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Cyanobacteria are naturally capable of producing valuable secondary metabolites through photosynthesis. These

photosynthetic bacteria can be further improved via engineering to produce more in terms of diversity and yield.

Recent advances in systems and synthetic biology approaches are being adopted in the cyanobacterial

engineering field to push the industrial capabilities even further.
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1. Introduction

Cyanobacteria are oxygenic photosynthetic bacteria that can produce various secondary metabolites. Given the

ability to utilize sunlight and atmospheric carbon dioxide (CO ) as a part of the renewable photosynthetic process,

cyanobacteria are considered sustainable bioproduction hosts . A number of secondary metabolites naturally

synthesized by cyanobacteria, such as carotenoids, phycocyanins, and squalene, are used in the pharmaceutical,

cosmetic, and healthcare industries . In addition, owing to their rapid growth and increased scope for

engineering, multiple efforts have been made to utilize cyanobacteria as production hosts for valuable biochemicals

by introducing heterologous pathways .

While continuous development has been reported in metabolic engineering strategies for producing biochemicals

in bacterial hosts, the synthetic biology approach accelerated the development by providing diverse genetic parts

and engineering tools. For other model platforms such as Escherichia coli, there is an abundant catalog of genetic

parts including synthetic promoters and ribosome binding sites (RBSs), which have been successfully introduced to

improve gene expression in heterologous pathways . However, owing to the lack of genetic parts for pathway

engineering in cyanobacteria, application of metabolic engineering tools is limited . Thus, development of various

tools for pathway engineering and subsequent engineering strategies are required for industrial-scale production of

target compounds in cyanobacteria.

With the recent progress in systems biology, genome-wide information of diverse layers such as the genome,

transcriptome, translatome, proteome, metabolome, and interactome are being constantly accumulated . Massive

amounts of data formed the basis for establishment and development of an in silico genome-scale model (GEM)

2

[1]

[2][3][4]

[5][6]

[7]

[8]

[9]



Secondary Metabolite Production by Cyanobacteria | Encyclopedia.pub

https://encyclopedia.pub/entry/3479 2/17

. It is expected that the application of system-level approaches with the integration of omics data and GEM

would address the existing limitations of cyanobacterial engineering.

2. Secondary Metabolite Production by Cyanobacteria

Bacteria produce two kinds of metabolites: primary metabolites essential for survival and secondary metabolites

required for auxiliary purposes, such as stress responses, defense mechanisms, metal carrying, and signaling .

Secondary metabolites include terpenes, alkaloids, polyketides (PKs), non-ribosomal peptides (NRPs), and

ribosomally synthesized and post-translationally modified peptides (RiPPs), which are produced via biosynthetic

gene clusters (BGCs). BGCs are clusters of genes positioned in approximate proximity to each other for the

production and processing of a compound. Cyanobacteria, being rich in BGCs, are capable of producing diverse

secondary metabolites for various purposes, including toxins for defenses or protectants for relieving photodamage

and oxidative stress (Table 1).

Table 1. Bioactive secondary metabolites produced in cyanobacteria.

Class Metabolite Bioactivity Producing Species Ref.

Terpene Phycocyanin

Antioxidant, anti-

inflammatory,

neuroprotective,

hepatoprotective

All cyanobacteria

Terpene Carotenoids
Antioxidant,

sunscreen
All cyanobacteria

Terpene Squalene Antioxidant Phormidium

Alkaloid Saxitoxin Neurotoxin

Anabaena,

Aphanizomenon,

Cylindrospermopsis,

Lyngbya, Planktothrix,

Indole Nostodione Antifungal Nostoc
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Indole alkaloid Scytonemin
Anti-inflammatory,

sunscreen
Scytonema, Nostoc

Indole alkaloid Hapalindole

Antibacterial, anti-

tuberculosis,

anticancer

Hapalosiphon

Alkaloid/Polyketide

synthase (PKS)
Anatoxin-a

Neurotoxin, anti-

inflammatory

Anabaena,

Aphanizomenon,

Cylindrospermum,

Oscillatoria,

Planktothrix

Alkaloid/PKS Aplysiatoxin Cytotoxin, antiviral Moorea

Alkaloid/Non-

ribosomal peptide

synthetase (NRPS)

