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In recent decades, nonlinear damping identification (NDI) in structural dynamics has attracted wide research

interests and intensive studies. Different NDI strategies, from conventional to more advanced, have been

developed for a variety of structural types. With apparent advantages over classical linear methods, these

strategies are able to quantify the nonlinear damping characteristics, providing powerful tools for the analysis and

design of complex engineering structures.
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1. Introduction

In recent decades, a huge number of engineering structures such as various civil structures (e.g., bridges, dams,

buildings, etc.), rotating machines, aircraft, etc., have been designed and widely used in real life-services . Such

structures, with either simple or complex geometric or material properties, are subjected to different levels of

vibrations from numerous sources, including earthquakes, wind loads, vehicle motions, imbalance of rotating

machines, etc. . Excessive levels of vibrations largely affect the performance, health condition, and serviceability

of structures and even lead to structural instability and failures .

In general, structural damping is a preferable dynamic characteristic able to reduce the degree of system vibrations

to an acceptable level . Damping and its variation occur due to the continuous dissipation of energy , both

internally and externally, linked with factors such as material degradation, geometrical changes, boundary

conditions, etc. . With complex mechanisms, structural damping is commonly classified into three types. First, the

fluid damping, which originates from hydrodynamic or aerodynamic forces surrounding the structures . Second,

the material damping, which appears due to complex atomic-molecular interactions inside materials . Third, the

structural damping, resulting from Coulomb friction between parts within a structural system . For damping

characterization, several simplified models have been suggested; for instance, viscous damping, hysteretic

damping, and Coulomb frictional damping models . In real applications, equivalent viscous damping is

commonly used to model the overall behavior of damped systems .

Most structural systems show a certain extent of nonlinearity associated with different sources . However,

neglecting the nonlinearity is acceptable in many cases for the sake of simplification of analysis . In other

cases, nonlinear behavior plays a dominant role. Nonlinearity neglection should be prevented in such cases, as it

may lead to erroneous predictions of system behaviors . Among the causes of system nonlinearity, nonlinear

damping  is often regarded as the most influential; this complexity of which makes it challenging to perform
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system identification . Moreover, to better accommodate the development of advanced material with strong

nonlinear behavior, research on the impact of nonlinear damping is of increasing importance .

Some damping identification approaches, theoretical and experimental, have been developed . Experimental

techniques for damping estimation show advantages in accuracy and reliability. Damping identification approaches

provide straightforward explanations for damping properties as compared with theoretical approaches . The

enhancement technique of engineering structures is carried out by measuring inputs and outputs during the

experiment of real structures. This enhancement technique is made to avoid unwanted behavior of the system

subject to damping effects .

Several hypotheses can be used for linear and nonlinear damping of low-damping systems . High-

damping systems usually involve structural damage ; however, nonlinear effects on vibrating systems cannot be

neglected because of their significant impact on dynamic behaviors . Linear damping approaches can provide

precise structural numerical predictions . Nevertheless, in numerous modern applications, the effectiveness

of these methods cannot be guaranteed, especially when the structures are complex, e.g., composed of composite

materials or operating in a hostile environment . Therefore, linear methods should be limited to identifying

damping in specific simple structures that operate under normal conditions . These drawbacks have, in the last

decade, contributed to the rapid development of nonlinear damping methods .

Damping identification is a challenging task  performed by developing a variety of analytical   and

experimental methods of linear and nonlinear systems . Moreover, NDI is a practical aspect being

conducted to prevent structural failure and tragic events caused by structural damages . In addition to

enhancing the safety and maintenance of key structures, it also contributes to the control of systems and predicting

structural systems responses under nonlinear damping properly .

NDI for dynamic systems can be classified into seven categories: Linearization methods, time-domain methods,

frequency-domain methods, time-frequency methods, modal methods, black-box modeling, and model updating

methods . Classification can also be made from other perspectives, for example, parametric and non-parametric

. An example of linearization methods is the equivalent linearization approximation (ELA), which is a common

method used in applications such as a spring-suspended sectional model system. ELA is utilized for bridges and

aeroelastic systems and dampers and shock absorbers used in control systems .

The time-domain methods are well-known methods such as the log decrement method used in lightly damped

systems and aeroelastic systems . In addition, the Hilbert transform (HT) is used to analyze vibration systems

, heat exchangers, and damage detection of reinforced concrete (RC) structures and composite materials .

The frequency-domain methods are known by their mathematical simplicity and ability to provide insightful

interpretation . For example, harmonic balance nonlinearity identification (HBNID) was employed in systems

such as civil engineering, actuators, bioengineering devices, sensors, and robotics . Furthermore, the frequency

response functions (FRFs) have been widely utilized to study nonlinear damping in adhesive joints .
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Time-frequency methods, e.g., those based on continuous wavelet transform (CWT), are powerful tools used in

applications such as vibration absorbers that are broadly used in naval architecture, rotor-bearing systems, and

constructions . In addition, HT was employed in applications such as unbalance of rotating machines, ship

movement control, and damage detection of RC beams based on free vibration measurements for nonlinear

damping determination . Modal methods are considered particularly useful in the field of structural dynamics and

damage identification. The resonant decay method (RDM) was applied to investigate the nonlinear damping in civil,

aircraft, and various types of dampers. The wavelet transform (WT) was used in instantaneous damping coefficient

identification for damage detection in concrete, automotive, aerospace, and simple built-up structures comprising

two bolted beams . Black-box modeling (BBM) is an accurate and efficient method in describing the dynamic

behaviors of structures. For example, a fuzzy wavelet neural network (FWNN) was used for nonlinear identification

in systems such as vehicle magnetorheological (MR) fluid dampers, aeroelastic systems, modern industries,

control systems, and military and defense equipment .

Model updating methods include, for instance, the identification of structural damping using the FRF-based model

updating method and damping identification for accurate prediction of the measured FRFs using finite element

updated models of the mechanical system . Recently, several studies were conducted on dynamic systems.

These studies showed the high feasibility of the NDI methods compared to the linear methods because they give

more reliable results despite their difficulty. The nonlinear research focuses primarily on the development of

efficient and functional methods for reacting to nonlinear structural damping as a fundamental scientific and

technological problem. A survey of available research in the engineering community has provided many studies of

nonlinear damping, as shown in Figure 1. It is expected that interest from researchers in this field will continue.

Figure 1. The number of publications for nonlinear damping studies (According to the Scopus engine system in the

duration from January 1999 to November 2020).

2. Nonlinear Damping Identification Methods
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The early study on the identification of nonlinearity of structural models can be traced back to 1970s. The objective

of this section is to survey the NDI methods that evolved over the last few years as a result of the development of

novel industrial materials and structures . Various nonlinear factors have led to different systems’ behaviors,

which means that each system has unique behavior and therefore requires a different approach . Relevant

studies were first focused on single-degree of freedom (SDOF) systems . Then, with the advancement of

computational techniques, studies were extended to more complex, multi-degree of freedom (MDOF) systems 

. Specific structural types under investigation include bridges, tall buildings, aircraft, etc. . Apart from

previous review articles that are mainly about nonlinear system identification , the focus of this study resides on the

development of various NDI methods. The methods can be classified into seven categories, as shown in Figure 2.

Figure 2. Nonlinear damping identification methods.
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