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The various imaging techniques used in clinic have advantages and disadvantages. The advent of nanotechnology

offers the possibility to combine several imaging agents within the same nano-object. This will allow to perform

multi-imaging and thus obtain additional information during the same clinical procedure. Here, the focus are made

on the potentialities of biomodal agents labeled for MRI and optical imaging. The three main associations for

obtaining magneto-fluorescent objects will be presented: (1) association by covalent bonding; (2) encapsulation in

matrices; (3) dispersion in nanoassemblies.

magneto-fluorescent nanoparticles  MRI contrast agent  Luminophore for optical imaging

1. Introduction

The coexistence of several imaging agents within the same nano-object suggests promising prospects in medical

imaging field. The multifunctionality providing by these nano-tools allows to benefit from the complementarity of the

various imaging techniques in terms of sensitivity, spatial resolution or depth penetration. Among the different

possible combinations, growing interest has been shown in nanosystems comprising magnetic nanoparticles

(MNPs) for MRI and luminescent entities for fluorescent imaging in recent years (Figure 1) . Luminescence

imaging, thanks to its multiple-label possibility, its high sensitivity and spatial resolution, is widely used to follow

biological processes or in histopathology. However, extinction phenomena (diffusion and absorption of light by

tissue) limit the depth penetration of this imaging technique. By contrast, MR present an unlimited depth

penetration and greater soft-tissue contrast. Nevertherless, the low sensitivity of the MR technique makes it difficult

to distinguish benign from malignant disease even with long acquisition time. So, combining these two safety

techniques (using non-ionizing radiation) allows advantage to be taken of the high high sensitivity and spatial

resolution of luminescence imaging, associated to the good spatial resolution and deep tissue penetration of MRI.

This combination is particularly interesting for correlating in vitro monitoring and in vivo tracking . We will focus,

here, on structure integrating negative MRI constrast agent (i.e. superparamagnetic nanoparticles). Their efficiency

will be linked to a very strong transverse relaxivity, r , and a significant r /r  ratio.  The very good sensitivity of the

luminophore will be proportional to its brightness. Its penetration into biological tissue will be all the greater if the

luminescent entities emit into the biological window (700-950nm).
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Figure 1. Fluorescence imaging vs. magnetic resonance imaging (MRI). Comparison between both imaging

techniques showing their complementarity.

2. Association by Covalent Bonding (Nanoparticles)

Among the different association methods, grafting fluorescent entities on the surface of magnetic nanoparticles

represents a simple approach (Figure 2) . For example, fluorescent dyes (rhodamine B, λ  = 578 nm or

fluorescein derivatives, λ  = 516 nm) are coupled to iron oxide surface . These nanoparticles allow in cellulo

motions of endosomes to be followed when exposed to a magnetic field gradient. Near-infrared (NIR) dyes have

been also grafted as IR-820 cyanine derivative (λ  = 900 nm)  or dialkyl carbocyanine (λ  = 780 nm) 

to obtain fluorescent systems emitting in the first biological window. Iron oxide multicore nanoparticles assembled

by hydrophilic polymer have been envisaged to improve the MRI contrast agent properties . Thus, the use of

multicore Ferahme  iron oxide nanoparticles (d  = 6–7 nm, d  = 17–31 nm) coupled to TO-PRO -1 (λ  =

531 nm) gives bifunctional nanoparticles with a transverse relaxivity, r  = 122 mM  s  (0.47 T, r /r  = 5) . This

transverse relaxivity is still improved using 8 nm iron oxide nanoparticles (r  = 202 mM  s , r /r  = 3.8 at 0.47 T)

embedded in polyacrylic acid matrix (d  = 90 nm) . Moreover, these systems present NIR-emissive dye using a

dialkylcarbocyanine as fluorophores (λ  in the region 751/780 nm and ε > 125,000 cm  M ). The association

of QDots, known to be brighter than small molecules, with magnetic nanoparticles is also envisaged [

]. The most common approach used is to prepare core–satellite systems. In this approach the core is

composed of iron oxide nanoparticles surrounded by quantum dots (usually CdSe/ZnS) . Pahari et al.

have recently described an invert strategy where quantum dots (3.2 nm CdSe nanoparticles) are in the core and a

shell of iron oxide is growned around (thickness of 1.3 nm) . By this approach, a very good transverse relaxivity

(r  = 304 mM  s  at 9.4 T) is noted. Although these systems are easily synthetized, the close proximity between

the luminophores and the metal core leads to a strong emission quenching. Indeed, electronic energy or electron

transfers between both entities can take place while iron oxide nanoparticles significantly absorb at wavelengths
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less than 450 nm. The choice of fluorophores and their distance from the metallic core will therefore be essential.

Moreover, direct exposure of fluorophores to the surrounding environment can modify the emissive properties of

the system. Finally, the requirement of high colloidal stability of the final nanoassembly in aqueous solution

excludes extensive grafting of fluorescent entities, especially if the latter are organic and hydrophobic. All together,

these limitations produce low-emissive imaging agents.

Figure 2. Schematic representation of magneto-fluorescent nanosystems.

