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A disturbed interaction between the gut microbiota and the mucosal immune system plays a pivotal role in the

development of inflammatory bowel disease (IBD).

microbial metabolites gut inflammation

| 1. Introduction

Inflammatory bowel disease (IBD) is an idiopathic disease affecting the gastrointestinal (Gl) tract and can be
divided into two main subcategories: Crohn’s disease (CD) and ulcerative colitis (UC). Both CD and UC lead to
poor quality of life and psychological distress for patients, and produce significant pressure on healthcare systems
by their relatively high morbidity. Genetic and environmental factors are known to increase the risk of IBD and may
predispose certain individuals or populations to developing the disease. Prevalence of IBD has always been
relatively high in Europe and North America, but is now also on the rise in industrializing countries in Asia, Africa,

and South America [,

Despite the lack of full understanding of the pathophysiology of IBD, the majority of available reports suggest a
dysregulation between the intestinal microbiota and the host immune system (i.e., loss of immune tolerance) to be
one of the underlying causes. The innate immune system in the intestinal mucosa responds to the microbiota
and/or antigens by promoting inflammation, which recruits the adaptive immune system and leads to a more
severe and long-lasting inflammatory state, as well as deterioration of the intestinal barrier integrity. The latter leads
to translocation of microbiota and/or antigens into the mucosa, further exacerbating the mucosal inflammatory

response, thereby creating a vicious circle [22],

Currently used pharmacological interventions are aimed at combatting the characteristic flareups of intestinal
inflammation. The most effective drugs are corticosteroids and tumor necrosis factor (TNF) inhibitors. However, the
former cannot be used for extended periods of time due to serious side effects (e.g., Cushing’s syndrome), and the

latter has a significant amount of primary and secondary non-responders, along with serious side effects [2I6],

Fecal microbiota transplant (FMT) is another, experimental, form of IBD treatment. A recent meta-analysis found
that 54% of IBD patients showed a clinical response to FMT, and 37% demonstrated clinical remission, while 29%
suffered from adverse events . Generally, the adverse events following FMT are mild and subside within 24 h, but
more serious events, such as IBD flareups, infections, colectomy, pancreatitis, and death are also reported,

although less frequently (&,
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Despite the promising remission rates of this IBD treatment, which is still in its infancy, the main motive against
FMT is that the treatment is considered to be a black box. The outcome and safety of the treatment is influenced by
a myriad of factors (e.g., host genotype, specific type of microbiota imbalance, type and stage of IBD, route of

administration, and factors related to the FMT donor), which remain obscure [EI2],

Considering the pivotal role of the gut microbiota in IBD, and that, ultimately, a major part of the communication
between the gut microbiota and the host is based on chemical signaling, this review aims to examine gut microbial
metabolites known to have anti-IBD effects. In order to positively implicate the role of microbial metabolism, only
compounds proven to be produced by the gut microbiota have been taken into consideration. Furthermore, the
metabolites discussed in this review originate from parental compounds found in common dietary sources (e.g.,
vegetables, fruits, and herbs), and have either been shown to improve colitis symptoms in vivo, affect signaling
pathways involved in the pathophysiology of IBD in vitro, or both. The relevant data are summarized in Table 1.

Table 1. Overview of metabolites, bacterial species currently known to produce these metabolites, and

experimental models used to assess anti-IBD effects.
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Microbial Metabolite

Parental
Compound

Phylum

Species Model
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Ref.

Bifidobacterium
catenulatum
Bifidobacterium
pseudolongum
Bifidobacterium
adolescentis
Eggerthella lenta

Quercitrin

Fusobacteria

Fusobacterium K- in vitro,
60 in vivo

EBERE

OH O
Quercetin

Rutin

Firmicutes

Enterococcus
avium
Lactobacillus
acidophilus
Lactobacillus
plantarum
Lachnoclostridium
spp.
Eisenbergiella spp.

