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There is still a lack of reliable and specific markers for the detection and staging of thyroid cancer. Fine needle aspiration

biopsy is the current diagnostic gold standard but indeterminate results or an inability to discriminate different carcinomas,

requires additional surgical procedures to obtain a final diagnosis. Metabolomics has the potential to identify molecular

markers of thyroid cancer and identify novel metabolic profiles of the disease, which can, in turn, help in the classification

of pathological conditions and lead to a more personalised therapy, assisting in the diagnosis and in the prediction of

cancer behaviour. This review considers the current results in thyroid cancer biomarker research with a focus on

metabolomics.
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1. Introduction 

Compared to proteomics and transcriptomics, thyroid cancer metabolomic studies have featured in relatively few papers

over the last ten years. However, recent technical improvements in both hardware (mass spectrometers with higher mass

accuracy, SWATH data-independent MS acquisition and ion-mobility MS) and software (improvement of metabolite

identification databases, as well as metabolite biological integration and NMR automatic identification and quantification)

have allowed metabolomics to emerge as a standalone method for profiling of thyroid cancer samples . Although this

review is focused on NMR and MS metabolomics, it is worth mentioning that other techniques could also be applied.

Raman spectroscopy also has an interesting diagnostic potential: by analysing the vibrational modes of chemical bonds, it

can identify non-specific molecules, such as proteins, lipids or nucleic acids, that may just be enough to distinguish

between malignant and benign samples .

2. The Early Years—NMR Spectroscopy

One of the first metabolomic studies that attempted to address the lack of diagnostic power in thyroid cancer was in 1994

and consisted of a H NMR study of 19 malignant and 24 benign patient tissue samples (Table 1). The authors were able

to identify triglycerides and lysine as potential discriminatory metabolites, but the method’s specificity was only 52% .

Two years later, the same authors applied two-dimensional NMR spectroscopy, which improved the resolution of

metabolite signals, allowing a higher number of metabolites to be monitored. However, this only led to a moderate

improvement in the method specificity .

By the beginning of the 21st century, NMR spectroscopy had emerged as the main technique for performing metabolomic

analysis. The first proof-of-concept studies in thyroid cancer used either magnetic resonance spectroscopy imaging

(MRSI)  or H NMR spectroscopy on excised tissue samples or deproteinised tissue extracts . One interesting

feature of the study of King et al. is that it was one of the first studies to identify choline as a metabolite whose levels were

changed in thyroid cancer . This was confirmed in subsequent studies and choline has since often been proposed as a

thyroid cancer biomarker. However, it should be emphasised that, while MRSI is non-invasive, the standard 1.5T systems

in current clinical use are limited to detecting a handful of highly abundant metabolites, such as choline, within relatively

large voxel volumes (≥1 mL) .

The first high-resolution magic angle spinning (HR-MAS) NMR metabolomics study  and the first MS study  that we

found in our literature search were both published in 2011. HR-MAS allows spectra to be obtained from intact biopsy

samples of 10–40 μL volumes with signal resolution approaching that of high-resolution NMR spectra of tissue extracts.

The study of Jordanet al., although using a limited number of samples, had the benefit of being able to compare results of

tissues with those of aspirates. The study of Yao et al. analysed the serum of 30 papillary thyroid carcinomas (malignant),

80 nodular goitres (benign) and 30 healthy controls and found that malignant and benign samples were correlated with

changes in lipid metabolism, with 3-hydroxybutyric acid, an intermediate product of fatty acid metabolism, particularly

important. One year later, the group of Prof. Caldarelli published two similar papers  using HR-MAS NMR on tissue
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samples. These revealed increased phenylalanine, taurine and lactate levels, and a decrease in choline and choline

derivatives and myo- and scyllo-inositol levels in malignant tissues compared to benign. However, when these data were

modelled using orthogonalised partial least-squares discriminant analysis (OPLS-DA) their diagnostic power was found to

be limited, as indicated by the area under the curve (AUC) of the receiver operating characteristic (ROC) of 0.77 .

