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Soy has been recognized as a medicinal plant since it contains several bioactive compounds in its various parts. For
example, bioactive peptides found in soybeans have been linked to human health benefits with potential anti-
hypertensive, anti-cancer, and anti-inflammatory properties. Another type of bioactive compound identified in soybeans,
the anthocyanins, showed anti-obesity and anti- inflammatory properties. Isoflavonoids, the best-known class of
compounds found in all parts of soy, have been studied due to their potential protective effects associated with chronic
diseases, cancer, osteoporosis, and menopausal symptoms. Different factors modulate a plant's metabolism, and
metabolomics can measure these variations qualitatively and quantitatively, analyzing the production and turnover of
primary and secondary (specialized) metabolites. In soy, metabolomics studies have identified four main causes of
changes in metabolism: genetic modifications, organism interactions, growth stages, and abiotic factors.
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| 1. Metabolomics Applied to Agri-Foods and Their By-Products

Plants have been used to produce food, feed, energy, biomaterials, and also as a source of bioactive compounds.
Metabolomics has emerged as one of the principal contributors to enhancing the identification of these compounds,
generating innovative discoveries and supporting the development of novel products . Progress in efficient extraction
techniques, such as ultrasound, microwave, and pulsed-electric-field-assisted extractions, as well as supercritical fluid and
pressurized liquid extractions, among others, generate extracts with a higher yield and bioactivity ZBIEIEIE Once these
extracts are generated, they can be analyzed with one or more powerful chromatography and/or electrophoresis
techniques coupled to high-resolution mass spectrometry (MS) or nuclear magnetic resonance (NMR), producing
accurate chemical information on a vast number of compounds EIILOIINAZ For the identification of metabolites,
databases have been increasingly updated, crosslinking information from different libraries. Sorokina and Steinbeck 12!
list almost one hundred databases useful for natural product research. In addition, Global Natural Product Social
Molecular Networking (GNPS) and Small Molecule Accurate Recognition Technology (SMART 2.0) are examples of bio-
cheminformatics tools for the analysis of MS and NMR data, respectively L4516 A|| these modern techniques and tools
support the advancement of metabolomics’ frontiers.

In 2019, 8.3 billion metric tons of cereals, oil crops, roots and tubers, sugar crops, and vegetables were produced 7,
However, it is estimated that one-third of food production is lost and wasted, and this problem is Target 12.3 of the 17
Sustainable Development Goals (SDGs) set by the United Nations (UN) L8820 |n this context, foodomics has shown
the potential not only of foods, but also of their related by-products, as sources of compounds with human health benefits
(Figure 1) 2122 For example, Katsinas et al. 23 used supercritical carbon dioxide and pressurized liquid extractions to
valorize olive pomace, which is a by-product of the olive oil industry. As a result, they identified several phenolic
compounds and generated bioactive extracts. Assirati et al. 24 applied a metabolomics approach in the chemical
investigation of the three major solid sugarcane (Saccharum officinarum) by-products, leading to the identification of up to
111 metabolites in a single matrix, with several of these compounds already known by their potent bioactive properties,
such as 1-octacosanol, octacosanal, orientin, and apigenin-6-C-glucosylrhamnoside. Terpenes of orange (Citrus sinensis)
juice by-products showed antioxidant and neuroprotective potential in in vitro assays, as revealed by Sanchez-Martinez et
al. 281 As for the permeability of the blood—brain barrier, some terpenes of orange extract demonstrated a high capacity to
cross this obstacle, which is a critical point for treating Alzheimer’s disease 221261,
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Figure 1. Foodomics proposes a holistic approach to develop ingredients and products with health benefits from foods
and their by-products.