Lyngbyatoxin
Cytotoxin,

dermatotoxin
Moorea

Alkaloid/PKS-NRPS Cylindrospermopsin Cytotoxin

Aphanizomenon,

Cylindrospermopsis,

Oscillatoria,

Raphidiopsis

PKS Fischerellin
Antifungal, antialgal,

anti-cyanobacterial
Fischerella

NRPS
β-N-methylamino-l-

alanine
Neurotoxin Anabaena, Nostoc

NRPS Cyanopeptolin Protease inhibitor
Planktothrix,

Microcystis
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PKS-NRPS Microcystin Hepatotoxin

Microcystis, Nostoc,

Planktothrix,

Anabaena

PKS-NRPS Nodularin Hepatotoxin Nodularia

PKS-NRPS Apratoxin Anticancer Lyngbya

PKS-NRPS Aeruginoside Protease inhibitor Planktothrix

PKS-NRPS Aeruginosin Protease inhibitor
Microcystis,

Planktothrix

PKS-NRPS Cryptophycins Cytotoxin Nostoc

PKS-NRPS Nostophycins Cytotoxin Nostoc

PKS-NRPS Curacins Cytotoxin Moorea

PKS-NRPS Hectochlorin Cytotoxin Moorea

PKS-NRPS Jamaicamides Neurotoxin Moorea

PKS-NRPS Dolastatin
Cytotoxin, anticancer,

antiprotozoal

Moorea, Lyngbya,

Symploca

Lipopeptide Antillatoxin Neurotoxin Moorea

Lipopeptide Carmabin

Antimalarial,

anticancer,

antiproliferative

Moorea
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Lipopeptide Lyngbyabellin Cytotoxin, antifungal Moorea, Lyngbya

Lipopeptide Kalkitoxin Neurotoxin Moorea

Ribosomally

synthesized and

post-translationally

modified peptide

(RiPP)

Patellamide Moderate cytotoxicity Prochloron

RiPP Microviridin Protease inhibitor
Microcystis,

Planktothrix

RiPP Shinorin Sunscreen Anabaena, Nostoc

Fatty acid amide Besarhanamide A
Moderate toxicity to

brine shrimp
Moorea

Fatty acid amide Semiplenamide
Toxicity to brine

shrimp
Lyngbya

Lipopolysaccharide Lipopolysaccharides Endotoxin All cyanobacteria

Polysaccharide Polysaccharide

Antitumor, antiviral,

antibacterial, anti-

inflammatory,

immunostimulant

All cyanobacteria

Nucleoside Toyocamycin Antifungal Tolypothrix

Nucleoside Tubercidin Antifungal Tolypothrix
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2.1. Prediction of Biosynthetic Gene Clusters (BGCs) in Cyanobacterial Genomes

To investigate the secondary metabolites produced by cyanobacteria, 196 complete genome sequences of

cyanobacteria available at the National Center for Biotechnology Information (NCBI) genome portal were inspected

for BGCs using antiSMASH . Thirty-three different types of BGCs were identified. The 196 complete genome

sequences of cyanobacteria used in the BGC search were arranged according to the phylogenetic tree. The

heatmap representing the numbers of each type of BGC found in each cyanobacterium showed that the

cyanobacteria from the same genera had similar classes and numbers of BGCs (Figure 1A). It was evident that a

single genome contained several BGCs with multiple occurrences. In particular, there were cyanobacteria with

large number of bacteriocin, terpene, and non-ribosomal peptide synthetase (NRPS) BGCs, which accounted for

74.4% of the total predicted BGCs (n = 2119). For example, it was predicted that the genome of Moorea producens

PAL-8-15-08-1 carries 18 NRPS BGCs. The most widely distributed BGC was the terpene BGC, which was found

in all cyanobacteria except for two species (Limnospira fusiformis SAG 85.79 and Nodularia spumigena UHCC

0039). Terpene is essential for photosynthetic organisms. Undetected terpene BGCs in the two species could have

resulted from the deviations in the BGC search criteria of antiSMASH. The 33 BGCs were classified according to

their structural and functional similarities to the following categories: terpene, indole, PK synthase (PKS)/NRPS

(type 1, 2, 3 PKSs, NRPS, cyclodipeptide synthase-based tRNA-dependent peptide, resorcinol, and siderophore),

RiPP (bacteriocin, lanthidin, linear azole-containing peptide, microviridin, lasso peptide, cyanobactin, thiopeptide,

trifolitoxin, proteusin, and lanthipeptide), lipid/saccharide/nucleoside (heterocyst glycolipid synthase, ladderane,

arylpolyene, aminoglycoside/aminocyclitol, oligosaccharide, and nucleoside), and others (phosphonate, phenazine,

ectoine, β-lactone, and homoserine lactone).

