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Acne represents a dermatologic condition with a high prevalence, being characterized by a complex pathogenesis. Its

high recurrence frequently encountered in clinical practice will affect the patient’s quality of life. Most of the treatment

algorithms require at least one topical formulation, being recommended to be applied on affected areas for a long period.

To treat such a versatile skin condition, smart topical vehicles capable of entrap anti-acne compounds can be considered

a good option, compared with conventional systems generally used at the moment. In this direction, microemulsions are

appreciated for their superior profile in matters of drug delivery, especially for challenging substances with hydrophilic or

lipophilic patterns. Designed as transparent and thermodynamically stable systems, with a small number of key

ingredients, microemulsion-based formulations were characterized in the present review as unique structures able to pass

the skin barrier and sustain a targeted therapy in acne pathology.
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1. Introduction

Observed as a sophisticated mantle, the skin is designed as a first line interface that binds our body with the external

environment . Its coordinative character for vital functions is associated with fragility and sensitivity . Each of these

features reflect our evolution from new born existence until elderly stage, being extremely well defined in the pathological

state, when the unveiled properties of the skin and its internal mechanisms will need special attention courtesy of patient

and his doctor . Dermatologic diseases are widespread over the world and have a high impact on the life quality of the

patient with both physical and psychosocial repercussions . The most encountered affections with a high prevalence

are: eczema, acne, psoriasis, fungal or viral skin affections, autoimmune conditions, ulcerative conditions, skin burns, skin

traumas, pigmentary disorders, keratinocyte carcinoma or malignant skin melanoma pathologies . In agreement with

the Global Burden of Disease Project , skin diseases occupied the fourth place in 2010 and 2013 as non-fatal skin

injuries. These are determined by genetic factors, pre-existent systemic diseases, geographical area and socioeconomic

influences such as the impairment of life quality because of the lack of access to medical care .

Acne is a common chronic skin condition and has been reported as one of the 10 most prevalent diseases worldwide. Its

recurrent character is frequently encountered in clinical cases . A proper treatment will always be suggested after a

right and conclusive diagnosis, as can be observed in Figure 1. Classically, skin signal is observed in a visual inspection

of the specialist. In order to increase the quality of acne diagnosis, modern classifying techniques based on convolutional

neural networks are focused on the imaging and differentiation of acne lesions from healthy tissue . By recognizing a

skin pattern and appreciating acne evolution, personalized treatments can be created based on classical or modern

pharmaceutical formulations, gently chosen to assure a targeted therapy.

Figure 1. Schematic representation concerning the impact of a right diagnosis for a personalized treatment in a

dermatologic disease.
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Numerous therapeutic approaches were initiated to enhance the bioavailability of dermatologic drugs at skin site in the

hope to overcome the barrier effect of stratum corneum. The avoidance of oral administration of systemic drugs is also

pursued, as well as attempts to integrate them in topical formulations .

Here, nanotechnology can put its signature, defining new ways to design proper formulations with superior therapeutic

outcomes . In the field of nanocolloids, microemulsions are appreciated as systems that can satisfy a high number of

exigencies in matter of drug delivery—ease of preparation using a small number of ingredients like oil, water, a surfactant

and a cosurfactant ; integration on this way of hydrophilic or lipophilic actives that can be solubilized in one of the

phases ; generation of clear and stable dispersions with nanometric particles that can pass through biological

membranes —are considered a suitable platform for nanoparticle synthesis . Furthermore, the use of biocompatible

sources of oils like vegetable oils , natural surfactants  or biopolymers  can place microemulsions in the category

of green alternatives in topical or systemic use of drugs with targeted action.

Early contributions in 1990s were focused on the projection of oral microemulsionate systems as vehicles based on

medium chain fatty acids and their salts, able to promote calcein absorption . For testosterone propionate, ample

solubilization screenings were performed to find the appropriate oil phase. It was concluded that oil-based solubilizer

agents are preparation key factors that can affect the internal behaviour of microemulsions and must be judiciously

studied and selected for preparation .

Multiple applications in biomedical field were hypothesized and studied considering as effective the delivery of

microemulsions in the human body. Several discoveries with positive results can be mentioned: in ophthalmology , for

ocular delivery of retinol  or sacha inchi oil for dry eye treatment ; intranasal delivery for zidovudine ; sublingual

delivery of insulin ; application of fusidic acid in wound healing ; vaginal delivery for fluconazole ; transdermal

drug delivery ; cosmetics ; self-microemulsifyied systems with in situ generation of microemulsion in biological fluids

for oral delivery . In topical therapy of dermatologic conditions, an increased solubility and bioavailability was obtained

for molecules like: cyclosporine in psoriasis ; ceramides for skin restructuration ; imiquimod in actinic keratosis or

basal cell carcinoma ; penciclovir , acyclovir for herpes virus simplex cutaneous infection ; and tenoxicam for

arthritis alleviation .