3. Encapsulation in Silica Matrix (Nanostructure)

To protect the luminophores from quenching by the surrounding medium, the encapsulation of magnetic

nanoparticles (γ-Fe O ) and fluorescent units (small molecules, e.g., rhodamine or FITC derivatives; [

] or Qdots like CdSe/CdZn, CdS or CdZnS [ ]) in mesoporous silica matrices has been envisaged

(Figure 2). The encapsulation of magnetic nanoparticles and quantum dots leads to interactions between these two

active units. This interaction induces (i) an increase of the magnetic anisotropy, (ii) a blue-shift of the fluorescence

emission and (iii) a decrease of the quantum yield . Silica-doped with organic dye core surrounded by

magnetic nanoparticles (core-satellite assemblies) are also envisaged . In these structures, the combination

of several magnetic nanoparticles has the effect of drastically increasing the r  value in comparison of magnetic

nanoparticles alone. Lee et al. describe an r  increase from 26.8 to 76.2 mM  s  (1.5 T) , and another study
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shows a rise from 116 to 397 mM  s  (9.4 T) . These silica matrices show low cytotoxicity but provide only

small amounts of encapsulated active units. In addition, although the fluorescent entities are protected from the

external environment by encapsulation, they can diffuse freely outside the porous matrix as they are not covalently

attached. To counter this phenomenon, hydrophobic fluorescent units amenable to self-assemble have been

proposed to impart the magneto-fluorescent nanosystems with better structural stability and reduced dye leakage.

4. Dispersion in Nanoassemblies (Supraparticles)

The use of magneto-fluorescent nanoassemblies provides generally biodegradable systems that advantageously

avoid bioaccumulation. In this context, several molecular matrices are envisaged composed of polymers [

], lipids [ ], PDots [ ] or organic molecule [ ](Figure 2). In this

type of organization we will distinguish the assemblies with inert matrices of those composed of active units. Inert

matrices are mainly composed of lipids or polymers. For instance, magnetic nanoparticles can be encapsulated in

liposomes, and subsequently functionalized by a fluorescent molecule, here rhodamine . The

magnetofluorescent liposome exhibits good T -contrast agent properties with r  = 268 mM  s  at 4.7 T (r /r  =

85). Another approach is based on the use of polymers to combine magnetic nanoparticles and fluorescent entities.

In the work of R. K. Prud’homme et al., polyethylene glycol has also been used to assemble hydrophobic NIR

fluorophores (λ  = 800 nm), tris-(porphyrinate) zinc (II), and magnetic nanoparticles . The authors show an

increase in r  from 66 to 533 mM  s  as the wt% IO increases from 4 to 16% . Bawendi et al. describe the

association of quantum dots and densely packed magnetic nanoparticles into “supernanoparticles” thanks to

poly(vinylpyrrolidone) (PVP) ethylene glycol (EG) . These assemblies (d  = 120 nm) display a high r  value of

402.7 mM  s at 9.4 T . In the three last cases, the effectiveness of these multimodal structures has been

demonstrated in murine models. Correlative treatments of the MRI and fluorescence signals have proved the

preservation of the in vivo integrity of the nanoassemblies and validate the design of multimodal nanostructures.

The second type of self-assembled systems implies functional units as molecular bricks (Figure 2), thus limiting the

number of organic species administrated in vivo. Hyeon et al. have assembled magnetic nanoparticles with a

polyethylene glycol block polymer . This polymer is functionalized with an imidazole derivative and fluorescent

porphyrins (chlorin e6) whose emission is deactivated upon dye self-assembling . The imidazole derivative is a

pH-sensitive group which allows the disintegration of the nanostructure in the tumor medium (acidic pH) and

leading to the reappearance of fluorescence. In this system (d  = 70 nm), the self-assembly of 3 nm iron oxide

nanoparticles provides a transverse relaxivity r  = 44 mM  s  at 1.5 T (r /r  = 13.3). Nanoassemblies

incorporating Pdots and magnetic nanoparticles into phospholipid micelles improve relaxivity properties (r  =

152mM  s at 3.0 T) and enhance MRI contrast efficiency thereof . Moreover, for these systems, important

brightness and photostability under irradiation of the fluorophores have been demonstrated during in cellulo

fluorescence microscopy . The use of small hydrophobic molecules with iron oxide nanoparticles chelating

functions is another effective approach to obtain magnetofluorescent systems . In these systems, the

fluorescent core composed of 10  dyes is surrounded by magnetic nanoparticles shell . This architecture deals

with a very effective dual-mode contrast agent with a brightness around 10  L mol  cm  and transverse relaxivity
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r  = 238 mM  s  (0.47 T) . This contrast agent displays excellent properties in liver imaging on small rodents

both as a cellular label and as in vivo follow-up . In cellulo stability of these systems could be controlled by

varying stabilizing ligands . The use of polyacrylic acid allows a very cohesive architecture, when the

stabilization by citrate ions allows a dissociation . These systems have been functionalized with polyethylene

glycol-based copolymers to increase their circulation time . Moreover, it has been shown that the presence of a

hydrophobic tail in the copolymer increases the r /r  two times compared to those which are without one .
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