Blautia sp. In vitro,

in vivo

Actinobacteria

Bifidobacterium
dentium

Bacteroidetes

Bacteroides
uniformis
Bacteroides ovatus
Parabacteroides
distasonis

EREEEEREER

OH
HO
8]
Protocatechuic acid
(PCA)/3,4-
dihydroxybenzoic acid

0 OH
HO™ ™ : OH

3,4-dihydroxyphenylacetic
acid (DHPA)

OH
HDTb’@:OH
0]

OH

Flavonols
Flavan-3-ols
Flavones
Anthocyanins

Firmicutes

Eubacterium
oxidoreducens
Eubacterium
ramulus
Enterococcus
casseliflavus
Flavonifractor plautii
Catenibacillus
scindens
Butyrivibrio spp.

in vitro,
in vivo

EERBEERERREBEEREEE

https://encyclopedia.pub/entry/10720

4/17



Gut Microbiota | Encyclopedia.pub

Microbial Metabolite el Phylum Species 2 Ref.
Compound Model
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Microbial Metabolite el Phylum Species 2 Ref.
Compound Model
Firmicutes Eubacterium 89]
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Ginsenoside in vitro, (1]
Rb1 . . in vi (2]
b Bacteroidetes Bacteroides e [93]
[94]
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Due to intrinsic differences in the interindividual dietary and microbiota compositions, especially the disturbed
microbiota of IBD patients, such metabolites may not be produced universally. Identifying these metabolites can
help to overcome such intrinsic differences, and, ideally, helps making gut health less dependent on changes in the
microbiota composition.

| 2. Indoles

Indole derivatives (Figure 1) are mainly produced by Lactobacilli, Clostridia, Peptostreptococci, Bifidobacteria, and
Bacteroides (Table 1), as metabolites of the amino acid tryptophan (Trp) B2. Gut microbial Trp metabolites are
often found to be agonists of the aryl hydrocarbon receptor (AHR), of which lower levels are observed in IBD
patients, compared to healthy subjects [28l. IBD symptoms and pro-inflammatory cytokine levels were found to be
greater in AHR knockouts in murine models of dextran sodium sulfate (DSS)-induced colitis 7. Other AHR ligands

are known to reduce colitis symptoms [261[28],

H H H H
M L] M
4 4 4 i
MNH
P S o e 4
g OH d OH OH o OH =0
L-Tryptophan Indole-3-pyruvic acid  Indole-3-acrylic acid  Indole-3-propionic acid  Indole-3-aldehyde
(Trp) {13Pv) {13Acr) {13Fr) {13Al)

Figure 1. Structures of L-tryptophan and several indole metabolites produced by the gut microbiota.

AHR activation by the gut microbial Trp metabolite indole-3-aldehyde (I3Al) was shown to stimulate mucosal
lymphocytes to secrete interleukin 22 (IL-22), an anti-inflammatory cytokine known to play an important role in
protecting mice from developing IBD 2. Increased IL-22 secretion causes signal transducer and activator of
transcription 3 (STAT3) phosphorylation, which ultimately leads to faster proliferation of intestinal epithelial cells

(IECs), contributing to the recovery of damaged intestinal mucosa following DSS-induced colitis 9.

Indole-3-propionic acid (13Pr) also activates the AHR receptor, which induced IL-10 receptor expression in cultured

IECs. Oral administration of I3Pr was shown to improve DSS-induced murine colitis symptoms, which was
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attributed to increased signaling of the anti-inflammatory cytokine IL-10, due to higher expression of IL-10

receptors [13],

Additionally, I3Pr was found to act as a ligand for the pregnane X receptor (PXR) in vivo, and led to lower TNF-a
levels together with higher levels of mMRNA coding for tight junction proteins, thus contributing to intestinal integrity.
With the help of knockout experiments, it was determined that activation of PXR modulates Toll-like receptor 4
(TLR4) signaling, which is known to activate nuclear factor kB (NF-kB), a pro-inflammatory transcription factor.
Accordingly, oral administration of I3Pr could activate PXR in the colon, which prevents lipopolysaccharide (LPS)-

induced inflammation via modulation of TLR4, thereby preserving the intestinal integrity 241,

Administration of indole-3-pyruvic acid (I3Py) to mice with CD4* T cell-induced colitis led to an increase in the
amount of IL-10-producing T cells, while the number of Thl cells in the mucosa was decreased, resulting in a

reduction in colitis symptoms 2],

In a co-culture of murine-derived colonic spheroids and murine bone marrow-derived macrophages (BMDMSs),
indole-3-acrylic acid (I3Acr) promoted IL-10 secretion while suppressing TNF-a production upon stimulation with
LPS, via activation of AHR. This stimulated the expression of the mucin protein coding gene, Muc2, which may
help to protect the intestinal epithelium. When human peripheral blood mononuclear cells (PBMCs) were treated
with 13Acr, a reduction in IL-13 and IL-6 was observed, upon LPS stimulation. Moreover, not only was AHR
activation reproduced in the human cell line, activation of the anti-inflammatory Nrf2—-ARE pathway was observed.
Using these human PBMCs in the co-culture, I13Acr treatment promoted important anti-inflammatory and anti-
oxidant effects, by upregulating Nrf2- and AHR-pathway target genes and genes related to the biosynthesis