2. Microemulsions in a New Vision for an Optimized Acne Therapy

New modern formulations that contain actual anti-acne agents for potential dermatologic therapy represent better

alternatives that must be studied for integration in clinical practice. Here can be distinguished a class of vesicular

formulations which are defined as lipid-based nanosystems that include liposomes, transfersomes, niosomes, invasomes,

ethosomes, cubosomes, sphingosomes, aquasomes, ufasomes or Leci Plex systems . Besides these, superior

effects were discovered by formulating systems like hydrogels which can incorporate nanoparticles .

Liposomal formulations are spherical vesicles with a double lipophilic membrane based on phospholipids and cholesterol.

The lipidic envelope will surround a hydrophilic core, resulting in spherical vesicles . For the rest of vesicular systems

above mentioned, structural differences are specific considering the presence of non-ionic surfactants , cathionic

surfactants , alcohol , terpenes  or amphiphilic lipids  beside phospholipids and/or cholesterol found in

liposomes. The possibility to entrap hydrophilic or lipophilic substances is considered an advantage that led to multiple

designs of anti-acne formulations. Favorable results considering API solubilization, protection and release were observed

for liposomal formulations with tretinoin  or adapalene . For salicylic acid  or rhodomyrtone  positive results

were observed on bacterial inhibition. Other vesicular architectures were proposed as alternatives: transferosomes with

clindamycin , niosomes with dapsone , invasomes with dapsone , ethosomes with azelaic acid , cubosomes

with erythromycin  or LeciPlex with spironolactone .

Even if vesicular formulations are popular in this area of medical applications, several drawbacks may exist in their

projection and let us to orient our interest on a different class of vehicles: a dimensional range of 50 nm until 500 nm,

predisposing vesicles to hydrolytic and oxidative reactions; the presence of aggregative phenomena that can lead to

unexpected dimensional changes; and the methods of preparation are laborious and expensive .

The scientific literature studied revealed multiple examples based on the formulation, preparation, and evaluation of

microemulsions as ideal vehicles with multiple advantages for targeting anti-acne compounds, with positive results after

the evaluation process.

With an abundant pattern of studies and multiple applications in pharmaceutical domain, microemulsions and

nanoemulsions are modern colloidal dispersions with several advantages. The increase of bioavailability of active

substances can be obtained in this way. Both systems have common characteristics with classical emulsions, but the
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addition of a co-solvent named also cosurfactant will generate unique vehicles that are capable of resolving the limitations

of API integration in topical systems . With referrals to particle dimension for micro- and nanoemulsions, particle

dimension of 10–100 nm is specific for microemulsions, while in the case of nanoemuslions, particles dimension can

reach 200 nm . Other differences between them can be observed regarding the thermodynamic stability and the

preparation methods. If microemulsions are thermodynamically and kinetically stable having the property of spontaneous

generation, nanoemulsions are kinetically stable, but thermodynamically unstable systems. In the last case, the method of

preparation requires the use of high-pressure homogenizers or proper sonication methods .

Considering these statements in the matter of nanosystem differentiation, it can be appreciated that microemulsions are

fine systems with appropriate characteristics which will be further explained in what follows. Their introduction in

dermatologic therapy can open new horizons toward specialized delivery, influencing in a positive manner the evolution of

a skin condition like acne.

2.1. General Concepts

Microemulsions were empirically discovered in the past century, in 1943, when T. Hoar and J. H. Schulman have

generated a monophasic and clear system using emulsion titration method with n-hexanol . This was the first step

for future development of smart colloidal systems named microemulsions from 1959 until today. Their initial utility at that

moment was concentrated on the development of oil recovery techniques based on chemical approaches for industrial

applications . The evolution of the actual research methods sustains the knowledge and the discovery of

unknown concepts which can help in the interpretation of physical phenomena, their physical structure and the

mechanism of function for medical and pharmaceutical applications.

As a comparison with classical emulsions, microemulsions shall be differentiated, considering the following key properties:

composition type, particle dimension, and thermodynamic stability. Emulsions are coarse dispersions formed by two

immiscible phases which are stabilized using an emulsifier. The internal phase (discontinuous) is dispersed in the external

(continuous) phase known also as a dispersion medium. The particle dimension can vary in the range 1–100 μm and is

specific for opaque systems with a high interfacial energy. On the other hand, the interfacial tension has low values,

assuring the stability of dispersed particles in the continuous phase . The emulsion systems have a long tradition in

topical application, used almost as fluid vehicles or as semi-solid forms in skin care or in dermatologic treatments . A

deficiency which can explain the short period of use for emulsions is the thermodynamic instability, consisting in

phenomena like flocculation, coalescence, creaming, sedimentation, or Ostwald ripening. In addition, emulsion

formulations are not proper for active substances with formulation challenges .

