most interesting aspects, which seems important to consider, is a rapid annual decline of forced vital

capacity (FVC) as a lung-cancer-predisposing factor . In particular, it seems that tissue damage and abnormal repair is

the key to the connections between IPF and LC . Indeed, it has been thought that patients with a very rapid decrease in

FVC and consequent IPF progression are more sensitive to lung cancer development; however, further studies will need

to be conducted to clarify the common factors between cancer and IPF. A recent study demonstrated a median time from

IPF to lung cancer of 38 months , although Tomassetti et al.  found the time to be around 30 months. Besides the

decrease in FVC and carbon monoxide diffusion capacity (DLCO) in patients who developed both IPF and LC, another

aspect to investigate are the histopathological findings. Previous studies have shown that squamous cell carcinoma is the

most common histologic type encountered in IPF . This aspect would highlight the

importance of considering older patients with a diagnosis of IPF who have a long and heavy history of smoking and whose

median FVC and DLCO are slightly lower than normal . In particular, radiological findings are crucial to consider since

round or ovoid masses are frequently observed  in correspondance to the lower lobes . The recent guidelines

recommend an annual low-dose chest CT scan in high-risk patients , but there are no recommendations for IPF

patients. It is probably important to consider screening patients with IPF, especially in the first two years after diagnosis,

with an annual or shorter-term chest CT scan to follow the possible presence and evolution of lung cancer nodules .

Since recent studies have described a worse survival rate in patients with IPF and lung cancer , it would be

fundamental to establish a surveillance protocol in order to set a diagnosis and medical treatment for these patients.

The scientific community believes that multidisciplinary approaches are the diagnostic gold standard for patients with

moderate IPF and IPF-LC . In particular, in patients with IPF of mild to moderate functional impairment (FVC > 50%,

DLCO > 35%) and the association of an early-stage lung cancer or metastasis, the common approaches are surgery for

the early stages and stereotactic radiotherapy for the advanced stages, together with anti-fibrotic treatments used for

more than 50% of patients . In critical patients with advanced IPF and operable lung cancer but impaired

pulmonary function, the recommended treatments are anti-fibrotics, immune checkpoint inhibitors, and targeted therapy

. Another interesting aspect for diagnostic and therapeutic approaches is the identification of biomarkers, which

represents the first step toward future personalized therapies for IPF . These approaches may have an important

impact in either preventing or monitoring lung cancer in IPF patients. To this purpose, in the last decades, several

potential biomarkers have been discovered .

2.1. Diagnostic Biomarkers

The most studied biomarkers able to discriminate IPF from healthy donors are the markers Krebs von den Lungen (KL)-6

, the chitinase-like protein (YKL40) , leucocytes and circulating innate immune cells , and

surfactant proteins (SP)-A, -B, -D . Indeed, the matrix metalloproteinase (MMP7), at higher values,

seems to show a higher risk of possible interstitial lung diseases . In particular, MMP7 and MMP1 are important for

making a differential diagnosis between IPF and hypersensitivity pneumonitis. The recent PROFILE (Prospective Study of

Fibrosis in Lung Endpoints) study that analyzed the molecular profile of more than 100 serum proteins showed a

significantly higher level of MMP1, MMP7, and SP-D in IPF patients compared with healthy people. Furthermore, it

showed that oncostatin M and cytokeratin 19 fragments (CYFRA-21-1) were markers for IPF patients .

These biomarkers may be an important aspect to investigate in the future even for lung cancer. However, the settings of

serum biomarkers for clinical perspectives for IPF monitoring and further lung cancer development are still lacking and

have not been considered for diagnostic purposes in IPF .

2.2. Prognostic Biomarkers

Functional decline and respiratory function monitoring are the best approaches at the moment for setting and monitoring

IPF progression , but the possibility has recently arisen of identifying biomarkers with prognostic purposes for IPF.

Although the heterogeneity of IPF patients complicates the definition of a univocal approach, a composite scoring system

incorporating lung physiology, sex, and age (GAP) is more accurate at predicting mortality . These biomarkers seem

to improve prognosis for IPF patients . In particular, a high

concentration of MMP7 correlates with IPF severity for the decline of lung function as well as worse survival of IPF .

For example, in the PROFILE study, the protein MMP1/8 (CRPM) indicates pulmonary disease progression and very poor

overall survival . Another interesting predictor for IPF as well as lung cancer seems to be surfactant protein D and the

cancer antigen (CA)19-9 .

2.3. Radiological Biomarkers

As previously described, several studies defined the high-resolution computed tomography (HRCT) patterns as

prospective prognostic biomarkers . In particular, a recent study claims that the employment of specific CT-
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associated tool such as data-driven textural analysis (DTA)  associated with a visual and functional changes score,

might be useful in predicting IPF progression . However, the definition of a unique method and score set using HRCT

characteristics associated with pulmonary function test results is still lacking. Recently, Jacob et al.  reported that a

computer score set on the quantification of parenchymal patterns including vessel-related structure was able to predict

IPF mortality and functional decline, representing a potential non-invasive method for estimating gas-exchange

impairment in IPF .

