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Biofilms are associations of microorganisms embedded in a self-produced extracellular matrix. They create

particular environments that confer bacterial tolerance and resistance to antibiotics by different mechanisms that

depend upon factors such as biofilm composition, architecture, the stage of biofilm development, and growth

conditions. The biofilm structure hinders the penetration of antibiotics and may prevent the accumulation of

bactericidal concentrations throughout the entire biofilm. In addition, biofilm can induce a variety of physiological

states involving different metabolism (aerobic, microaerobic, and fermentative) and growth rates (fast and slow

growth, dormant cells, and persister cells). Thus, some bacteria are less vulnerable to antibiotics as a

consequence of the inactivity of antibiotic targets, a phenomenon called “drug indifference”. Also, cells in biofilms

enhance efflux-pump production that excretes antibiotics. Moreover, the biofilm environment enhance interbacterial

communication, horizontal gene transfer and spontaneous mutations that ultimately increase resistance to

antibiotics. Thus, the tolerance and resistance to antibiotics conferred by biofilms is multifactorial.

biofilms  antibiotic resistance,antibiotic tolerance

1. Basis of Biofilm-Mediated Antibiotic Survival

The recalcitrant nature of biofilms to antibiotics depends mostly on (i) the developmental stage of the biofilm, (ii) the

extracellular matrix (ECM) composition, and (iii) the biofilm architecture.

1.1. Biogenesis of Biofilms

Biofilm formation is a dynamic process that takes place in a series of sequential steps. It is initiated by the

interaction of the bacteria with a surface. Exposure of planktonic cells to stress, which may be provoked by

antibiotics, starvation, or other adverse environmental conditions, can initiate biofilm formation by activating gene

expression . Additionally, molecules involved in cell-to-cell communication accumulate at high cell density. These

molecules generally referred to as autoinducers, can activate and regulate the process  and allow for a

coordinated response of the population members, which is known as quorum sensing (QS). The first step of biofilm

formation consists of the adhesion of the bacteria to the substratum. This process is often mediated by long,

proteinaceous, filamentous fibers that protrude from the bacterial cell surface, such as flagella, fimbriae, or pili.

After initial interaction is established, shorter cell surface-exposed structures interact with the substratum, thereby

increasing the contact between bacteria and the substratum . Strains of Escherichia coli and Salmonella produce

curli fimbrae that mediate both cell-to-substratum and cell-to-cell interactions . Other proteins such as Bap-family

proteins in Staphylococcus epidermidis , CdrA in Pseudomonas aeruginosa  or NHBA in Neisseria meningitidis
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are proteins that interact with ECM components and the bacterial cell surface thereby strengthening the matrix.

Autotransporters are proteins secreted through the Type V secretion system in many Gram-negative bacteria and

often have demonstrated roles in interbacterial interactions . Then, the bacteria secrete ECM components and

proliferate to form a microcolony. ECM serves as a glue element that helps to stabilize interbacterial interactions.

Bacteria within the microcolony communicate and organize spatially. Type IV pili act at the junction between cells to

form microcolonies and can also contribute to the reorganization of bacteria within the biofilm . Cell-to-cell

communication, including QS  and also cell-contact-dependent communication systems , seem to be relevant

for this process. At this stage, the expression of genes for the formation of the ECM, and biofilms become less

vulnerable to antibiotics than earlier biofilm stages .

1.2. Composition of the ECM

The ECM consists of a conglomerate of different substances that together provide structural integrity to the biofilm.

In general, the ECM can be composed of water, polysaccharides, proteins, lipids, surfactants, glycolipids,

extracellular DNA (eDNA), extracellular RNA, membrane vesicles, and ions such as Ca . In many bacteria,

extracellular polysaccharides and eDNA are prominent components of the ECM .

eDNA is constituted of chromosomal DNA that is released into the extracellular milieu through cell lysis, dedicated

secretion systems, or membrane vesicles. eDNA is often involved in adhesion, particularly after the first interaction

of the cell with the substratum. It mediates acid–base interactions and increases the hydrophobicity of bacterial

cells which are favorable for the cell–substratum interaction . Indeed, eDNA is used for initiation of biofilm

formation in many pathogenic bacteria, including Gram-positive and Gram-negative bacteria and mycobacteria