Microemulsions (MEs) are defined as microheterogeneous dispersions with a high thermodynamic stability. With a

transparent appearance, the systems are observed as monophasic and isotropic structures basically formulated with an

oil phase and an aqueous phase, stabilized by a mixture formed with a surfactant (S) and a cosurfactant (CoS) . The

clarity and homogeneity are physical markers for their dimension domain, placed in the range of 5–100 nm. The

terminology of microemulsions type has a similarity with that of emulsions. Hence, the oil in water (O/W) MEs result when

oil particles will be dispersed in an aqueous phase in the presence of a S/CoS mixture, while the water in oil (W/O) MEs

will result in the dispersion process of water droplets in an oil phase, stabilized by a proper S/CoS mixture which will

assure a superior stability . The bicontinuous microemulsions are a particular type that requires equal amounts of oil

and water in the system and are typically formed at the phase inversion temperature . From a practical point of view,

the transitions of ME from one type to another and their behavior are explained using the Winsor phase concept and

pseudoternary phase diagrams. The study of the internal structure of microemulsions represents an important area in the

research of ME thermodynamics .

The advantages of microemulsions are always analyzed at the beginning of a formulation process, being correlated with

the actives that will be integrated and the resulting final product which can be defined as a simple system in composition,

but complex in structure. In Table 1, are presented all the advantages that characterize the microemulsions as ideal

vehicles for a topical delivery of active substances.

Table 1. Advantages of microemulsion (ME) formulation for topical delivery of drugs.

No. Advantages of microemulsions Ref.

1.
Thermodynamic stability, induced by the S/CoS mixture that provides a low interfacial tension

due to a monolayer formed at the contact of oil particles with the water particles.
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2.
Spontaneous formation due to an easy preparation method, without energy consumption;

economic manufacturing.

3.

Incorporation of both hydrophilic and lipophilic compounds, resolving the solubility drawbacks

for poor soluble drugs; MEs promotes their delivery at skin site in accord with a proper

diffusion process.

4.
The solubilization capacity for API and the superior bioavailability are proportional with a high

concentration of the S/CoS mixture introduced in the system.

5.

A high required concentration of surfactant, in association with a cosurfactant assure an easy

passage through stratum corneum, acting as penetration enhancers; the barrier effect will be

diminished.

6.

The selected API in microemulsion formulation is protected against hydrolytic and oxidative

processes, being incorporated as encapsulated particles in oil or water fine droplets; MEs

have a superior stability with improvement in half life.

7.

Incorporating APIs that are usually formulated for oral dosage forms and can be adapted in

skin target. In this manner, it can be avoided the first pass liver effect and serious adverse

reactions, promoting a localized action, without systemic effects.

2.2. Physicochemical Concepts

One of the most important characteristics of microemulsions that provokes great interest in their study is the

thermodynamic stability. In this direction, were formulated five theories that can guide the research through a deeper way

of understanding the behavior of MEs. Here are distinguished the thermodynamic theory, the interfacial film theory, the

theory of micellar state, the solubilization theory and the theory of bicontinuous microemulsions, from basic concepts

through recent discoveries . Each of these principles can offer preliminary answers about microemulsion structure

and stability which can be continued by personal discoveries rallied to a specific group of systems.

The first theory, describes thermodynamic processes that occur in microemulsion systems, using the equation of free

energy, as can be seen below :

The energy of the system is dependent of the interfacial tension (γ) that usually has extremely low values, being exerted

at the surface of the particles (a) immersed in the dispersion medium, and is characterized by temperature (T) and an

increase in the entropy (S). As the surface of the particles become larger, the stability of the system will be increased 

. In addition, the interfacial film generation theory sustains the null or even negative values of interfacial tension

promoted by the addition of cosurfactant in the system . In this way, in three steps can be explained the formation of

the interfacial monolayer as a stability promotor for microemulsions:

1. In a system composed of oil and water, the surfactant will promote a low interfacial tension at the interface between oil

and water, resulting thus a monomolecular film .

2. The addition of a cosurfactant, will decrease the initial value of interfacial tension. The cosurfactant will be concentrated

at the interface, among surfactant particles .

3. The system will be characterized by a free energy that will assure the microemulsifying process of droplets with a size

of 1–100 nm which cannot be observed at a macroscale level, but only using fine experimental techniques like

transmission electron microscopy (TEM) . In this way, will be discovered particles with a specific assembly. As an

example, in a study of Reis et al. were formulated O/W microemulsion systems that can load babassu oil 12.2% as an

active oil component with anti-inflammatory effects. The analysed formulation was based on a mixture of two

surfactants, Span 80 and Kolliphor EL, in combination with propylene glycol as a cosurfactant with a total amount

S/CoS mix of 48.8%, in a water medium of 39%. Using TEM imaging, the internal structure was visualized, confirming

the particle architecture, dimensional data and the type of MEs. Thus, were observed babassu oil phase droplets
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covered with the monolayer stratum of tensioactive mixture and embedded in the water medium . Furthermore, O/W

microemulsions for dermal and transdermal delivery with a 2% flavone extract of rhizoma arisaematis with analgesic

properties were formulated using a vehicle composed of a S/CoS mixture with Cremophor EL 9–27% and Transcutol

8–27% with stabilizing properties for ethyl oleate particles 4–8% in a medium of 60% water. TEM analysis revealed the

presence of spherical particles of oil phase with a dimension under 100 nm, stabilized in the aqueous medium . In

the same direction, confocal laser microscopy can be a useful tool with application in material structure analysis, being

largely accessed for microemulsion characterization .