| 2. Glycine max: More Than Beans

Soy, also known as soybean (Glycine max (L.) Merr.), is originally from China and Eastern Asia ZZ, It is the major oilseed
crop worldwide, with a world production of 362, 254, and 61 million metric tons of soy grains, meal, and oil, respectively, in
2020/21. For the same period, the global area harvested was 1.28 million km2, 2.5 times the area of Spain 2823 Figure
2 shows soybean production from 2000/01 to 2020/21, demonstrating consistent growth, with few moments of decrease
(2911301 However, this production involves just one part of G. max: the beans. Krisnawati and Adie 1 analyzed 29 soybean
genotypes and found an average value of 1.65 for the straw:grain ratio in soy. Therefore, it is estimated that about 597
million metric tons of soy branches, leaves, pods, and roots will be left on the ground post-harvesting in 2020/21 29
Bl Figure 3 shows the soil of a no-tillage soybean production, a system which leaves all underused soy parts on the
ground. Keeping these materials on the soil contributes to mineral, organic matter, and humidity factors B2 In contrast,
problems related to higher weed and disease infestations, as well as greenhouse gas emissions caused by the
decomposition of organic matter, require alternative management of the agricultural straw [B3[B4I351[36137[38] By applying a
biorefinery approach, such by-products could be transformed into raw material for the extraction of several bioactive
compounds.

WORLD SOYBEAN PRODUCTION
2000-2020 361 362
350 339
N

321315

= Million metric tonnes ™
283
260265 22

—™\241

I PP I S T SIS, W R S-S W . Y
O " Gl ol Ay Yy
FTEFLFFF LTI TIPS FSS

Figure 2. World soybean production 2000—2020, in million metric tons.
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Figure 3. Underused soy parts left on the soil just after the soybean harvest.

Inspired by the potential of underused soy parts, this review aims to show the application of metabolomics in soy analysis,
listing the potential of these by-products as a source of high-added-value compounds, as well as the factors which affect
their production.

| 3. Metabolomics and Soy

Genetic modifications can be related to different species and cultivar/variety of soybean. Lu et al. ¥ investigated the
metabolic changes between two soybean species (Glycine max and Glycine soja) under salt stress. Using gas
chromatography coupled to mass spectrometry (GC-MS) and liquid chromatography coupled to Fourier transform and



mass spectrometry (LC-FT/MS), the authors found a higher content of hormones, reactive oxygen species, and other
substances related to the salt stress condition. In another study, Glycine max and Glycine gracilis presented different
profiles of secondary metabolites during the growth stage, as revealed by a 'H NMR-based metabolomics approach 49,
The advancement of molecular biology provides the development of a wide range of soybean cultivars or varieties, with
new types of plants resistant against insects, abiotic stress, and other factors. The United States Patent and Trademark
Office (USPTO) database reveals 4869 patents for a “soybean cultivar’ or “soybean variety” search 43, Different colored
soybeans, such as brown, yellow, or black, present specific metabolite profiles (42431144 |soflavones could be the
substrate for the production of proanthocyanidin in the seed coat, being a possible cause for the brown color of the
cultivar Mallikong mutant 431, Yang et al. 44 identified higher levels of anthocyanin and protein in yellow cotyledon seeds
of black soybean. In contrast, higher levels of isoflavone, stearic acid, and polysaccharide are related to the green
cotyledon seeds of the same species. Two Korean soy cultivars, Sojeongja and Haepum, presented different levels of
soyasaponins Aa and Ab, whose production is related to specific gene variations “2l. Another important factor in genetic
modification is the transgenic soybean. Garcia-Villalba et al. 48] used capillary electrophoresis time-of-flight mass
spectrometry (CE-TOF-MS) to qualitatively and quantitatively measure the metabolites of transgenic and non-transgenic
soybeans. In summary, similar types and amounts of metabolites were identified. The same result was achieved by
Harrigan et al. 44 and Clarke et al. “&. However, it is reported that transgenic soybeans were less affected by
generational effects and can present more secondary metabolites, such as prenylated isoflavones 4259,

Moreover, the interaction between soy and microorganisms, nematodes, aphids, and other insects causes distinct
metabolic responses, and metabolomics is a unique approach for understanding such changes, providing insights to
improve soy’s response against biotic factors BLIB253I(54](55I(561(57][58]5I6QNELIE2IESNEANESICEI6TII6E Recent works used

GNPS to identify metabolite variation in soy infected by the fungus Phakopsora pachyrhizi and the

nematode Aphelenchoides besseyi [G8II67lI68]  Both pathogens resulted in a higher production of bioactive compounds
such as flavonoids, isoflavonoids, and terpenoids.