In another study, H HR-MAS NMR of tissue, in conjunction with H NMR from plasma samples, was used to classify

papillary thyroid microcarcinomas, a subtype of papillary carcinoma. By using nine significantly changed metabolites from

plasma (glucose, mannose, pyruvate, 3-hydroxybutyrate, valine, tyrosine, proline, lysine and leucine), they were able to

achieve good sensitivity and specificity with an AUC of 0.992 . This technique was more recently used in FNABs of

thyroid tissues collected post-surgically and found statistically relevant metabolites in indeterminate lesions

(myo- and scyllo-inositol, serine, citrate, leucine, alanine, phenylalanine and tyrosine) . While HR-MAS NMR can

provide H NMR spectra of semisolids with a comparable spectral resolution to liquid-state NMR, it requires high spinning

rates of several kHz. This may not only disrupt the tissue structure but can also result in the leakage of potentially

infectious material. Furthermore, HR-MAS probes are costly, while incomplete suppression of the water signal can also

interfere with the quantification of some metabolites. Therefore, H-NMR spectroscopy of tissue extracts has continued to

be widely used . In the study of Deja et al., four metabolites were considered as selective biomarkers

of thyroid cancer, namely creatine, myo- and scyllo-inositol and uracil, but the thyroid cancer group was comprised of only

12 patients . The study by Metere at al., although with only 14 patients, observed differences in cancer and healthy

tissue in lactate, phenylalanine, citrate, myo-inositol and threonine . Tian et al. were able to distinguish malignant

thyroid lesions from benign with a ROC of 0.88 . On the other hand, Ryoo et al. from the aspirates alone could

distinguish seven metabolites (lactate, choline, O-phosphocholine, glycine, citrate, glutamate and glutamine) with ROCs

ranging 0.64–0.85 . Seo et al. attempted to predict lymph node metastasis in papillary carcinoma patients, but they

were not able to discriminate the presence of metastasis . In the study of Li et al., 15 metabolites were found to be

differentiated using two OPLS-DA models .

Although NMR spectroscopy has been a valuable technique for several metabolomic studies so far, it has had a strong

competition by MS in the last few years. One of the reasons is its lower sensitivity in comparison to MS. However, NMR

spectroscopy presents advantages in relation to MS, by being highly reproducible and capable of performing absolute

quantification of the metabolite’s concentrations. Furthermore, it can detect compounds that are less easily detected by

MS, such as sugars, organic acids, alcohols and other highly polar compounds, and it is well suited for studying intact

tissues, organs and other solid or semi-solid samples through solid-state NMR and HR-MAS NMR. However, metabolite

identification is not straightforward given the complexity of the H-NMR spectra but can be more easily overcome by

databases such as the Human Metabolome Database (HMDB) , or the use of (semi)automatic identification and

quantitation tools such as BAYESIL  or Chenomx NMR Suite from Chenomx Inc. This complexity comes mainly from

peak overlap, which could be ameliorated by the use of stronger magnets, increasing spectral dispersion. Presently,

commercial NMR spectrometers can achieve magnetic fields of 28.2 Tesla, the equivalent to a H Larmor frequency of 1.2

GHz, but unfortunately, the cost of such equipment is by now detrimental to their use, with the 600-MHz NMR

spectrometers being the best cost-sensitivity/resolution compromise. The more frequent application of selective excitation

techniques on specific spectral regions and of multidimensional NMR experiments such as total correlation spectroscopy

(TOCSY) and J-resolved spectroscopy (J-Res)  could also help in resolving overlapping peaks. Another exciting

development in NMR metabolomics is in probes design, with microprobes for MAS enabling an enhancement of sensitivity

while reducing the sample size to a few microliters, and cryoprobes significantly increasing signal sensitivity.