The interphases O/W and W/O are defined by a surface curvature of the monomolecular layer which is oriented as a

function of oil and water content and the affinity of surfactant for hydrophilic and lipophilic groups . In Figure 2 is

exemplified a model for both W/O and O/W microemulsions and the placement of surfactant and cosurfactant at the

interface.

Figure 2. Exemplification of model structure with particles as a part of water in oil microemulsions and oil in water

microemulsions and the specific orientation of surfactant and cosurfactant at the interface.

The stability of microemulsions can be argued for in the same manner using the theory of elastic masses . In this way,

imagining microemulsion droplets as ideal spherical entities placed in a continuous phase, it can be presumed that two

main characteristics are the elasticity and a proper rigidity against particle distortions . The concept of elastic particles

may give an input to the research of particle size using methods that can offer information about mean particle dimension,

polydispersity index, interfacial tension or solubilization capacity .

Three elasticity constants are specific for microemulsion particles: firstly, the spontaneous curvature which influences the

phase type and promotes stability. The solubilization capacity will be appropriate when the spontaneous curvature value

will be smaller and is associated with many particles stabilized with a high amount of surfactant. Secondly, the rigidity

constant, sustain the action of surfactant to resist to possible and undesirable curvature modifications. The rigidity

constant increases when the third constant, the deformation (saddle-splay) constant, decreases to stabilize the system 

.

The theory of micellar state brings in front the idea of micelle generation as a common element between micelles and

microemulsions. In both cases, it is selected a surface tension modulator (S). The addition of the CoS in microemulsions

will make the difference among the two systems, obtaining complex structures . An actual method to differentiate

micellar structures and microemulsions it was proposed to be Taylor dispersion analysis which suppose the introduction of

the samples in a capillary, followed by the measurement of hydrodynamic radius of the particles and their evolution in time

. In the case of some lipid microemulsions for oral delivery with Labrasol and Gellucire, the lipolysis process produced

by pancreatic enzymes was studied in the same time with the dimensional evolution of particles, using Taylor dispersion

analysis, offering clues in the matter of systems stability .

Apart from the classical composition of MEs, the solubilization theory suggests new insights in matter of ME spontaneous

generation without surfactants, using the pre-Ouzo phenomenon . A model system that can be easily exposed had

three components: water, n-octanol as two immiscible substances one to another and ethanol as a co-solvent. Ethanol will

be the hydrotropic co-solvent with solubilization power for the two immiscible compounds . In a similar way were

obtained ternary microemulsions based on water and eugenol in combination with ethanol . As a co-solvent, ethanol

will exert a hydrotropic action, transforming a turbid system into a clear one by a spontaneous emulsification as a rapid

alternative to sonication methods .

The last theory of bicontinuous microemulsions brings to the fore the four Winsor phases of microemulsions .

Considering this statement, a microemulsion with a continuous hydrophilic phase can pass into a system with a

continuous lipophilic domain when the oil phase will be added dropwise, experiencing an intermediate state of bicontinuity

where may equally coexist hydrophilic and lipophilic domains . The hydrophilic and lipophilic zones are chaotically

interconnected and stabilized by surfactant. This ME was observed in a study of Kogan et al. for microemulsions
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formulated with triacetin, D α-tocopherol acetate, ethanol and Tween 60. The system was diluted with the aqueous phase,

sustaining the transition from W/O type ME (known also as inversed phase ME) to O/W ME with the normal phase . In

this direction, the knowledge of Winsor phases serves as a guideline in the process of formulation and preparation of ME,

helping to adjust the composition of the designed systems .

According to Figure 3, the Winsor phases found in ME formulations can briefly be described. Winsor phase I systems are

O/W microemulsions in an equilibrium with an excess of oil phase in the superior area of the vial. Winsor phase II systems

are W/O microemulsions with an excess of water phase in the inferior area of the vial. Winsor phase III systems defines a

ternary mixture at equilibrium composed of a microemulsion in the middle area, an excess of oil phase in the superior

zone, followed by an excess of aqueous phase in the inferior area. Furthermore, the ideal Winsor IV system will contain a

monophasic domain, without phase excess .

Figure 3. Schematic representation of Winsor phases I, II, III and IV, explaining the transition of phases from Winsor

phase I to Winsor phase IV to obtain an ideal system.

