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A disturbed interaction between the gut microbiota and the mucosal immune system plays a pivotal role in the

development of inflammatory bowel disease (IBD).

microbial metabolites  gut  inflammation

1. Introduction

Inflammatory bowel disease (IBD) is an idiopathic disease affecting the gastrointestinal (GI) tract and can be

divided into two main subcategories: Crohn’s disease (CD) and ulcerative colitis (UC). Both CD and UC lead to

poor quality of life and psychological distress for patients, and produce significant pressure on healthcare systems

by their relatively high morbidity. Genetic and environmental factors are known to increase the risk of IBD and may

predispose certain individuals or populations to developing the disease. Prevalence of IBD has always been

relatively high in Europe and North America, but is now also on the rise in industrializing countries in Asia, Africa,

and South America .

Despite the lack of full understanding of the pathophysiology of IBD, the majority of available reports suggest a

dysregulation between the intestinal microbiota and the host immune system (i.e., loss of immune tolerance) to be

one of the underlying causes. The innate immune system in the intestinal mucosa responds to the microbiota

and/or antigens by promoting inflammation, which recruits the adaptive immune system and leads to a more

severe and long-lasting inflammatory state, as well as deterioration of the intestinal barrier integrity. The latter leads

to translocation of microbiota and/or antigens into the mucosa, further exacerbating the mucosal inflammatory

response, thereby creating a vicious circle .

Currently used pharmacological interventions are aimed at combatting the characteristic flareups of intestinal

inflammation. The most effective drugs are corticosteroids and tumor necrosis factor (TNF) inhibitors. However, the

former cannot be used for extended periods of time due to serious side effects (e.g., Cushing’s syndrome), and the

latter has a significant amount of primary and secondary non-responders, along with serious side effects .

Fecal microbiota transplant (FMT) is another, experimental, form of IBD treatment. A recent meta-analysis found

that 54% of IBD patients showed a clinical response to FMT, and 37% demonstrated clinical remission, while 29%

suffered from adverse events . Generally, the adverse events following FMT are mild and subside within 24 h, but

more serious events, such as IBD flareups, infections, colectomy, pancreatitis, and death are also reported,

although less frequently .
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Despite the promising remission rates of this IBD treatment, which is still in its infancy, the main motive against

FMT is that the treatment is considered to be a black box. The outcome and safety of the treatment is influenced by

a myriad of factors (e.g., host genotype, specific type of microbiota imbalance, type and stage of IBD, route of

administration, and factors related to the FMT donor), which remain obscure .

Considering the pivotal role of the gut microbiota in IBD, and that, ultimately, a major part of the communication

between the gut microbiota and the host is based on chemical signaling, this review aims to examine gut microbial

metabolites known to have anti-IBD effects. In order to positively implicate the role of microbial metabolism, only

compounds proven to be produced by the gut microbiota have been taken into consideration. Furthermore, the

metabolites discussed in this review originate from parental compounds found in common dietary sources (e.g.,

vegetables, fruits, and herbs), and have either been shown to improve colitis symptoms in vivo, affect signaling

pathways involved in the pathophysiology of IBD in vitro, or both. The relevant data are summarized in Table 1.

Table 1. Overview of metabolites, bacterial species currently known to produce these metabolites, and

experimental models used to assess anti-IBD effects.

Microbial Metabolite Parental
Compound Phylum Species Experimental

Model Ref.

Indole-3-aldehyde (I3Al)

Tryptophan Firmicutes
Lactobacillus reuteri

Lactobacillus
murinus

in vitro,
in vivo

Indole-3-propionic acid
(I3Pr)

Tryptophan Firmicutes

Peptostreptococcus
russellii

Peptostreptococcus
anaerobius

Peptostreptococcus
asaccharolyticus

Clostridium
sporogenes
Clostridium
botulinum

Clostridium
caloritolerans
Clostridium

paraputrificum
Clostridium
cadaveris

in vitro,
in vivo

Indole-3-pyruvic acid

Tryptophan Firmicutes Clostridium
sporogenes

in vitro,
in vivo
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Microbial Metabolite Parental
Compound Phylum Species Experimental

Model Ref.