3. The Rise of Mass Spectrometry

Even though the sensitivity of NMR spectroscopy has significantly improved over the last few years with a metabolite

quantification threshold of ≥1 µM, it remains far less than that of MS . With the improvements in instrumentation,

experimental methods, software and spectral databases, the use of mass spectrometry in the field of metabolomics has

grown considerably in recent years, including its application to metabolomics studies of thyroid cancer (Figure 1). Liquid

chromatography coupled to mass spectrometry (LC-MS) was first used to study thyroid cancer in serum samples from 30

papillary thyroid carcinoma, 80 benign thyroid nodules and 30 healthy controls . 3-hydroxybutyric acid, an intermediate

product of fatty acid metabolism, was found to be higher in the papillary thyroid carcinoma group compared to either

benign or healthy groups. In 2017, Zhou et al. applied a data-independent acquisition (DIA) workflow for

metabolomics . Unlike the traditional data-dependent acquisition (DDA) strategies, this acquisition mode has higher

metabolite coverage by using mass range windows to obtain the fragmentation spectra. It is expected that this innovative

way of LC-MS metabolite profiling will be translated into metabolomic studies . However, alternative approaches can be

used in thyroid cancer metabolomics; for example, an amino acid analyser was used on the plasma of thyroid cancer

patients and found significantly higher levels of methionine, leucine, tyrosine and lysine . In addition to the analysis of
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water-soluble metabolites, several lipid species have also been identified as putative biomarkers for resolving malignant

and benign thyroid lesions. Ishikawa et al. combined imaging mass spectrometry with a matrix-assisted laser

desorption/ionisation tandem time-of-flight (MALDI-TOF/TOF) instrument to identify and describe the distribution of

individual biomolecules in a tissue section . With this approach, they revealed that phosphatidylcholine (34:1) and

(34:2) and sphingomyelin (34:1) were present in significantly higher amounts in papillary thyroid carcinoma when

compared to normal tissue from the same patients. A similar approach was applied to tissue and serum samples collected

from subjects with malignant or benign lesions (tissue), as well as healthy subjects with no thyroid lesions (serum). In this

case, it was found that a biomarker panel consisting of phosphatidic acid (36:3) and sphingomyelin (34:1) could

distinguish malignant cancer from benign, with an AUC value of 0.961, a sensitivity of 87.8% and a specificity of 92.3%

. Zhang et al. observed increased relative abundances of ceramides and specific glycerophosphoinositols using 2D

desorption electrospray ionisation mass spectrometry to image thyroid cancer in lymph node tissues . Meanwhile,

Huanget al. showed a higher expression of phenylalanine, leucine and tyrosine in the tumour region with a gradual level

decrease from tumour to the stromal and normal tissues and the inverse profile of creatinine . Another study was able

to profile lipids directly in formalin-fixed tissue sections by MALDI-Q-Ion Mobility-TOF-MS, demonstrating that this

technique could be complementary to the present histological methods . These studies demonstrate the potential of

spatially resolved metabolomics to provide meaningful and clinically relevant information from biopsy samples that are by

nature highly heterogeneous.

Figure 1. Number of papers of untargeted metabolomics studies in thyroid cancer using magnetic resonance

spectroscopy and high-resolution liquid and solid state NMR spectroscopy (MR) and mass spectrometry (MS). Papers

found in the PubMed and Web of Science on April 16th 2020. Criteria—Pubmed: (((thyroid neoplasms[MeSH Terms]) OR

(metabolomic*[MeSH Terms])) AND (metabolom*[MeSH Terms])) AND (thyroid[Title/Abstract]) Filters: Humans, English

and (thyroid[Title/Abstract]) AND ((cancer*[Title/Abstract]) OR (carcinom*[Title/Abstract]) OR (malignant[Title/Abstract]))

AND ((metabolom*[Title/Abstract]) OR (metabolit*[Title/Abstract])) Filters: Humans, English. Web of Science: ((TI =

(thyroid AND (cancer OR carcinom* OR neoplasm* OR malignant*) AND (metabolomic* OR metabonom* OR

metabolit*)))) AND English AND Article. Note: Reviews, other non-related papers, response to treatment or other omics

studies that were not untargeted metabolomics were excluded.