2.3. Formulation of Microemulsions

In the formulation process of microemulsions, the attention is focused on the mixture of S/CoS and the oil phase which will

be associated with a proper amount of aqueous phase, commonly selected, the distilled water .

A surfactant, also named emulsifier, defines a molecule with specific properties of surface tension modulation, exerted in

the system where will be integrated. Structurally, the molecule is composed of hydrophilic and hydrophobic moieties,

viewed as two opposite poles that assure a preferential orientation at the contact with particles of the system, in ME case,

the oil and water molecules . With respect to interfacial film theory, the surfactant will be the key molecule in the

dispersion process, offering a proper flexibility for particles in the continuous phase due to the generation of the interfacial

monolayer .

Chemically, surfactants are classified as ionic (anionic, cationic and zwitterionic) or non-ionic species. The ionic

surfactants, at the contact with the polar phase will generate a double electric layer, while non-ionic compounds will form

dipole and hydrogen bonds . It is important to mention that anionic and cationic surfactants are not recommended

in cutaneous delivery systems due to their irritative potential. Thus, non-ionic surfactants are generally selected for topical

products, having a good solubilization power for APIs and a reduced toxicity .

The hydrophilic–lipophilic balance (HLB) values calculated according with the Davies’ rule, as a function of head and tail

groups of a surfactant, sustain its selection for a ME system. An HLB under 8 is attributed for surfactants used in W/O

systems, while surfactants with HLB over 10 are suitable for O/W MEs. Stable systems are formed also by mixing two

surfactants with different HLB values, as well as in emulsion formulation case . According with the Bancroft rule, which

is generally accepted in ME design too, the phase in which the surfactant is most soluble represents the continuous phase

.

Specific for microemulsions is the high amount of S/CoS mixture selected up to 70%, differing from conventional

emulsions where the emulsifier is integrated up to 10–20% . An elaborate analysis is required in the formulation of

topical systems; thus, the ingredients must be non-toxic, non-irritating and biocompatible, according with GRAS

(Generally Regarded as Safe) concepts . Recent approaches are focused on the use of natural surfactants as a green

alternative to synthetic species, associated with algorithms in order to decrease the high concentration of S/CoS mixture,

maintaining in the same manner a superior stability for the systems .

As examples of non-ionic surfactants, sorbitan esters like Span 20, Span 40, Span 60 Span 65, Span 80 and Span 85 are

usually selected to promote W/O microemulsions due to their low HLB values between 1.8 for Span 85 and 8.6 for Span

20 . On the other hand, polysorbates are chosen in the formulation of O/W microemulsions due to their HLB

values over 10. Here are classified Tween 20, Tween 40, Tween 60, Tween 80, Tween 85 as combinations between partial

esters of sorbitol and its mono-/dianhydrides, condensed with ethylene oxide groups . Tween 80 is largely
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selected in microemulsion design due to its biocompatibility. Its association with alcohol based cosurfactants like ethanol

or 1-butanol implies some attraction phenomena that will promote the solubilization of two immiscible phases. In the study

of Prieto and Calvo , this mixture was suitable to stabilize n-hexane/water systems. The surface activity will be

modified, being correlated with an increase in dielectric constant and ionization grade. The repulsion forces of Tween 80

at the interface n-hexane/water will be diminished with the addition of the alcohol. In order to choose which alcohol is

preferred for ME generation, Traube’s rule can be followed which considers that in a homologous series of surfactants, the

addition of a -CH2- group will decrease the molar concentration required to promote a reduction in the surface tension 

. In this direction, it was proposed that the solubilization power will be proportional with the chain length of alcohol,

being important to assure a balance between the chain length of S and the sum of oil and CoS chain lengths. For

pharmaceutical applications, ethanol can be safely selected with special consideration on structural properties of each

phase . This statement was observed in the same manner in the study of Chai et al., which tested the power of

solubilization for Tween 20, Tween 60 and Tween 80 on a ternary system like 1-butanol/dodecane/brine. Considering that

Tween 60 had a high solubilization effect on the system, it was pointed out that the sum of 1-butanol/dodecane chain

lengths will be proportional with the chain length of Tween 60 .

Other candidates usually found in ME preparation are Labrasol (polyethylene glycol (PEG) derivative of medium chain

fatty acid triglycerides C8-C10 of capric and caprylic acids) or Cremophor derivates like polyoxyl 40 hydrogenated castor

oil (Cremophor RH 40) and polyoxyethyleneglycerol triricinoleate 35 (Cremophor EL, Kolliphor EL) .

Non-ionic surfactants derived from natural sources are sucrose- and glucose esters which are considered ideal

candidates for microemulsion generation, intensively studied as biocompatible tensioactives in drug delivery. Their surface

activity and biodegradability are properties that recommend them in the formulation of topical systems . As an

example, using a mixture of Mazol 80 (association of ethoxylated mono- and diglycerides) and sucrose laurate as a

biodegradable surfactant, in association with water and peppermint oil, Fanun has suggested a potential system for

solubilizing active principles .

