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Cyanobacteria are naturally capable of producing valuable secondary metabolites through photosynthesis. These
photosynthetic bacteria can be further improved via engineering to produce more in terms of diversity and yield.
Recent advances in systems and synthetic biology approaches are being adopted in the cyanobacterial

engineering field to push the industrial capabilities even further.
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| 1. Introduction

Cyanobacteria are oxygenic photosynthetic bacteria that can produce various secondary metabolites. Given the
ability to utilize sunlight and atmospheric carbon dioxide (CO,) as a part of the renewable photosynthetic process,
cyanobacteria are considered sustainable bioproduction hosts . A number of secondary metabolites naturally
synthesized by cyanobacteria, such as carotenoids, phycocyanins, and squalene, are used in the pharmaceutical,
cosmetic, and healthcare industries B4, |n addition, owing to their rapid growth and increased scope for
engineering, multiple efforts have been made to utilize cyanobacteria as production hosts for valuable biochemicals

by introducing heterologous pathways =€,

While continuous development has been reported in metabolic engineering strategies for producing biochemicals
in bacterial hosts, the synthetic biology approach accelerated the development by providing diverse genetic parts
and engineering tools. For other model platforms such as Escherichia coli, there is an abundant catalog of genetic
parts including synthetic promoters and ribosome binding sites (RBSs), which have been successfully introduced to
improve gene expression in heterologous pathways Z. However, owing to the lack of genetic parts for pathway
engineering in cyanobacteria, application of metabolic engineering tools is limited [&l. Thus, development of various
tools for pathway engineering and subsequent engineering strategies are required for industrial-scale production of

target compounds in cyanobacteria.

With the recent progress in systems biology, genome-wide information of diverse layers such as the genome,
transcriptome, translatome, proteome, metabolome, and interactome are being constantly accumulated 2. Massive

amounts of data formed the basis for establishment and development of an in silico genome-scale model (GEM)
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(201 |t is expected that the application of system-level approaches with the integration of omics data and GEM

would address the existing limitations of cyanobacterial engineering.

| 2. Secondary Metabolite Production by Cyanobacteria

Bacteria produce two kinds of metabolites: primary metabolites essential for survival and secondary metabolites
required for auxiliary purposes, such as stress responses, defense mechanisms, metal carrying, and signaling 1],
Secondary metabolites include terpenes, alkaloids, polyketides (PKs), non-ribosomal peptides (NRPs), and
ribosomally synthesized and post-translationally modified peptides (RiPPs), which are produced via biosynthetic
gene clusters (BGCs). BGCs are clusters of genes positioned in approximate proximity to each other for the
production and processing of a compound. Cyanobacteria, being rich in BGCs, are capable of producing diverse
secondary metabolites for various purposes, including toxins for defenses or protectants for relieving photodamage
and oxidative stress (Table 1).

Table 1. Bioactive secondary metabolites produced in cyanobacteria.

Class Metabolite Bioactivity Producing Species Ref.

Antioxidant, anti-

_ inflammatory, . [12][13][14]
Terpene Phycocyanin , All cyanobacteria [15][16]
neuroprotective,
hepatoprotective
Antioxidant,
Terpene Carotenoids All cyanobacteria (L7][28]
sunscreen
Terpene Squalene Antioxidant Phormidium [19]
Anabaena,
Aphanizomenon,
Alkaloid Saxitoxin Neurotoxin . _ (20]f21];22]
Cylindrospermopsis,

Lyngbya, Planktothrix,

Indole Nostodione Antifungal Nostoc (23]
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) _ Anti-inflammatory, [24][25][26]
Indole alkaloid Scytonemin Scytonema, Nostoc 127]
sunscreen

Antibacterial, anti-

Indole alkaloid Hapalindole tuberculosis, Hapalosiphon [28][29]
anticancer
Anabaena,
Alkaloid/Polyketid Neurotoxin, anti Aphanizomenon,
aloid/Polyketide eurotoxin, anti-
Y Anatoxin-a . Cylindrospermum, (20][21]
synthase (PKS) inflammatory ) ,
Oscillatoria,
Planktothrix
Alkaloid/PKS Aplysiatoxin Cytotoxin, antiviral Moorea [32](33]
Alkaloid/Non- .
) ) ) Cytotoxin, 34
ribosomal peptide Lyngbyatoxin Moorea (24]

dermatotoxin
synthetase (NRPS)