The year 2015 saw a peak in the number of metabolomic publications, with gas chromatography-mass spectrometry (GC-

MS) being widely reported (Figure 1). This technique was first used in combination with a H NMR metabolomics study to

measure fatty acid abundances . They showed higher levels of (C14:0), (C16:0) and (C18:3n3) fatty acids and lower

levels of (C20:3n6) fatty acids in malignant compared to benign tissues. Since then, other GC-MS metabolomics studies

have been published that identified metabolites in carbohydrate metabolism, including glucose, fructose, galactose,

mannose, 2-keto-D-gluconic acid and rhamnose that were decreased in papillary thyroid carcinoma, which is consistent

with an upregulation of the glycolysis and pentose phosphate pathways . These results are consistent with cancer

tissues requiring higher rates of cytosolic ATP production and increased amounts of NADPH and precursors for

biosynthesis of nucleotides and other cell components. Another study combined the metabolic profiles obtained by GC-

MS and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS), resulting in a total of 195 detected

metabolites. From these metabolites, they concluded that purine and pyrimidine metabolism was higher in papillary

thyroid carcinoma, as well as taurine and hypotaurine levels. However, another study that used GC-MS and UPLC-MS

identified a decrease in galactinol, melibiose and melatonin in papillary thyroid carcinoma with an AUC of 0.96 .

In an attempt to discriminate between different types of thyroid cancer, and some of their most common variants,

Wojakowska et al. analysed five different types of thyroid malignancies (follicular, papillary classical variant, papillary

follicular variant, medullary and anaplastic cancer), as well as benign follicular adenoma and normal thyroid tissue .

They found an upregulation of lactic acid and downregulation of several fatty acids and their esters in cancer versus
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normal tissue, as well as upregulation of myo-inositol phosphate, succinic acid and certain fatty acids and their esters in

malignant versus benign tissue. Moreover, the classical variant of papillary carcinoma could be distinguished from

follicular thyroid lesions by lower levels of gluconic acid and higher amounts of citric acid. In addition, follicular carcinoma

could be distinguished from the follicular variant of papillary carcinoma by changes in the levels of decanoic acid ester. It

would be important to promote more studies which discriminate between different types of thyroid cancer since cancer

classification is essential to assess prognosis and select an adequate treatment. Moreover, follicular adenoma, follicular

carcinoma and the follicular variant of papillary carcinoma can be hard to distinguish histologically, so metabolomics can

represent an important tool to assist in their differentiation. Regarding more specific studies, the serum of 37 patients with

distant metastasis was compared with the serum of 40 patients from an ablation group, where it was found that serum

asparagine, gamma-amino butyric acid (GABA), aminooxyacetic acid and 4-deoxypyridoxine increased in the distant

metastasis group while pyroglutamic acid was decreased . A GC-MS metabolomic study was also performed on a

model system of thyrospheres, containing cancer stem-like cells, from B-CPAP and TPC-1 cell lines derived from papillary

thyroid cancer of the BRAF-like expression profile class, which showed significant differences in Krebs cycle

intermediates, amino acids, cholesterol and fatty acids content when compared to non-cancer stem-like cells . Besides

in vivo measurements, it may be interesting to characterise individual cell types found within the tumour, given the

heterogeneity of cancer cells, to therapeutically target those that are contributing the most to the cancer phenotype. The

papillary thyroid cancer-derived cells also showed altered redox homeostasis as well as increased levels of intracellular

oxidant species, a common hallmark of cancer, since ROS homeostasis needs to be tightly regulated, otherwise it can

promote an altered metabolism. The most perturbed metabolic phenotype was found in B-CPAP cells, which are

characterised by the most aggressive genetic background , demonstrating the connection between genetic background

and cancer metabolism and consequently phenotype. Once again, we observe the importance of combining information

from genetics to metabolism for a better understanding of this disease.

The field of mass spectrometry-based metabolomics has been facing a significant evolution with more sensible, higher

dynamic range, higher data acquisition speeds and different acquisition modes equipment. Nonetheless, data acquisition

is not the only critical point. Data analysis with better algorithms for peak detection, alignment and analysis; better

software tools that integrate these algorithms and further statistical analysis; and better databases with information on

each compound, such as possible adducts and multiple retention times (XCMS/Metlin and HMDB), are pushing the field

forward at higher speeds. More specifically, identification of metabolites on a large scale with the assistance of software

tools (Elucidata El MAVEN  and Sciex Accurate Mass Metabolite Spectral Library with MasterView™ software) or using

sample preparation kits (IROA  Quantitation Kits) will advance even further mass spectrometry as the go-to methodology

for metabolomics. Thyroid cancer profiling, in particular, will definitely benefit from these advances. Moreover, the

technical advances for mass spectrometers have allowed even for their use in the clinical setting. Take, for example, an

automated and biocompatible handheld mass spectrometer that can quickly and non-destructively assess if at the pointed

location cancerous tissue is present, which allows surgeons to accurately define the tumour margins prior to excision .