Another alternative to synthetic surfactants could be phosphatidylcholine-derived products like soy lecithin or egg yolk

lecithin which have HLB values in the range 4–6, being suitable for W/O microemulsions . The literature confirms the

use of lecithin until 10% in ME formulations . Nevertheless, it is recommended to design mixtures of lecithin with

non-ionic surfactants with an HLB over 10 for O/W microemulsions. Surabhi et al. have formulated O/W anti-acne

microemulsions with tretinoin, using a surfactant mixture of lecithin 1% and Tween 80 30% with ethanol 10% as CoS,

associated with isopropyl myristate (IPM) as an oil phase in aqueous medium .

The second component of surface-active modulator mixture is the cosurfactant (CoS), also found as co-solvent, which has

the property to decrease the interfacial tension, promoting a proper flexibility for the particles . Cosurfactants (CoSs)

are studied as penetration enhancers, being greatly appreciated in skin delivery. In addition, the association with

surfactant molecules will assure a high solubility for both hydrophilic and hydrophobic substances . CoSs used in ME

preparation are preferred to be medium chain alcohols C2-C10 . A high stability can be obtained using CoSs with

short, medium and branched chains C3-C5 . Here are distinguished the most selected CoSs in the formulation of

MEs: ethanol, isopropyl alcohol, n-butanol, propylene glycol (PG), glycerin, n-pentanol, polyethylene glycol 400 (PEG

400), diethylene glycol monoethyleter (Transcutol P) . Propylene glycol and Transcutol P are often chosen as CoSs

due to their biocompatibility, along with their additional solubilization properties for APIs which can be observed over a

screening process. In a comparative study of Abd Sisak et al., the efficiency of Transcutol P and PG in the generation of a

large region of ME were demonstrated, compared with PEG 400 for systems prepared with Brij 97, oleic acid and water

.

The oil phase is considered a continuous phase for W/O MEs or a dispersed phase that can incorporate hydrophobic

actives in O/W ME type. The oil phase will be selected according with the solubility of the API to obtain its delivery in an

encapsulated form . Isopropyl myristate, ethyl oleate and oleic acid are synthetic oils usually preferred in ME

formulation . On the other hand, the use of vegetable oils became an interesting approach for ME preparation, mostly

preferred by those containing fatty acids with medium chains and a low molecular weight. Additional effects of vegetable

oils consist in hydration promotion, skin protection and rejuvenation. These approaches were appreciated and followed in

a study of Hortolomei et al., which was based on the development of MEs with avocado oil, associated with a S/CoS

mixture formed with sucrose laurate and Transcutol P. An increased tolerability of the formulated systems was suggested,

emphasizing their potential for skin delivery .

Recent ME systems were formulated using grape seed oil in a short study of Scomoroscenco et al., using a S/CoS

mixture composed of Tween 80, Plurol diisostearique CG and ethanol. The introduction of grape seed oil as a lipophilic

phase was suitable to obtain cosmeceutical microemulsions .
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Pascoa et al., have prepared microemulsions using Pterodon emarginatus oil. It was found that microemulsions

containing 5–10% oil phase exerted an anti-inflammatory effect which was superior to the oil used as a single remedy

.

For the antioxidant and hydrating properties at skin site, olive oil was included in O/W MEs designed by Chaiyana et al.

The effect of different cosurfactants like propylene glycol, ethanol, isopropanol, and PEG-400 on the generation of a larger

area of microemulsion was observed, with a notable impact on their effect at skin site. Two optimal MEs with the following

formulation schemes S/CoS/Oil/Water (%) were considered, namely: Tween 85 64%/Propylene glycol 16%/Olive oil

10%/Water 10% and Tween 85 64%/Ethanol 16%/Olive oil 10%/Water 10%. Propylene glycol exhibited a good influence

on hydration due to its humectant properties, being comparable with a hyaluronic acid preparation, while ethanol

sustained the antioxidant activity of olive oil .

It can be appreciated that vegetable oils can be good candidates for synthetic oil phase replacing, due to their implications

in skin moisturization, skin barrier rebalancing, UV protection, which are essential for a damaged skin. Argan oil, coconut

oil, jojoba oil, oat oil, pomegranate oil, almond oil, rose hip oil are vegetable oils that can be recognized as potential active

species in acne alleviation .

The second type of oil species that are frequently selected for ME preparation, with a high impact in skin delivery, are

essential oils (EO). The essential oils are products resulting from the extraction process of different parts of aromatic

plants. Their active compounds can exert biological effects in the human body, offering therapeutic actions . A

main class of organic compounds which are found in the composition of essential oils are terpenes that will act on SC

destabilization due to their lipophilic properties. The terpene structure and physicochemical particularities of the drug are

two criteria that must be taken under consideration in the preformulation step. To assure a good penetration in skin layers,

non-polar terpenes with a high grade of unsaturation are preferred for lipophilic actives, while the species with hydroxylic

moieties, characterized by a minimal degree of unsaturation can be selected for hydrophilic drugs . In Table 2, are

presented the advantages of essential oils and their contribution in the formulation of anti-acne microemulsions.