Aphanizomenon,

Cylindrospermopsis,
Alkaloid/PKS-NRPS  Cylindrospermopsin Cytotoxin / _ p b [35][36][37]

Oscillatoria,

Raphidiopsis

Antifungal, antialgal,
PKS Fischerellin . _ Fischerella (28]
anti-cyanobacterial

B-N-methylamino-I-

NRPS ) Neurotoxin Anabaena, Nostoc (29
alanine
Planktothrix,
NRPS Cyanopeptolin Protease inhibitor . . [4Q]41]
Microcystis
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Microcystis, Nostoc,

[40][42][43]
PKS-NRPS Microcystin Hepatotoxin Planktothrix, [44][45]
Anabaena
PKS-NRPS Nodularin Hepatotoxin Nodularia (46]
PKS-NRPS Apratoxin Anticancer Lyngbya [47]
PKS-NRPS Aeruginoside Protease inhibitor Planktothrix (48]
Microcystis,
PKS-NRPS Aeruginosin Protease inhibitor v , [20][49]
Planktothrix
PKS-NRPS Cryptophycins Cytotoxin Nostoc (59]
PKS-NRPS Nostophycins Cytotoxin Nostoc (51]
PKS-NRPS Curacins Cytotoxin Moorea (52]
PKS-NRPS Hectochlorin Cytotoxin Moorea 53]
PKS-NRPS Jamaicamides Neurotoxin Moorea (54]
Cytotoxin, anticancer, Moorea, Lyngbya,
PKS-NRPS Dolastatin y . ynany [(55](56]
antiprotozoal Symploca
Lipopeptide Antillatoxin Neurotoxin Moorea (57]
Antimalarial,
Lipopeptide Carmabin anticancer, Moorea [28][59]
antiproliferative
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Lipopeptide

Lipopeptide

Ribosomally
synthesized and
post-translationally
modified peptide
(RIPP)

RiPP

RiPP

Fatty acid amide

Fatty acid amide

Lipopolysaccharide

Polysaccharide

Nucleoside

Nucleoside

Lyngbyabellin

Kalkitoxin

Patellamide

Microviridin

Shinorin

Besarhanamide A

Semiplenamide

Lipopolysaccharides

Polysaccharide

Toyocamycin

Tubercidin

Cytotoxin, antifungal

Neurotoxin

Moderate cytotoxicity

Protease inhibitor

Sunscreen

Moderate toxicity to

brine shrimp

Toxicity to brine

shrimp

Endotoxin

Antitumor, antiviral,
antibacterial, anti-
inflammatory,

immunostimulant

Antifungal

Antifungal

Moorea, Lyngbya

Moorea

Prochloron

Microcystis,
Planktothrix

Anabaena, Nostoc

Moorea

Lyngbya

All cyanobacteria

All cyanobacteria

Tolypothrix

Tolypothrix

[60][61]

57]

[62]

[63](64]

[65]

[66]

[67]

[68]

[69][70][71]

[72]

(73]
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2.1. Prediction of Biosynthetic Gene Clusters (BGCs) in Cyanobacterial Genomes

To investigate the secondary metabolites produced by cyanobacteria, 196 complete genome sequences of
cyanobacteria available at the National Center for Biotechnology Information (NCBI) genome portal were inspected
for BGCs using antiSMASH 4l Thirty-three different types of BGCs were identified. The 196 complete genome
sequences of cyanobacteria used in the BGC search were arranged according to the phylogenetic tree. The
heatmap representing the numbers of each type of BGC found in each cyanobacterium showed that the
cyanobacteria from the same genera had similar classes and numbers of BGCs (Figure 1A). It was evident that a
single genome contained several BGCs with multiple occurrences. In particular, there were cyanobacteria with
large number of bacteriocin, terpene, and non-ribosomal peptide synthetase (NRPS) BGCs, which accounted for
74.4% of the total predicted BGCs (n = 2119). For example, it was predicted that the genome of Moorea producens
PAL-8-15-08-1 carries 18 NRPS BGCs. The most widely distributed BGC was the terpene BGC, which was found
in all cyanobacteria except for two species (Limnospira fusiformis SAG 85.79 and Nodularia spumigena UHCC
0039). Terpene is essential for photosynthetic organisms. Undetected terpene BGCs in the two species could have
resulted from the deviations in the BGC search criteria of antiSMASH. The 33 BGCs were classified according to
their structural and functional similarities to the following categories: terpene, indole, PK synthase (PKS)/NRPS
(type 1, 2, 3 PKSs, NRPS, cyclodipeptide synthase-based tRNA-dependent peptide, resorcinol, and siderophore),
RiPP (bacteriocin, lanthidin, linear azole-containing peptide, microviridin, lasso peptide, cyanobactin, thiopeptide,
trifolitoxin, proteusin, and lanthipeptide), lipid/saccharide/nucleoside (heterocyst glycolipid synthase, ladderane,
arylpolyene, aminoglycoside/aminocyclitol, oligosaccharide, and nucleoside), and others (phosphonate, phenazine,

ectoine, B-lactone, and homoserine lactone).