Distinct metabolic responses have also been reported for each growth stage of soybean B pyring germination, 58
metabolites were reported in the separation of soy sprouts, such as phytosterols, isoflavones, and soyasaponins 2. The
production of secondary metabolites such as daidzein, genistein, and coumestrol also changed in the vegetative and
reproductive soybean stages, as described by Song et al. [Z3],

The presence of soybean crops in a wide range of latitudes and longitudes is a consequence of several adaptive changes
in their metabolism. Brazil, which is the major producer of soybean, presents different soil and climate types; even so,
there is soy production in all its regions. This fact corroborates the high performance of soybean in several abiotic
conditions. In addition, treatments with fertilizers and other agricultural inputs have been tested for the cultivation of

soybeans in unfavorable conditions, causing additional modifications in soy metabolism [ZAIZSIZ6IZ7I78][79[B0N81IE2] A5 gn
example of external treatments, ethylene application on soybean leaves increased the genistin, daidzin, malonylgenistin,
and malonyldaidzin production B2, Using two ionization methods, electrospray ionization (ESI) and matrix-assisted laser
desorption ionization (MALDI), coupled to Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS),
Yilmaz et al. [83 analyzed the metabolite profile of soy leaves from midsummer to autumn. They found a decreased
production of chlorophyll-related metabolites and a higher level of disaccharides from summer to autumn. Another
metabolomic approach analyzed soy leaves from crops with different geographical localizations and identified different
amounts of metabolites such as pinitol and flavonoids B4, An excellent review performed by Feng et al. [ summarizes
the use of metabolomics in soy under abiotic stress.

| 4. Bioactive Compounds in Underused Soy Parts

In addition to the four main causes of change in soy metabolism mentioned above, both qualitative and quantitative

metabolic variations among soy organs are expected. To present an overview of the metabolite profile of underused soy
m [38l55][66](67][68][81][82]

parts, we selected metabolomics and related works which used various approaches to analyze the
(86](87][88][89)[90][91][92][33][34][95][36]  ysjng Jchem (JChem for Excel 21.1.0.787, ChemAxon (https://www.chemaxon.com,
accessed on 8 April 2021)) ¥4 and ClassyFire 28], we organized and classified the metabolites identified in soy roots,

leaves, branches, and pods, respectively. Figure 4 summarizes the best-known classes of bioactive compounds identified
in underused soy parts. Carboxylic acids and their derivatives, such as amino acids, peptides, and analogues, are the
most mentioned class of compounds. This class is mainly composed of primary metabolites; however, it also contains
several bioactive compounds. Similarly, organooxygen and fatty acyl compounds include metabolites with human health
benefits. Isoflavonoids, which are the most mentioned class of secondary metabolites, as well as prenol lipids and
flavonoids, have been suggested to have a wide range of medicinal uses. Focusing on secondary metabolites, prenol
lipids are the most identified class of compounds in soy roots, with several soyasaponins found in this part. In soy leaves,



different subclasses of isoflavonoids have been found, such as isoflavonoid O-glycosides, isoflavans, isoflav-2-enes, and
others. The metabolite profiles of soy branches and pods have been less studied; however, approximately 20 flavonoids
and isoflavonoids have been identified in each part. Other classes of compounds, such as steroids and steroid
derivatives, coumarins and derivatives, and cinnamic acids and derivatives, have been found in underused soy parts.
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Figure 4. Classification of the metabolites identified in soy roots, leaves, branches, and pods according to ClassyFire.