Table 2. Advantages of essential oils (EOs) and their impact on anti-acne microemulsion formulation.

No. Advantages Ref.

1 EOs can be selected as an oil phase in ME or combined with a second vegetable or synthetic oil.

2 EOs can be a good alternative to chemical solvents.

3 EOs act as penetration enhancers at skin site, increasing the localization of drugs.

4 EOs have low toxicity, being GRAS recognized.

5
EOs protect the API from degradation reactions, improving its stability; the microemulsification will

protect EOs from degradation and volatilization.

6 EOs can exert self-anti-acne action on microbial species like P. acnes or S. aureus.

Considering the antimicrobial effects of essential oils for application in acne treatment as a part of a pharmaceutical

product, the potential of the following oil models can be appreciated: Acacia dealbata essential oil, Achillea millefolium
essential oil, Boswellia carterii essential oil, Camellia sinensis essential oil, Citrus aurantifolia essential oil, Commiphora
myrrha essential oil, Helichrysum italicum essential oil, Laurus nobilis essential oil, Lavandula angustifolia essential oil,

Mentha piperita essential oil, Myrthus communis essential oil, Ocimum basilicum essential oil, Jasminum grandiflorum
essential oil, Santalum album essential oil, Pogostemon patchouli essential oil, Rosmarinus officinalis essential oil, Salvia
lavandulifolia essential oil, Thymus vulgaris essential oil, Vetiveria zizanioides essential oil, Viola odorata essential oil 

.

To exemplify the impact of essential oils in microemulsion formulation, in the study of Lv et al., ME systems were prepared

with the aim to assess a high permeation of quercetin at skin level using a group of essential oils with anti-inflammatory

properties and comparing their efficacy. The power of solubilization was analysed as well using peppermint oil, clove oil or
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rosemary oil. Hence, essential oils have improved the photostability of quercetin compared with a simple aqueous

solution. From a preparation point of view, the essential oil was considered as an oil phase being mixed with an amount of

S/CoS mixture formed with Cremophor EL and propylene glycol 2:1 and finally titrated with water. Over evaluation,

peppermint oil MEs had a larger area than MEs prepared using clove oil or rosemary oil. On the other hand, clove oil and

rosemary oil offered a protective effect, assuring quercetin stability. Quercetin was degraded in a proportion of 67% in an

aqueous solution compared with only 7% degraded in the microemulsions . A study by Ma et al. offered a perspective

concerning the antimicrobial effects of microemulsion systems enriched with essential oils or an essential oil compound

and the influence of formulation factors on their activity. Thus, the systems were formulated with cinnamon bark oil, thyme

oil or eugenol in a soybean oil medium, using Tween 80 and equal amounts of PG and water. The use of a microemulsion

vehicle can increase the level of minimal inhibitory concentration of cinnamon bark oil from 313 ppm (the value obtained

for the use of oil alone) to 625 ppm (for microemulsion) on cultures of Listeria monocytogenes. The study draws attention

to the manner in which Tween 80 and soy bean oil inclusion will decrease the antimicrobial activity of the essential oils

which can be attributed to some hydrophobic interactions between Tween 80 molecules and the lipophilic moieties of

essential oils, suggesting the importance of concentration control in the formulation process . A superior antimicrobial

activity can be sustained with a proper amount of surfactant that can assure an increase in bacterial cell permeability for

the primary API .

2.4. Methods for Microemulsion Preparation

Microemulsions are considered adaptive systems which can be prepared without high energy consumption in an

economic manner. The preparation methods at room temperature are based on two types of titration method which can be

applied and adapted as a function of the selected phases, their concentrations and the type of ME that is desirable to be

formulated . In practice, the microemulsification technique supposes the application of two methods: the phase titration

method and phase inversion method using the oil or aqueous phase .

According with particle concepts previously exposed at the introductive theories section, the transition from O/W type to

W/O type takes place with changes in curvature orientation, experiencing the particular state of bicontinuity, with the

occurring of structural modifications as can be seen in Figure 4.

Figure 4. Schematic representation of phase transition in a microemulsion system with internal structure modification,

from oil in water through water in oil type and vice versa, experiencing a particular bicontinuous state.

Considering the amounts selected for the aqueous phase, the oil phase, and the S/CoS mix, the region of microemulsion

generation can be deduced using a pseudoternary phase diagram design. In laborious studies, when various proportions

of tensioactives and oil phases are tested, the graphical analysis based on diagrams was found to be a key step to

proceed an experimental design to obtain optimal microemulsions. In a large domain of studies, pseudoternary phase

diagrams offer a good way for analyzing microemulsions stability, depicting zones which are specific to O/W, W/O and

biocontinuous microemulsions .