(I3Py)

Indole-3-acrylic acid
(I3Acr)

Tryptophan Firmicutes

Peptostreptococcus
russellii

Peptostreptococcus
anaerobius
Clostridium
sporogenes

in vitro

Urolithin A (UrA)

Ellagic acid Actinobacteria
Bifidobacterium

pseudocatenulatum
in vitro,
in vivo

Isouroithin A (iUrA)

Ellagic acid Actinobacteria
Ellagibacter

isourolithinifaciens in vitro

Urolithin B (UrB)

Ellagic acid Actinobacteria
Bifidobacterium

pseudocatenulatum in vitro

Urolithin C (UrC)

Ellagic acid Actinobacteria

Gordonibacter
urolithinfaciens
Gordonibacter

pamelaeae

in vitro

Enterolactone (EL)

Enterodiol (ED)

Lignans

Firmicutes

Lactobacillus
gasseri

Lactobacillus
salivarius

Clostridium
scindens

Lactonifactor
longoviformis

Peptostreptococcus
productus

in vitro

Actinobacteria Bifidobacterium
bifidum
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Microbial Metabolite Parental
Compound Phylum Species Experimental

Model Ref.

Bifidobacterium
catenulatum

Bifidobacterium
pseudolongum
Bifidobacterium

adolescentis
Eggerthella lenta

Quercetin

Quercitrin Fusobacteria
Fusobacterium K-

60
in vitro,
in vivo

Rutin

Firmicutes

Enterococcus
avium

Lactobacillus
acidophilus

Lactobacillus
plantarum

Lachnoclostridium
spp.

Eisenbergiella spp.
Blautia sp. in vitro,

in vivo

Actinobacteria
Bifidobacterium

dentium

Bacteroidetes

Bacteroides
uniformis

Bacteroides ovatus
Parabacteroides

distasonis

Protocatechuic acid
(PCA)/3,4-

dihydroxybenzoic acid

3,4-dihydroxyphenylacetic
acid (DHPA)

3,4-

Flavonols
Flavan-3-ols

Flavones
Anthocyanins

Firmicutes Eubacterium
oxidoreducens
Eubacterium

ramulus
Enterococcus
casseliflavus

Flavonifractor plautii
Catenibacillus

scindens
Butyrivibrio spp.

in vitro,
in vivo
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Microbial Metabolite Parental
Compound Phylum Species Experimental

Model Ref.

dihydroxyphenylpropionic
acid (DHPP)

Gallic acid (GA)/3,4,5-
trihydroxybenzoic acid

Anthocyanins

Firmicutes
Lactobacillus

plantarum
Lactobacillus casei

in vitro,
in vivo

Actinobacteria
Bifidobacterium

lactis

3,4-dihydroxyphenyl-γ-
valeric lactone (DHPVL)

Flavan-3-ols
Proanthocyanins

Firmicutes

Lactobacillus
plantarum
Clostridium
coccoides

Flavonifractor plautii in vitro

Actinobacteria
Eggerthella lenta
Eggerthella sp.

Dihydroberberine

Berberine

Firmicutes

Enterococcus
faecium

Enterococcus
faecalis

Staphylococcus
aureus

Staphylococcus
epidermis

in vitro , in
vivo

Proteobacteria

Escherichia coli
Enterobacter

cloacae
Klebsiella

pneumoniae

Oxyberberine

Berberine

Firmicutes

Lactobacillus
acidophilus

Streptococcus
aureus

in vivo
Actinobacteria

Bifidobacterium
longum

Proteobacteria
Escherichia coli
Pseudomonas

aeruginosa
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Microbial Metabolite Parental
Compound Phylum Species Experimental

Model Ref.