. In addition, eDNA facilitates the interaction of the bacteria in the ECM. This is achieved by binding of positively

charged segments of cell surface-exposed proteins with the negatively charged eDNA molecules . Various

proteins can be implicated in this interaction, such as autotransporters, lipoproteins or two-partner secretion protein

A of Gram-negative bacteria, and cell wall-associated proteins in Gram-positive bacteria and fungi . Thus,

anchoring the eDNA to the cell surface by DNA-binding proteins is a widespread mechanism for biofilm formation

that may also facilitate multispecies biofilms. eDNA can also mediate interactions with other ECM components

such as polysaccharides . Together, these interactions are relevant for the structural integrity of biofilms.

The composition of the polysaccharides present in the ECM varies between different bacterial species and even

between different isolates of the same species. Most are long linear or branched molecules formed by one

(homopolysaccharides) or several different (heteropolysaccharides) residues. They may contain substituents that

greatly affect their biological properties. One of the most commonly studied polysaccharides is poly-β-1,6-N-acetyl-

D-glucosamine, often named PGA or PNAG. It is synthetized by E. coli  and S. aureus , among others. In E.

coli, PGA is required for initial cell-to-cell and cell-to-substratum attachment . Another polysaccharide present in

ECM is cellulose, a linear polymer of β-1,4 linked D-glucose. It is a major component of the ECM of some E.

coli , Salmonella , and Pseudomonas strains . Some E. coli strains produce a complex branched

polysaccharide called colanic acid . Additionally, P. aeruginosa can produce diverse exopolysaccharides. Mucoid

P. aeruginosa strains produce alginate, a polymer of β-1-4-linked mannuronic acid and α-L-guluronate. Production
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of alginate confers a mucoid phenotype , typical of strains isolated from lungs of cystic fibrosis patients with

Pseudomonas infections that underwent several rounds of antibiotic treatment. Therefore, secretion of alginate is

related to pathogenic biofilms . Alginate mediates the establishment of microcolonies at early stages of biofilm

formation and provides stability to mature biofilms. Nonmucoid P. aeruginosa strains can produce other

exopolysaccharides, e.g., Psl or Pel. Pel is a linear, cationic exopolysaccharide formed by 1®4 glycosidic linkages

of N-acectylglucosamine and N-acetylgalactosamine. It has a critical role in maintaining cell-to-cell interactions and

pellicle formation . In contrast, Psl is composed of repeating pentasaccharide subunits of D-glucose, D-mannose,

and L-rhamnose . Psl mediates attachment to biotic surfaces such as mucin-coated epithelial surfaces and

epithelial cells, indicating its relevance for the establishment of P. aeruginosa infection . Additionally, P.

aeruginosa strains can secrete cyclic and linear glucans  that are formed by β-1,3 linked glucose residues.

The proteinaceous content of the ECM includes proteins that are secreted through active secretion systems or

released during cell lysis. The role of many of these proteins in the biofilm matrix is unknown, but some of them

have been identified as important contributors to biofilm formation or restructuring in many pathogens. Various are

extracellular enzymes. Their substrates can be polysaccharides, proteins, and nucleic acids, present in the ECM.

They can function in remodeling of the ECM, detachment of cells from the biofilm, or degradation of polymers for

nutrient acquisition.

ECM biogenesis and composition are dynamic and vary between strains of a given species and also depend on

environmental conditions, such as nutrient availability and the presence of stressors, and on social crosstalk.

Several functions have been attributed to the ECM based on its extraordinary capacity to establish intermolecular

interactions between its components, and with surface-exposed structures of the cells, biotic and abiotic substrata,

and many environmental molecules . Thereby, the ECM immobilizes cells and keeps them in the biofilm

community. By retaining the cells in close proximity, the ECM establishes the optimal conditions for interbacterial

communication and exchange of genetic material, which is relevant, amongst others, for the dispersion of

antibiotic-resistance genes. The ECM additionally retains water and thereby protects the cells against desiccation.