2.2. Terpenes

Terpene is a family of compounds with varying structures that occupies a large proportion of the natural products
73l Terpenes are mainly produced by plants or fungi, as well as the bacterial species via mevalonate (MVA)
pathway or methylerythritol-phosphate (MEP) pathway using acetyl-CoA or glyceraldehyde 3-phosphate and
pyruvate as substrates 8. While MVA and MEP pathways are mutually exclusive in most organisms,
cyanobacteria mainly utilize the MEP pathway, using substrates generated during photosynthesis. The MEP
pathway produces isomeric 5-carbon compounds, isopentyl pyrophosphate (IPP), and dimethylallyl pyrophosphate
(DMAPP), which are further condensed into geranyl pyrophosphate (GPP), the building block in terpene
biosynthesis. From the GPP, terpenes of varying structures can be generated. Terpenes conduct various cellular
processes necessary for survival, such as the ubiquinone in the electron transport chain associated with cellular
respiration, chlorophyll, carotenoids, and plastoquinones in photosynthetic processes, and hopanoids in cell
membrane biosynthesis and stability (Figure 1B) [ZZ. In particular, photosynthetic cyanobacteria contain a wide
variety of carotenoids. Most of the genome-sequenced cyanobacteria have [3-carotene BGC. Production of other
carotenoids, such as zeaxanthin and nostoxanthin are dependent on the presence of carotenogenesis pathway
connected to B-carotene B8l The terpene compounds, including the carotenoids obtained from cyanobacteria are

of industrial value owing to their various applications. For example, 3-carotene, astaxanthin, and canthaxanthin are
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used as color additives or animal feeds. Phycocyanin exhibits anti-oxidant, anti-inflammatory, neuroprotective, and

hepatoprotective effects (213179,
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Figure 1. Cyanobacterial secondary metabolites. (A) Heatmap of the predicted cyanobacterial secondary
metabolite biosynthstic gene clusters (BGCs). The left-most phylogenetic tree is constructed by up-to-date bacterial
core gene (UBCG) phylogenetic analysis of the 196 cyanobacterial complete genome sequences. The evolutionary
distances were provided by UBCG and plotted by RAXML BBl The tree is not to scale. Red: Nostoc, purple:
Calothrix, green: Synechocystis, pink: Synechoccus, blue: Microcystis, and yellow: Prochlorococcus. (B—F)
Molecular structures of cyanobacterial secondary metabolites. (B) Terpenes, (C) alkaloids, (D) polyketides (PKs),
non-ribosomal peptides (NRPs), (E) RiPPs, and (F) fatty acid amide. Abbreviations; NRPS, non-ribosomal peptide
synthetase; HgIE, heterocyst glycolipid synthase; LAP, linear azol(in)e-containing peptide; TfuA, ribosomally
synthesized peptide antibiotic trifolitoxin; CDPS, cyclodipeptide synthase-based tRNA dependent peptide; PKS,
polyketide synthase; Amglyccycl, aminoglycosides/aminocyclitols; TransAT, trans-acyltransferase type | PKS.

2.3. Alkaloids
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Alkaloids comprise various nitrogen containing compounds that are produced from diverse organisms, including
fungi, plants, bacteria, and animals. Alkaloids produced by cyanobacteria often show toxic characteristics. For
example, the anatoxin-a produced by species of the Anabaena genera is a neurotoxin that binds irreversibly to
nicotinic acetylcholine receptors causing paralysis or even death in fish and mammals (Figure 1C) B, Anatoxin-a
is also categorized as a PK, which is synthesized by PKS 2. Another well-known example, saxitoxin, blocks the
sodium (Na*) channels in shellfish and induces paralytic shellfish poisoning in humans on consumption of
saxitoxin-accumulated seafood. The chemical derivatives carrying the indole rings are classified as indole
alkaloids. They are biosynthesized using tryptophan as a precursor. Cyanobacterial indole alkaloids have diverse
functions. For example, the hapalindole synthesized from cyanobacteria Hapalosiphon fontinalis exhibits
antibacterial, anti-tuberculosis, and anticancer activities 2. In addition, the scytonemin produced by Scytonema

sp. renders photoprotective effects to the cyanobacterial cells by absorbing the harmful ultraviolet (UV)-A radiation
84],