Compound K (CK)

Ginsenoside
Rb1

Firmicutes Eubacterium

in vitro,
in vivo

Actinobacteria Bifidobacterium

Bacteroidetes Bacteroides

Fusobacteria Fusobacterium

Due to intrinsic differences in the interindividual dietary and microbiota compositions, especially the disturbed

microbiota of IBD patients, such metabolites may not be produced universally. Identifying these metabolites can

help to overcome such intrinsic differences, and, ideally, helps making gut health less dependent on changes in the

microbiota composition.

2. Indoles

Indole derivatives (Figure 1) are mainly produced by Lactobacilli, Clostridia, Peptostreptococci, Bifidobacteria, and

Bacteroides (Table 1), as metabolites of the amino acid tryptophan (Trp) . Gut microbial Trp metabolites are

often found to be agonists of the aryl hydrocarbon receptor (AHR), of which lower levels are observed in IBD

patients, compared to healthy subjects . IBD symptoms and pro-inflammatory cytokine levels were found to be

greater in AHR knockouts in murine models of dextran sodium sulfate (DSS)-induced colitis . Other AHR ligands

are known to reduce colitis symptoms .

Figure 1. Structures of L-tryptophan and several indole metabolites produced by the gut microbiota.

AHR activation by the gut microbial Trp metabolite indole-3-aldehyde (I3Al) was shown to stimulate mucosal

lymphocytes to secrete interleukin 22 (IL-22), an anti-inflammatory cytokine known to play an important role in

protecting mice from developing IBD . Increased IL-22 secretion causes signal transducer and activator of

transcription 3 (STAT3) phosphorylation, which ultimately leads to faster proliferation of intestinal epithelial cells

(IECs), contributing to the recovery of damaged intestinal mucosa following DSS-induced colitis .

Indole-3-propionic acid (I3Pr) also activates the AHR receptor, which induced IL-10 receptor expression in cultured

IECs. Oral administration of I3Pr was shown to improve DSS-induced murine colitis symptoms, which was

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[96][98]

[99]

[10]



Gut Microbiota | Encyclopedia.pub

https://encyclopedia.pub/entry/10720 7/17

attributed to increased signaling of the anti-inflammatory cytokine IL-10, due to higher expression of IL-10

receptors .

Additionally, I3Pr was found to act as a ligand for the pregnane X receptor (PXR) in vivo, and led to lower TNF-α

levels together with higher levels of mRNA coding for tight junction proteins, thus contributing to intestinal integrity.

With the help of knockout experiments, it was determined that activation of PXR modulates Toll-like receptor 4

(TLR4) signaling, which is known to activate nuclear factor κB (NF-κB), a pro-inflammatory transcription factor.

Accordingly, oral administration of I3Pr could activate PXR in the colon, which prevents lipopolysaccharide (LPS)-

induced inflammation via modulation of TLR4, thereby preserving the intestinal integrity .

Administration of indole-3-pyruvic acid (I3Py) to mice with CD4  T cell-induced colitis led to an increase in the

amount of IL-10-producing T cells, while the number of Th1 cells in the mucosa was decreased, resulting in a

reduction in colitis symptoms .

In a co-culture of murine-derived colonic spheroids and murine bone marrow-derived macrophages (BMDMs),

indole-3-acrylic acid (I3Acr) promoted IL-10 secretion while suppressing TNF-α production upon stimulation with

LPS, via activation of AHR. This stimulated the expression of the mucin protein coding gene, Muc2, which may

help to protect the intestinal epithelium. When human peripheral blood mononuclear cells (PBMCs) were treated

with I3Acr, a reduction in IL-1β and IL-6 was observed, upon LPS stimulation. Moreover, not only was AHR

activation reproduced in the human cell line, activation of the anti-inflammatory Nrf2–ARE pathway was observed.

Using these human PBMCs in the co-culture, I3Acr treatment promoted important anti-inflammatory and anti-

oxidant effects, by upregulating Nrf2- and AHR-pathway target genes and genes related to the biosynthesis

glutathione (GSH), an important anti-oxidant that protects cells from oxidative stress .