Furthermore, the extracellular enzymes in that hydrated environment generate an external digestive system. In

addition, ECM retains several other substances, for instance, nutrients, energy sources, antibiotics, antibiotic-

degrading enzymes, and molecules released by cell lysis, thereby constituting a recycling unit . In general, the

ECM acts as a protective scaffold.

1.3. Biofilm Architecture

The architecture of biofilms is defined by the organization of the biomass and the spaces in between. The

development of this structure depends on the composition of cell-surface structures mediating mutual interactions

between cells and interactions of cells with ECM components and with the substratum . The biofilm architecture

is responsible for the generation of gradients of dispersion of substances within the biofilm. This will influence the

accessibility of these substances to particular niches inside the biofilm, and determines, amongst others, the

variation in antibiotic susceptibility of cells within biofilms. Figure 1 illustrates the biofilm architecture of different

bacterial species. P. aeruginosa strain ATCC 15,692 forms complex biofilms with mushroom-like architectural
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features consisting of well-defined stalks and caps. Enterococcus faecalis ATCC 51,299 biofilms, however, are flat

and compact , while Salmonella enterica strain S12 and E. coli strain ESC.1.16 form biofilms constituted of small

cell clusters (Figure 1A) . In contrast, biofilms of N. meningitidis strain HB-1 are constituted of cell aggregates of

different sizes forming defined channel-like structures  (Figure 1B).

Figure 1. Variable architecture of biofilms. (A) Biofilms of five species (Salmonella enterica, Escherichia coli,

Pseudomonas aeruginosa Staphylococcus aureus, Enterococcus faecalis) were formed under static conditions on

abiotic surfaces during 24 h and were stained with Syto9, a green fluorescent nucleic acid marker. Reprinted

from  with permission from Elsevier. (B) Strains of Neisseria meningitidis HB-1 and α153 and derivatives, which

do or do not produce the autotransporters AutA and AutB (as indicated), formed biofilms under flow conditions

during 14 h and were stained with the LIVE/DEAD Backlight bacterial viability stain (where red cells are dead and

green cells are live). Reproduced from .

Thus, in general, based on their architecture, biofilms can be classified into (i) monolayer biofilms, formed by a

compact layer with high surface coverage, or (ii) multilayer biofilms, formed by bacterial clusters of different

morphology with a low surface interaction. The biofilm architecture can vary depending on different factors, for

instance, the expression of surface-exposed proteins. Examples are the meningococcal autotransporters AutA and

AutB, whose expression is phase variable and significantly alters the biofilm (Figure 1B) . Additionally, the

medium composition influences the biofilm architecture. P. aeruginosa PAO1 makes monolayer biofilms in the

presence of citrate benzoate and casamino acids and multilayer biofilms in presence of glucose .

2. Biofilms mechanisms for Antibiotic Tolerance and
Antibiotic Resistance
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Biofilm recalcitrance comprises two independent phenomena: antibiotic resistance and antibiotic tolerance.

Resistance refers to the capacity of a microorganism to survive and grow at increased antibiotic concentrations for

long periods of time and is quantifiable by assessing the minimum inhibitory concentration (MIC) . It involves

mechanisms that prevent the binding of an antibiotic to its target, including enzymatic deactivation, active efflux of

a drug once it is in the cytoplasm or the cytoplasmic membrane, or reduced influx, among others, and can be

generated by HGT or mutations. Together, they preclude antibiotics from altering their target’s function and they

prevent the production of toxic products that would end up damaging the cell. By contrast, antibiotic tolerance is the

capacity of bacteria to survive a transient exposure to increased antibiotic concentrations, even those above the

MIC. Tolerance is assessed by the minimum bactericidal concentration, that is, the minimum concentration of

antibiotic required to kill 99.9% of the cells . Unlike resistance, tolerance is only temporary and after longer

exposure periods, the antibiotic will kill the bacteria. It is an adaptive phenomenon that implies a change in cellular

behavior, from an active (growing) state to a quiescent (dormant) state , and requires large metabolic

rearrangements affecting, for example, energy production and nonessential functions. These changes are triggered

during poor growth conditions or exposure to stress factors or antibiotics . In this case, antibiotics can usually

attach to the target molecules, but because their function is no longer essential, the microorganism survives.