4. Peripheral Fluids

Most of the publications for thyroid cancer metabolomics to date have focused on the direct analysis of the thyroid gland.

However, with the aim of avoiding the invasive biopsy of the thyroid, there have also been studies that looked for

associations between thyroid malignancies and plasma  or serum metabolites . A study of

children and adolescents with thyroid cancer identified an increase in the levels of serum leucine, lactate, alanine, lysine,

acetate, glycine and choline and lower levels of glucose in papillary thyroid carcinoma samples versus benign by H NMR

spectroscopy, which is consistent with other works in adults . More recently, a plasma GC-MS study has suggested

sucrose as a discriminative compound between papillary thyroid cancer and multinodular goitre, which poses an

interesting question as to the influence of high sucrose sugar diets in the promotion of tumorigenesis . Another non-

invasive approach used capillary electrophoresis to analyse urine . In this case, the authors focused on the profiling of

urinary nucleosides, with inosine, N -methyl guanosine, N -N -dimethylguanosine and 1-methylguanosine being higher in

thyroid cancer patients when compared to healthy controls. In a study of paired blood and urine samples, it was shown

that, while metabolome data of each analyte could differentiate between healthy subjects and those with nodular lesions,

analysis of the combined datasets provided better predictive power . Another study, collecting both serum and urine,

indicated serum β-hydroxybutyrate, docosahexaenoic acid, 1-methyladenosine, pregnanediol-3-glucuronide, urinary

nicotinic acid mononucleotide and xanthosine as a potential biomarker panel for papillary thyroid cancer, using two

validation sets . Huang et al. integrated data of serum and plasma metabolites from six independent centres, having

had a total of 1540 serum-plasma matched samples and 114 tissues . The study was divided into a discovery phase,

composed of one centre and then the validation phase, with the rest of the samples from the other centres. They were

able to establish a panel of six biomarkers with an AUC of 98%, namely myo-inositol, α-N-phenylacetyl-L-glutamine,
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proline betaine, L-glutamic acid, lysophosphatidylcholine (18:0) and lysophosphatidylcholine (18:1), to distinguish between

healthy samples and papillary thyroid carcinoma. However, they were not able to distinguish cancer samples from benign

thyroid nodules. Another study compared the plasma lipidomic profiles of five commonly found cancers: liver, lung, gastric,

colorectal and thyroid . Interestingly, they found a distinct profile in thyroid cancer relative to all the other studied

cancers, selecting lysophosphatidylinositol (18:0) and (18:1) as specific to thyroid cancer only. Going beyond blood and

urine, a study of thyroid carcinoma patients and healthy controls revealed highly predictive differences in intestinal

microbiota genera and faecal metabolites . Finally, exhaled breath from 39 papillary thyroid carcinoma, 25 benign and

32 healthy volunteers was analysed by solid-phase microextraction GC-MS with (3-methyl-oxiran-2-yl)-methanol, 1,1,3-

trimethyl-3-(2-methyl-2-propenyl) cyclopentane and trans-2-dodecen-1-ol being identified as significantly changed in

papillary thyroid carcinoma versus benign .

The study of body fluids is important to give a broader overview of the disease depending on the compartmentalisation of

such fluids. For example, urine is highly dependent on food and liquid intake, while blood can have a more stable

metabolome. Biofluids imply non-invasive or minimally invasive collection when compared to tissues and reflect the

overall response of the patient to the disease. They have therefore the potential to be used in the monitoring of therapy

and cancer’s evolution. In the case of thyroid cancer diagnosis, it would be important to find a minor invasive method that

could complement the FNAB exam and would ultimately provide a faster and more accurate diagnosis of thyroid cancer.

Furthermore, omics profiles in these samples can bring us closer to precision medicine, where an individual’s

metabolomic fingerprint can assist the physician in therapy customisation.
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