2.2. Terpenes

Terpene is a family of compounds with varying structures that occupies a large proportion of the natural products

. Terpenes are mainly produced by plants or fungi, as well as the bacterial species via mevalonate (MVA)

pathway or methylerythritol-phosphate (MEP) pathway using acetyl-CoA or glyceraldehyde 3-phosphate and

pyruvate as substrates . While MVA and MEP pathways are mutually exclusive in most organisms,

cyanobacteria mainly utilize the MEP pathway, using substrates generated during photosynthesis. The MEP

pathway produces isomeric 5-carbon compounds, isopentyl pyrophosphate (IPP), and dimethylallyl pyrophosphate

(DMAPP), which are further condensed into geranyl pyrophosphate (GPP), the building block in terpene

biosynthesis. From the GPP, terpenes of varying structures can be generated. Terpenes conduct various cellular

processes necessary for survival, such as the ubiquinone in the electron transport chain associated with cellular

respiration, chlorophyll, carotenoids, and plastoquinones in photosynthetic processes, and hopanoids in cell

membrane biosynthesis and stability (Figure 1B) . In particular, photosynthetic cyanobacteria contain a wide

variety of carotenoids. Most of the genome-sequenced cyanobacteria have β-carotene BGC. Production of other

carotenoids, such as zeaxanthin and nostoxanthin are dependent on the presence of carotenogenesis pathway

connected to β-carotene . The terpene compounds, including the carotenoids obtained from cyanobacteria are

of industrial value owing to their various applications. For example, β-carotene, astaxanthin, and canthaxanthin are
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used as color additives or animal feeds. Phycocyanin exhibits anti-oxidant, anti-inflammatory, neuroprotective, and

hepatoprotective effects .

Figure 1. Cyanobacterial secondary metabolites. (A) Heatmap of the predicted cyanobacterial secondary

metabolite biosynthstic gene clusters (BGCs). The left-most phylogenetic tree is constructed by up-to-date bacterial

core gene (UBCG) phylogenetic analysis of the 196 cyanobacterial complete genome sequences. The evolutionary

distances were provided by UBCG and plotted by RAxML . The tree is not to scale. Red: Nostoc, purple:

Calothrix, green: Synechocystis, pink: Synechoccus, blue: Microcystis, and yellow: Prochlorococcus. (B–F)

Molecular structures of cyanobacterial secondary metabolites. (B) Terpenes, (C) alkaloids, (D) polyketides (PKs),

non-ribosomal peptides (NRPs), (E) RiPPs, and (F) fatty acid amide. Abbreviations; NRPS, non-ribosomal peptide

synthetase; HglE, heterocyst glycolipid synthase; LAP, linear azol(in)e-containing peptide; TfuA, ribosomally

synthesized peptide antibiotic trifolitoxin; CDPS, cyclodipeptide synthase-based tRNA dependent peptide; PKS,

polyketide synthase; Amglyccycl, aminoglycosides/aminocyclitols; TransAT, trans-acyltransferase type I PKS.

2.3. Alkaloids

[2][13][79]

[80][81]



Secondary Metabolite Production by Cyanobacteria | Encyclopedia.pub

https://encyclopedia.pub/entry/3479 8/17

Alkaloids comprise various nitrogen containing compounds that are produced from diverse organisms, including

fungi, plants, bacteria, and animals. Alkaloids produced by cyanobacteria often show toxic characteristics. For

example, the anatoxin-a produced by species of the Anabaena genera is a neurotoxin that binds irreversibly to

nicotinic acetylcholine receptors causing paralysis or even death in fish and mammals (Figure 1C) . Anatoxin-a

is also categorized as a PK, which is synthesized by PKS . Another well-known example, saxitoxin, blocks the

sodium (Na ) channels in shellfish and induces paralytic shellfish poisoning in humans on consumption of

saxitoxin-accumulated seafood. The chemical derivatives carrying the indole rings are classified as indole

alkaloids. They are biosynthesized using tryptophan as a precursor. Cyanobacterial indole alkaloids have diverse

functions. For example, the hapalindole synthesized from cyanobacteria Hapalosiphon fontinalis exhibits

antibacterial, anti-tuberculosis, and anticancer activities . In addition, the scytonemin produced by Scytonema

sp. renders photoprotective effects to the cyanobacterial cells by absorbing the harmful ultraviolet (UV)-A radiation

.