Tolerance in biofilms is also caused by entrapment of the antibiotics in the ECM, in this case, the antibiotic does not

reach its target. In contrast to resistant cells, tolerant cells within the biofilm cannot grow in presence of a

bactericidal antibiotic. Persistence is a special phenomenon of tolerance. Indeed, persistence is a phenomenon

that increases the survival of a given population in the presence of bactericidal antibiotics without enhancing the

MIC, but in contrast to tolerance, persistence only affects a subset of cells of the population called persisters.

Persisters cells are tolerant cells that eventually can be killed at longer exposure times. There are two types of

persisters, e.g., type I or triggered persistence, which is induced upon environmental signals, such as starvation,

and type II or spontaneous persistence, where a subpopulation of growing bacteria converts into the persister state

by a stochastic process . Anyhow, persistence can be also referred to as heterotolerance, which is different than

heteroresistance, as persisters can eventually be killed at longer exposure times. Figure 2 illustrates the

mechanisms that govern antibiotic tolerance and antibiotic resistance of biofilms.
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Figure 2.   Antibiotic resistance and antibiotic tolerance comprise a combination of mechanisms. Resistance

mechanisms confer the ability to survive and grow at increased ATB concentrations for long periods and involve

horizontal genetic transfer (HGT), hypermutation, and quorum sensing (QS), leading to transport of antibiotics via

efflux pumps, reduced permeability of the outer membrane, or production of enzymes that inactivate ATB. The type

of AMR is indicated in green. In contrast, tolerance mechanisms lead microorganisms to survive at increased ATB

concentrations temporally, and involve activation of stress responses (SOS response, stringent response SR)) and

hypoxia, leading to activation of a quiescent state, anaerobic metabolism, decrease of membrane potential, and

moderate increase in efflux pump expression. Arrowhead lines indicate the interrelation between mechanisms. CM:

cytoplasmic membrane.

Overall, antibiotic tolerance and antibiotic resistance do not depend on one unique mechanism but are a

combination of both antibiotic tolerance and antibiotic resistance mechanisms. Such combination varies depending

upon aspects such as the bacterial species or strain, the antimicrobial agent, the developmental stage of the

biofilm, and the biofilm growth conditions.

3. Control of Biofilm Infections

As biofilms contribute to bacterial pathogenicity and recalcitrance, novel strategies and agents are required to deal

with this issue. We have now clear evidence that the antibiotics used for the treatment of biofilm infections should
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be carefully selected, and such selection should consider the mechanisms of resistance and tolerance of biofilms.

The use of cocktails of antibiotics would probably be more successful than a single antibiotic, but the antibiotic

combination should also be thoroughly considered. Antibiotics should cover the heterogenic nature of biofilms.

While one of the antibiotics in the combination should be active against persisters (e.g., colistin), others should

target growing cells (e.g., ciprofloxacin, tobramycin, or β-lactams). In addition, the selection of antibiotics will

benefit from the characterization of ECM composition, particularly the sorption and charge of the matrix, as these

properties are relevant contributors to AMR. Many alternatives to antibiotics have been proposed to inhibit and/or

eradicate biofilms. Their nature and their mechanisms of action are ample. In general, they possess one or several

activities as (i) biofilm inhibitors, (ii) biofilm dispersers, and (iii) antimicrobials. An overview of these substances is

listed in Table 1.

Table 1. Proposed alternatives to antibiotics with antimicrobial or antibiofilm activities. The substance, the

mechanism of action (including anti-biofilm activity) and the target bacterial species are indicated for each agent.