In summary, keeping in mind the variability and uncertainty of the approaches, the best strategies that need to be

considered in asymptomatic middle-aged smokers are: (1) a chest low-dose HRCT or regular CT conducted annually; (2)

optimal selection of patients for surgical lung interventions, chemotherapy, and radiotherapy; (3) the role of anti-fibrotics in

preventing and treating lung cancer and reducing acute exacerbations of IPF post-operatively; (4) the settings of new

molecular biomarkers that may be useful as diagnostic and predictive factors for optimal monitoring of IPF. All these

aspects will be better addressed through the setting of a future consensus statement for diagnosis and management of

these patients in order to standardize the diagnostic and prognostic approaches as well as also develop more focused

medical treatments.

3. Common Pathogenic Mechanisms between LC and IPF: Genetic and
Epigenetic Alterations in Focus

Several studies going inside the pathogenesis of IPF and LC exhibit great similarity between both diseases concerning

the abnormal activation of the signalling pathway, the cellular responses, the activation of lung fibroblasts and their

proliferation. To date, there is a growing interest in the epigenetic and genetic abnormalities characterizing IPF and LC

that might explain the concomitant manifestation of the two diseases. Although IPF is not considered a genetic disease,

genome-wide association analysis (GWA) identified different genetic variants that account for almost 30% of IPF patients

that together with the environmental risks play a crucial role in both sporadic and familial IPF . Among these,

the most studied genetic risk factor for both familial and sporadic IPF is the single nucleotide polymorphism rs35705950 in

the promoter region of the mucin 5B (MUC5B) gene . Normally, in the alveolar epithelium, MUC5B plays a pivotal

role together with mucin 5AC (MUC5AC) in the muco-ciliary clearance (MCC), removing inhaled debris and pathogens

and contributing to the maintenance of the overall lung homeostasis . To this purpose, it has been shown that the

overexpression of full-length murine MUC5B in the AECII of two lines of C57BL/6 mice compromised the muco-ciliary

clearance activity, leading to an increase in lung fibrosis of bleomycin-treated mice . Moreover, other genetic variants

associated with sporadic and familial IPF are represented by: genes involved in cell–cell adhesion (DSP, DPP9)

fundamental in the maintenance of epithelial integrity, genes involved in innate and adaptive immune response (Toll-like

receptor signalling, TOLLIP, TLR3), surfactant protein genes (SFTPA2-A1), cytokines and growth factors (IL1RN, IL8, IL4,

TGF-β1), genes involved in telomere maintenance (TERT, OBFC1), and cell-cycle regulation genes (KIF15, MAD1L1,

CDKN1A, TP53) .

Different IPF-related genetic variants have been associated with the risk to develop lung cancer. Among these, there are

mutations in surfactant protein genes (SFTPA1, SFTPA2,) that have been studied in lung adenocarcinoma that

compromise protein secretion and promote endoplasmic reticular stress and apoptosis . In familial IPF, genetic

variants of telomerase complex components, such as TERT (telomerase reverse transcriptase) and TERC (telomerase

RNA component), lead to shortened telomeres following by genomic instability . To this purpose, several studies

suggest a different role of telomerase in IPF and LC since it was found that the expression level of TERT and TERC was

significantly lower in the lung tissue of IPF patients compared to NSCLC tissues and controls . Indeed, mutations in

the p53 gene that lead to a decrease in the apoptotic process together with mutations in p16, p21, and the Kirsten rat

sarcoma virus gene (KRAS) have been found both in IPF and LC . (Figure 1). Furthermore, Maher et al. performed

the PROFILE study of a large cohort of IPF patients, four serum biomarkers predictive of disease progression, among

which are the cancer-related genes CA-19 and CA-125 . In addition, Allen et al. assessed the genomic profiles of IPF-

LC using targeted exome sequencing where they found several somatic mutations, among which were the TP53 and

BRAF genes, which were significantly mutated in IPF-LC . Intriguingly, it has been demonstrated that epidermal

growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) mutations that normally drive the therapeutic

decisions in the management of LC patients are either less frequent in IPF-LC adenocarcinoma patients compared with

LC adenocarcinoma patients or have not been studied, respectively . The enviromental risk factors, smoking exposure

and aging, that might charaterize both IPF and LC patients might induce epigenetic responses such as changes in the

methylation patterns that are quite similar between both diseases according to genome-wide methylation analysis .

Finally, recent studies show that IPF and LC share the aberrant expression of some microRNA. Among them, miR-21 was

both upregulated in patients with IPF,  and correlated with poor prognosis in NSCLC patients according to the meta-

analysis performed . Finally, miR-29, miR-200, and let-7d were found to be downregulated both in the lung tissue of
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IPF patients and LC tissues . However, it is important to mention that LC is endowed with metastatic potential,

disseminating around the body (especially into the brain and bone), unlike IPF, which remains still localized to the lung.

Cigarette smoking together with genetic susceptibility/predisposition and aging can lead to the onset and progression of

IPF and LC. Both diseases are characterized by common and similar pathogenic mechanisms. Both in IPF and lung

cancer, a massive proliferation of lung resident fibroblasts occurs that contributes to the progression of IPF and lung

cancer. In IPF, activated myofibroblasts promote the deposition of ECM leading to an acute exacerbation of the disease,

while in lung cancer activated cancer-associated fibroblasts (CAFs) drive the carcinogenesis. Indeed, genetic mutations in

surfactant proteins such as SFTPA1 and SFTPA2 have been studied both in familial IPF and lung cancer. Genetic

mutations in the p53 gene that lead to a decrease in apoptosis and p16, p21, and KRAS have been found both in IPF and

LC.
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