2.4. Polyketides/Non-Ribosomal Peptide/Lipopeptides/Siderophores

PKS and NRPS are representatives of enzymes responsible for the biosynthesis of secondary metabolites in

various organisms. Enzymes of these classes consists of at least three essential modular domains that facilitate

chain elongation and modification . First, the catalytic domain binds to and activates the building block, which

then is transferred to the carrier protein domain. Second, the carrier protein domain loads the activated building

block to the growing PK/NRP chain it holds. Third, the other catalytic domain catalyzes the bond formation between

the growing chain and the newly loaded building block. PKS and NRPS differ in their use of precursors for the

building block. While PKS utilizes malonyl-CoA or methylmalonyl-CoA, the NRPS uses proteinogenic and non-

proteinogenic amino acid monomers. In addition, there are cases wherein compounds are synthesized via the

PKS–NRPS hybrid system. A well-known example could be microcystin, the BGC of which contains two PKS,

single PKS–NRPS, and three NRPS . Microcystin produced from various cyanobacterial species belonging to

the genus Microcystis, Nostoc, Planktothrix, and Anabaena, shows hepatotoxic activity in humans (Figure 1D).

Various other toxins synthesized by the PKS, NRPS, or PKS–NRPS hybrid system includes lyngbyatoxin,

apratoxin, and aplysiatoxin.

The NRPS includes lipopeptides owing to their lipid linked peptide structures synthesized by a combination of lipid

tails and amino acids. Examples of lipopeptides include antillatoxin and carmabin from M. producens, and

lyngbyabellin from M. bouillonii (Figure 1D). Antillatoxin and lyngbyabellin show neurotoxic activity and cytotoxicity,

and carmabin exhibit anti-malarial activity. Siderophores are included in the NRPS-produced compounds. Iron is

essential for bacterial survival. However, since it exists in an insoluble form in the environment, some bacteria have

evolved to facilitate iron uptake by producing small molecules with high affinity to ferric iron, called siderophores.

2.5. Ribosomally Synthesized and Post-Translationally Modified Peptides

RiPP is a class of secondary metabolites that includes, as its name depicts, ribosomally synthesized and post-

translationally modified peptides. Post-translational modifications include leader peptide hydrolysis, cyclization, and
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disulfide bond formation. RiPP BGC generally consists of a short precursor peptide with an N-terminal leader and a

C-terminal core sequence, and post-translational modification (PTM) enzymes . The PTM enzymes shape the

linear peptide by several modifications that provide structural and functional diversity to the mature scaffold.

Compounds that were previously classified as lanthipeptide, lasso peptide, microviridin, cyanobactin, and microcin

are now re-classified under RiPP, which have a broad range of bioactivities such as protease inhibition, cytotoxicity,

signaling, anti-cancer, and anti-human immunodeficiency virus (anti-HIV) (Figure 1E) . For example,

microviridin, which was first isolated from M. viridis, is a serine protease inhibitor, and patellamide A produced by

Prochloron didemni has moderate cytotoxicity .

2.6. Lipids/Saccharides/Nucleosides/Others

Lipids, saccharides, and nucleosides are generally categorized as primary metabolites. However, there are

exceptions, when they are considered as secondary metabolites instead of primary metabolites. For example,

besarhanamide A and semiplenamide exhibiting toxicity against brine shrimp are fatty acid amides isolated from M.

producens and Lyngbya semiplena, respectively (Figure 1F) . It is known that cyanobacterium Cyanothece

sp. 113 can produce up to 22 g/L of polysaccharide, which exceeds the producing ability of eukaryotic microalgae,

such as Dunaliella salina . Polysaccharides are generally used as stabilization or thickening agents for

emulsions. In some cases, they are used as bioactive compounds owing to their antitumor, antiviral, antibacterial,

anti-inflammatory, and immunostimulatory properties . Toyocamycin and tubercidin are both anti-fungal

nucleoside chemicals isolated from Tolypothrix tenuis . In addition, a small number of phosphonate, phenazine,

ectoine, and β-lactone BGC were also detected.
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