Substance(s) Mechanism of Action Targets References

Antimicrobial Peptides

 

Melittin
Formation of short-lived pores in the membrane

and increase of permeability of OM

P. aeruginosa,

S. aureus, E. coli,

K. pneumoniae,

A. baumannii

Japonicin-2LF

Detergent-like activity against components of

biofilm matrix; higher activity in inhibiting than in

eradicating biofilms

S. aureus, MRSA,

E. coli

Magainin 2
Destabilizes the bacterial membrane and

intracellular processes

A. baumannii, P.

aeruginosa, E. coli
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LL-37

Membrane disruption; inhibits twitching and QS;

interferes in bacterial attachment;

downregulates rhlA and rhlB genes

P. aeruginosa, A.

baumanni, S. aureus

Temporin 1Tb

Disruption of cell membrane integrity; capable

of penetrating biofilm and killing bacteria;

hemolytic activity

S. epidermidis, S.

aureus, K.

pneumoniae, P.

aeruginosa, E.

faecium

Synthetic Antimicrobial Peptides

1037
Downregulates genes of biofilm development;

reduces swimming and swarming motilities

P. aeruginosa, L.

monocytogenes,

Burkolderia

cenocepacia

Esculentin (1–21) Biofilm eradication P. aeruginosa

1018
Binds (p)ppGpp and inhibits SR; inhibits

attachment, QS, and twitching motility

E. coli, S. aureus,

MRSA, P.

aeruginosa, A.

baumannii, K.

pneumoniae, A.

baumannii, S.

Typhimurium, E.

faecium

STAMP G10KHc Disrupts and permeabilizes OM and IM P. aeruginosa

F W
Reduces initial adhesion of bacteria; eliminates

mature biofilms; suppresses biofilm formation
S. epidermidis

Combined Therapies
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1018 + antibiotics

(e.g., ciprofloxacin)

Inhibition of (p)ppGpp activation;

downregulation of genes that interfere with

antibiotic resistance and biofilm formation

E. coli, MRSA, P.

aeruginosa, K.

pneumoniae, A.

baumannii, S.

enterica

Esculentin (1–21) +

AuNPs

(AuNPsEsc(1–21))

Disruption of membrane forming clusters P. aeruginosa

Temporin 1Tb +

EDTA
Mature biofilm eradication S. epidermidis

lin-SB056-1 +

EDTA

Perturbation of membrane; eradication biofilm;

chelation of divalent metal ions
P. aeruginosa

Bacteriophages

Phages

EFDG1 Mature biofilm eradication
E. faecium, E.

faecalis

vB_EfaH_EF1TV Mature biofilm eradication E. faecalis

vB_PaeM_LS1
Disrupts and avoids dispersion of biofilms;

inhibits biofilm growth
P. aeruginosa

vB_SauM_philPLA-

RODI
Penetrates biofilms; inhibits biofilm formation

S. aureus

S. epidermidis
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Phage-derived Enzymes

LysAB3
Degradation of bacterial wall peptidoglycan,

biofilm eradication
A. baumannii

Dpo48
Degrades exopolysaccharide and eradicates

biofilm
A. baumannii

Combined Phage Therapy

Phage + amoxicillin Biofilm eradication K. pneumoniae

SAP-26 +

rifampicin

Hydrolysis of bacterial wall; mature biofilm

eradication; reduction of biofilm growth
S. aureus

Phage K + DRA88 Inhibits biofilm formation; disperses biofilms S. aureus

Phage K + its

derivatives (e.g.,

K.MS811)

Biofilm eradication S. aureus

Phage M4 +

E2005-24-39 +

E2005-40-16 +

W2005-24-39 +

W2005-37-18-03

Biofilm eradication P. aeruginosa

DL52 + DL54 +

DL60 + DL62 +

DL64 + DL68

Attachment to cell by binding to

lipopolysaccharide; biofilm eradication
P. aeruginosa

Plant-Derived Natural Products
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Essential Oils or Principal Active Compounds

Cinnamon

(cinnamaldehyde)

Inhibits QS mechanism: regulates production of

rhamnolipids, proteases, and alginate and

swarming activity; disrupts synthesis of DNA,

RNA, proteins, lipids, and polysaccharides;

alters expression of genes related to biofilm

formation (e.g., icaA)

E. coli, P. aeruginosa,

K. pneumoniae, A.

baumannii, S.

epidermidis, S.

aureus, MRSA, S.

enteridis, S.