3. Urolithins

Urolithins are gut microbial metabolites of ellagic acid, a hydrolysis product of ellagitannins (Figure 2). Both ellagic

acid and ellagitannins are naturally found in various fruits, nuts, and seeds (e.g., pomegranate, raspberry,

strawberry, almond, and walnut) . Several members of the Actinobacteria (Table 1) have been found to

metabolize ellagic acid into particular urolithins, which differ by the number and the positions of hydroxyl groups.

For example, Gordonibacter urolithinfaciens and Gordonibacter pamelaeae are able to produce urolithin C (UrC),

but are not capable of further dehydroxylation . Urolithin A (UrA) and urolithin B (UrB) are produced by

Bifidobacterium pseudocatenulatum, whereas isourolithin A (iUrA) is produced by Ellagibacter isourolithinifaciens

.
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Figure 2. Structures of ellagic acid and several urolithins produced by the gut microbiota.

A comparison between the effects of pomegranate extract (PE) and UrA on DSS-induced colitis in rats showed that

both were able to decrease levels of the pro-inflammatory mediators nitric oxide (NO) and prostaglandin E  (PGE )

in colonic mucosa, by downregulating the enzymes responsible for their production: inducible nitric oxide synthase

(iNOS), cyclooxygenase 2 (COX-2), and prostaglandin E synthase (PTGES). However, only in the case of UrA

administration was the colonic architecture protected. Additionally, UrA was able to significantly downregulate the

pro-inflammatory cytokines IL-1β and IL-4, and cluster of differentiation 40 (CD40), a receptor protein involved in

immune and inflammatory signaling pathways .

It was also observed that less UrA was produced from PE in colitic rats compared to healthy rats, suggesting that

UrA production from gut microbiota, which might be absent in inflammation, plays a protective role against colitis.

During colitis, UrA itself had to be administered in order to benefit from the anti-inflammatory effects. Another

protective effect of UrA might be via an observed increase in the abundance of Lactobacilli, Bifidobacteria, and

Clostridia taxa, which have been shown to prevent inflammation in IECs in response to pathogenic Enterobacteria

. Moreover, an increase in E. coli, observed after DSS treatment, was found to be lower in the rats that received

UrA .

Several in vitro studies have been performed in an attempt to reveal a more detailed mechanism explaining the

anti-inflammatory actions of UrA. The production of pro-inflammatory mediators was strongly reduced by UrA in

LPS-stimulated RAW264 macrophages. UrA was found to inhibit the phosphorylation of protein kinase B (Akt) and

c-Jun, effectively suppressing the pro-inflammatory PI3-K/Akt/NF-κB and JNK/AP-1 signaling pathways. This

meant the downstream production of pro-inflammatory mediators (TNF-α, IL-6, and NO) was also suppressed.

Notably, UrA appeared to also inhibit NADPH oxidase (NOX), which is largely responsible for production of reactive

oxygen species (ROS) in activated macrophages, presenting another possible mechanism for inhibiting the

activation of the pro-inflammatory transcription factors NF-κB and AP-1 .

iUrA, UrB, and UrC also display anti-inflammatory effects in LPS-stimulated RAW264.7 macrophages, although the

effects are inferior to UrA. The urolithins were shown to decrease the DNA-binding activity of the NF-κB p50

subunit, as well as the nuclear translocation of the p65 subunit, resulting in lower levels of TNF-α, IL-1β, IL-6,

iNOS, and NO . Additionally, UrA has been shown to promote anti-inflammatory effects in human

macrophages and neutrophils, which was attributed to an observed induction of extracellular signal-regulated

kinase 1 and 2 (ERK1/2) phosphorylation .
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Besides the anti-inflammatory properties and modulation of the microbiota, UrA can also improve gut health by

enhancing the intestinal barrier function. UrA was shown to activate AHR and Nrf2, which leads to the upregulation

of the tight junction proteins claudin 4, occludin, and zonula occludens-1 (ZO-1). Treatment with UrA decreased gut

permeability in mice with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, and reduced both local and

systemic inflammation. When UrA was administered prior to TNBS-administration, the development of colitis was

prevented. Finally, chronic and acute DSS-induced colitis were ameliorated by UrA treatment .
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