glutathione (GSH), an important anti-oxidant that protects cells from oxidative stress 29,

| 3. Urolithins

Urolithins are gut microbial metabolites of ellagic acid, a hydrolysis product of ellagitannins (Figure 2). Both ellagic
acid and ellagitannins are naturally found in various fruits, nuts, and seeds (e.g., pomegranate, raspberry,
strawberry, almond, and walnut) %9 Several members of the Actinobacteria (Table 1) have been found to
metabolize ellagic acid into particular urolithins, which differ by the number and the positions of hydroxyl groups.
For example, Gordonibacter urolithinfaciens and Gordonibacter pamelaeae are able to produce urolithin C (UrC),
but are not capable of further dehydroxylation 2B Urolithin A (UrA) and urolithin B (UrB) are produced by

Bifidobacterium pseudocatenulatum, whereas isourolithin A (iUrA) is produced by Ellagibacter isourolithinifaciens
[21]27][28]
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Figure 2. Structures of ellagic acid and several urolithins produced by the gut microbiota.

A comparison between the effects of pomegranate extract (PE) and UrA on DSS-induced colitis in rats showed that
both were able to decrease levels of the pro-inflammatory mediators nitric oxide (NO) and prostaglandin E, (PGE))
in colonic mucosa, by downregulating the enzymes responsible for their production: inducible nitric oxide synthase
(INOS), cyclooxygenase 2 (COX-2), and prostaglandin E synthase (PTGES). However, only in the case of UrA
administration was the colonic architecture protected. Additionally, UrA was able to significantly downregulate the
pro-inflammatory cytokines IL-1 and IL-4, and cluster of differentiation 40 (CD40), a receptor protein involved in

immune and inflammatory signaling pathways [221.

It was also observed that less UrA was produced from PE in colitic rats compared to healthy rats, suggesting that
UrA production from gut microbiota, which might be absent in inflammation, plays a protective role against colitis.
During colitis, UrA itself had to be administered in order to benefit from the anti-inflammatory effects. Another
protective effect of UrA might be via an observed increase in the abundance of Lactobacilli, Bifidobacteria, and
Clostridia taxa, which have been shown to prevent inflammation in IECs in response to pathogenic Enterobacteria
(201 Moreover, an increase in E. coli, observed after DSS treatment, was found to be lower in the rats that received
UrA 1221,

Several in vitro studies have been performed in an attempt to reveal a more detailed mechanism explaining the
anti-inflammatory actions of UrA. The production of pro-inflammatory mediators was strongly reduced by UrA in
LPS-stimulated RAW264 macrophages. UrA was found to inhibit the phosphorylation of protein kinase B (Akt) and
c-Jun, effectively suppressing the pro-inflammatory PI3-K/Akt/NF-kB and JNK/AP-1 signaling pathways. This
meant the downstream production of pro-inflammatory mediators (TNF-a, IL-6, and NO) was also suppressed.
Notably, UrA appeared to also inhibit NADPH oxidase (NOX), which is largely responsible for production of reactive
oxygen species (ROS) in activated macrophages, presenting another possible mechanism for inhibiting the

activation of the pro-inflammatory transcription factors NF-kB and AP-1 [23],

iUrA, UrB, and UrC also display anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages, although the
effects are inferior to UrA. The urolithins were shown to decrease the DNA-binding activity of the NF-kB p50
subunit, as well as the nuclear translocation of the p65 subunit, resulting in lower levels of TNF-a, IL-13, IL-6,
iNOS, and NO [2425]  Additionally, UrA has been shown to promote anti-inflammatory effects in human
macrophages and neutrophils, which was attributed to an observed induction of extracellular signal-regulated
kinase 1 and 2 (ERK1/2) phosphorylation [23],
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Besides the anti-inflammatory properties and modulation of the microbiota, UrA can also improve gut health by
enhancing the intestinal barrier function. UrA was shown to activate AHR and Nrf2, which leads to the upregulation
of the tight junction proteins claudin 4, occludin, and zonula occludens-1 (ZO-1). Treatment with UrA decreased gut
permeability in mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, and reduced both local and
systemic inflammation. When UrA was administered prior to TNBS-administration, the development of colitis was

prevented. Finally, chronic and acute DSS-induced colitis were ameliorated by UrA treatment 28],
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