2.5. The mechanism of Action for Microemulsions at skin level

Considering the appropriate role of microemulsions for dermal delivery, these systems are known to be implicated in

penetration activity, crossing the diffusional barrier of stratum corneum due to its main components, the S/CoS mixture

along with the oil and the aqueous phase . The oil in water type is almost preferred for anti-acne systems, due to its

non-greasy structure, correlated with a low concentration of oil until 20%, which is the maximum required in dermatologic

preparations. Here we can mention the study of Mortazavi et al., based on the preparation of microemulsions with

tretinoin, where the amount of the oil phase was selected in proportion of 10% until 17% and evaluated considering its

impact on particle dimension and skin delivery .
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When a microemulsion is applied on skin, at the epidermal layer, the phenomenon of SC destabilization can be observed.

The particles of the system have the capacity to intercalate among keratinocyte spaces. SC destabilization is promoted

due to a high amount of tensioactive mixture which in addition will be implied in a decreasing process of interfacial tension

at the skin surface. By diminishing the barrier function, accompanied by the creation of some passages of nanometric

size, the passage of API particles can be promoted through the inside, with a diffusion process occurring .

Concerning the S/CoS mixture, is important to assure an equilibrium between the maximum concentration selected in the

system and implied in microemulsification, solubilization and diffusion process, obtaining at the same time a high level of

skin tolerability . A couple of practical examples can be rendered which can emphasize the action of ethanol ,

propylene glycol  and Transcutol P on skin dynamics , considering some of the most selected excipients with

penetration enhancement activity in microemulsion design. At skin site several phenomena supposed to be correlated with

the mechanism of skin penetration are studied. Here we can mention: lipid extraction, alteration of protein domain, along

with the increase of drug partition in skin lipids .

The use of natural surfactants combined or not with the non-ionic type and the use of vegetable oils can be an advantage

to obtain biocompatible systems. As an example, a comparative study of Changez et al., based on the delivery of

tetracaine in mice skin, proved that the addition of lecithin in ME systems can enhance the delivery at epidermal and

dermal layers for tetracaine, compared with a topical solution with the same anesthetic .

Furthermore, the vegetable oils selected for ME systems can maintain an occlusive effect, with a similarity being

discovered with mineral oils like paraffin oil. Changing the hydration gradient in the upper site of the epidermis by

occlusive effect, can be a practical option for dermatologic preparations applied on dried skin .

2.6. Application of Microemulsions for Anti-Acne Drug Delivery

Several studies were based on the development of unique formulations that can be implied in a superior control of acne

pathogenesis due to an optimal targeting of APIs at skin site, offering an alternative to conventional treatments . Most

of the projected systems were designed in order to resolve the solubility challenges of lipophilic actives like: vitamin E 

, retinoids , antibiotics  and other antimicrobial agents like metronidazole  or dapsone ,

offering in the same manner protection against undesirable internal processes by avoiding interactions and photochemical

reactions. For hydrophilic substances, the easy passage through the stratum corneum can be handled for vitamin C ,

azelaic acid , nicotinamide , or hyaluronic acid , which are used as adjuvants in acne treatment.

Concerning the use of essential oils in the development of microemulsions with anti-acne activity, Pansang et al. used the

essential basil oil 3% extracted from Ocimum basilicum as an oil phase. The ME was analyzed from a tolerability point of

view on 30 patients, proving the safety profile of the vehicle at the skin site .

Furthermore, Jantrawut et al., designed ME systems using the antibacterial properties of orange oil. The MEs were

prepared to be applied on skin as a part of a pectin film that can maintain an intimate contact with the tissue. The study

revealed the importance of surfactant and cosurfactant screening in order to obtain large regions, proving that this may be

one of the essences that form the basis of ME design .

It can be appreciated that microemulsion properties are closely influenced by the formulation parameters, where each of

the selected phases will sustain the final action of the API in the targeted zone. Microemulsion systems will improve the

localization of APIs in skin layers and can be optimized using Quality by Design principles. The use of combined systems

like microemulsion-based gels or emulgels and the use of natural derived excipients will improve the tolerability and the

biocompatibility at the application zone.

3. Conclusions

The study of nanocolloids offers a generous contribution to the evolution of topical treatments in order to sustain the

healing process in dermatologic diseases. Microemulsions as a part of soft matter systems are characterized by high

stability, biocompatibility, and tolerability, influencing in a positive manner the skin dynamics due to their special internal

structure. Hence, the limitations of conventional systems can be overcome due to a balanced composition represented by

the pseudoternary structure of oil-surfactant/cosurfactant-water. Multiple approaches were proposed to enhance skin

bioavailability for both hydrophilic and lipophilic anti-acne compounds, offering a pathway through superior topical

pharmaceutical options. On this way, it can be concluded that microemulsions are ideal vehicles for anti-acne drug

targeting.
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