2.4. Polyketides/Non-Ribosomal Peptide/Lipopeptides/Siderophores

PKS and NRPS are representatives of enzymes responsible for the biosynthesis of secondary metabolites in
various organisms. Enzymes of these classes consists of at least three essential modular domains that facilitate
chain elongation and modification 82, First, the catalytic domain binds to and activates the building block, which
then is transferred to the carrier protein domain. Second, the carrier protein domain loads the activated building
block to the growing PK/NRP chain it holds. Third, the other catalytic domain catalyzes the bond formation between
the growing chain and the newly loaded building block. PKS and NRPS differ in their use of precursors for the
building block. While PKS utilizes malonyl-CoA or methylmalonyl-CoA, the NRPS uses proteinogenic and non-
proteinogenic amino acid monomers. In addition, there are cases wherein compounds are synthesized via the
PKS-NRPS hybrid system. A well-known example could be microcystin, the BGC of which contains two PKS,
single PKS—NRPS, and three NRPS [22I[88] Microcystin produced from various cyanobacterial species belonging to
the genus Microcystis, Nostoc, Planktothrix, and Anabaena, shows hepatotoxic activity in humans (Figure 1D).
Various other toxins synthesized by the PKS, NRPS, or PKS-NRPS hybrid system includes lyngbyatoxin,
apratoxin, and aplysiatoxin.

The NRPS includes lipopeptides owing to their lipid linked peptide structures synthesized by a combination of lipid
tails and amino acids. Examples of lipopeptides include antillatoxin and carmabin from M. producens, and
lyngbyabellin from M. bouillonii (Figure 1D). Antillatoxin and lyngbyabellin show neurotoxic activity and cytotoxicity,
and carmabin exhibit anti-malarial activity. Siderophores are included in the NRPS-produced compounds. Iron is
essential for bacterial survival. However, since it exists in an insoluble form in the environment, some bacteria have

evolved to facilitate iron uptake by producing small molecules with high affinity to ferric iron, called siderophores.

2.5. Ribosomally Synthesized and Post-Translationally Modified Peptides

RiPP is a class of secondary metabolites that includes, as its name depicts, ribosomally synthesized and post-

translationally modified peptides. Post-translational modifications include leader peptide hydrolysis, cyclization, and
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disulfide bond formation. RiPP BGC generally consists of a short precursor peptide with an N-terminal leader and a
C-terminal core sequence, and post-translational modification (PTM) enzymes (788 The PTM enzymes shape the
linear peptide by several modifications that provide structural and functional diversity to the mature scaffold.
Compounds that were previously classified as lanthipeptide, lasso peptide, microviridin, cyanobactin, and microcin
are now re-classified under RiPP, which have a broad range of bioactivities such as protease inhibition, cytotoxicity,
signaling, anti-cancer, and anti-human immunodeficiency virus (anti-HIV) (Figure 1E) BZ. For example,
microviridin, which was first isolated from M. viridis, is a serine protease inhibitor, and patellamide A produced by

Prochloron didemni has moderate cytotoxicity 621,

2.6. Lipids/Saccharides/Nucleosides/Others

Lipids, saccharides, and nucleosides are generally categorized as primary metabolites. However, there are
exceptions, when they are considered as secondary metabolites instead of primary metabolites. For example,
besarhanamide A and semiplenamide exhibiting toxicity against brine shrimp are fatty acid amides isolated from M.
producens and Lyngbya semiplena, respectively (Figure 1F) B8IB9 |t js known that cyanobacterium Cyanothece
sp. 113 can produce up to 22 g/L of polysaccharide, which exceeds the producing ability of eukaryotic microalgae,
such as Dunaliella salina R, Polysaccharides are generally used as stabilization or thickening agents for
emulsions. In some cases, they are used as bhioactive compounds owing to their antitumor, antiviral, antibacterial,
anti-inflammatory, and immunostimulatory properties [2223I94I35] Toyocamycin and tubercidin are both anti-fungal
nucleoside chemicals isolated from Tolypothrix tenuis [28]. In addition, a small number of phosphonate, phenazine,
ectoine, and B-lactone BGC were also detected.
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