Typhimurium

Clove
Disrupts QS communication: biofilm dispersal,

inhibits AHL synthesis; downregulates relA gene

E. coli, P. aeruginosa,

K. pneumoniae, A.

baumannii, S. aureus

Thyme (thymol)

Downregulates sarA gene; increases

membrane permeability; penetrates

polysaccharide matrix: eradicates biofilms

E. coli, P. aeruginosa,

K. pneumoniae, A.

baumannii, S.

aureus, S. enteridis

Tea tree oil
Alters expression of multiple genes related to

biofilm formation (e.g., sarA, cidA, igrA, ifrB)
S. aureus

Oregano

(carvacrol)

Increases membrane permeability; penetrates

polysaccharide matrix; eradicates biofilms

K. pneumoniae, P.

aeruginosa, A.

baumannii

Halogenated

furanones
QS inhibition; antagonist of LuxR

E. coli

P. aeruginosa

Flavonoids (e.g.,

quercetin)

Represses exopolysaccharides production;

inhibits rpoS gene expression; decreases

swimming motility

S. aureus, E. coli, P.

aeruginosa, E.

faecalis
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Combined Therapy

Carvacrol +

eugenol
Increases membrane permeability

K. pneumoniae, P.

aeruginosa, A.

baumannii, S. aureus

Cinnamaldehyde +

eugenol
Membrane permeabilization S. epidermidis

Curcumin +

antibiotics (e.g.,

ciprofloxacin)

QS inhibition

E. coli, K.

pneumoniae, P.

aeruginosa, S.

aureus, E. faecalis

Enzymes

Dispersin B Hydrolyses PNAG

S. epidermidis, S.

aureus, E. coli, A.

pleuropneumoniae

DNases Hydrolyses DNA

A. baumannii, K.

pneumoniae, E. coli,

P. aeruginosa, S.

aureus

Alginate lyase Degrades alginate P. aeruginosa

Lysozyme Hydrolytic activity

S. pneumoniae,

Gardnerella

vaginalis, S. aureus,

P. aeruginosa

Lysostaphin Degrades cell wall S. aureus, S.

epidermidis
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4. Concluding remarks

 

Proteases (e.g.,

SpeB)
Degrades cell wall

Streptococcus spp.

P. aeruginosa, S.

aureus

Paraoxonases

(e.g., acylase I)
Inhibits QS

A.                

hydrophila, P. putida,

P. aeruginosa

Lactonase Inhibits QS P. aeruginosa

Small molecules

Small molecules

(e.g., LP 3134, LP

3145, LP 4010)

Inhibition of diguanylate cyclase
P. aeruginosa, A.

baumannii

Pilicides (FN075,

BibC6, Ec240)

Blocks synthesis of and Type I pili, and inhibits

chaperone-usher pathway for pili biogenesis
E. coli

Mannosides Inhibits FimH of type I pili E. coli

Ethyl pyruvate Inhibits enzymes of the glycolytic pathway E. coli

Polysaccharides

Psl, Pel Disperses biofilm S. epidermidis
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The capacity of microorganisms to evolve and adapt to environmental cues has led to a health crisis as they

became resistant to most, or almost all, commercial antibiotics. Biofilm formation is an ancient form of bacterial

adaptation that contributes substantially to the problem because of their recalcitrance to treatment. Indeed, biofilms

are the origin of significant morbidity and mortality. As discussed here, biofilm recalcitrance integrates many

mechanisms, including metabolic heterogeneity, stress responses, efflux pump regulation, entrapment and

inactivation of antibiotics in the ECM, interbacterial communication increased mutability, and exchange of genetic

material. Many of these factors have been discovered particularly in strains of P. aeruginosa. However, the

specificity and multifaceted nature of the described mechanisms indicate the necessity of studying them also in

other bacteria. Even more challenging, but necessary, will be to study biofilms in natural infections, where

heterogeneous bacterial populations are common, and many environmental factors, including host defenses or

diffusion of antibiotics in tissues, are present.

The understanding of the mechanisms that mediate recalcitrance will definitely guide therapeutic strategies to

successfully deal with biofilm infections. These should be accompanied with methodologies for rapid diagnosis of

biofilm infections and characterization of the biofilm biology and composition in vivo. Additionally, the availability of

a panel of substances to inhibit and disperse biofilms will contribute to the selection of adequate therapeutic

strategies to deal with particular biofilm infections.
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