Table 1 presents 38 isoflavonoids identified in one or more of the above-mentioned underused soy parts. Eight of them
(daidzein, genistein, glycitein, daidzin, genistin, glycitin, malonyldaidzin, and malonylgenistin) were reported in all soy
organs. Recent works showed promising biological activities of daidzein against colon cancer and hepatitis C virus 22001,
Daidzin, which is a glyco-conjugate form of daidzein, presented therapeutic properties against multiple myeloma and
epilepsy 2011021 Bjoactivity studies regarding the other aforementioned compounds also found properties against chronic
vascular inflammation, human gastric cancer, breast cancer, and degenerative joint diseases (103]204)[103] ' Bjgchanin A,
coumestrol, glyceollin, medicarpin, and ononin are more examples of widely known bioactive isoflavonoids which are
found in different soy organs (see Table 1 for a summary) [208I[107][108]109][110] Carneijro et al. B8] quantified six isoflavones

in soy branches, leaves, pods, and beans collected just after mechanical harvesting. Almost 3 kg of isoflavones were
found per metric ton of soy leaves. However, less than 1 kg per metric ton was found in soy branches and pods. In
soybeans, which are the main product of the soy plant, it was approximately 2 kg per metric ton.

Table 1. Isoflavonoids identified in soy branches (B), leaves (L), pods (P), and roots (R).

Name Formula B L P R References

2'-hydroxydaidzein C15H1005 X [68]
7,3",4'-trihydroxyisoflavone C15H1005 X [67]
7-O-methylluteone C21H3006 X [66]
acetyl daidzin CoH,04 X [92]

acetyl genistin Cy3H2,011 X X [82][92]
acetyl glycitin Cy4H24041 X [92]
afrormosin 7-O-glucoside Ca3H24040 X (s8]
biochanin A C16H1205 X [68]
biochanin A 7-0-D-glucoside C2oH2,04 X (58]
biochanin A 7-O-glucoside-6"-O-malonate Cy5H24013 X (58]



Name Formula B L P R References

calycosin C16H1205 X [68]
coumestrol C15HgOs5 X X [67][68][89]
daidzein Ci15H1004 X X X X [38][66][671[68][82][86][891[911[92][94][95][96]
daidzin C21H2000 X X X X [38][66][67][68][82][86][89][91][92][95][96]
formononetin Ci16H1204 X [68][90]
formononetin 7-O-glucoside C22H2209 X X [67][68]
formononetin 7-O-glucoside-6"-malonate C25H24012 X [c6][68][82]
formononetin 7-O-glucoside-6-O-malonate C25H24012 X X [66]re7]
genistein CisH100s X X X X [381(67](82](86][92][96]
genistin C21H20010 X X X X [38][66][67][82][89][92][95][96]
glyceollidin I/l C20H2005 X [68]
glyceollin| C20H1505 X [661[68]
glyceollin Il C20H1805 X [66][68]
glyceollin lll C20H1805 X [66][68]
glyceollin IV C21H2,05 X [68]
glyceollin VI C20H1604 X [68]
glycitein C16H1205 X X X X [38][68][86][92][96]
glycitein 7-O-glucoside C22H22010 X [68]
glycitin C22H22019 X X X X [38][67][89][92][96]
isotrifoliol C16H1006 X [68]
malonyldaidzin C24H22012 X X X X [38][66][671[68][82][89][91][92][95][96]
malonylgenistin C24H22013 X X X X [66][67][68][82][89][92][95][96]
malonylglycitin C25H24013 X X X [68][82][92][96]
medicarpin C16H1404 X [68]
neobavaisoflavone C20H1804 X X [66][67]
phaseollin C20H1804 X [68]
pisatin C17H1406 X [68]
sojagol C20H1605 X [e6]r68]

4.1. Roots

Different compounds belonging to the prenol lipids category, which are recognized by their bioactivity, have already been
identified in soy. Tsuno et al. 28 identified several soyasaponins, sapogenins, and isoflavones in soy root exudates.
Soyasaponins have been linked to anti-obesity, anti-oxidative stress, and anti-inflammatory properties, as well as
preventive effects on hepatic triacylglycerol accumulation ELZAISN114] Omar et al. [119] jdentified the potent inhibitory
effects of soyasapogenol A, which is a triterpenoid, against p53-deficient aggressive malignancies. In addition, other
compounds of different classes, such as fatty acyls, isoflavonoids, flavonoids, and others. Linoleic acid, naringenin, and
formononetin-7-O-glucoside, which are examples of the aforementioned classes, have been related to cardiovascular
health, neuroprotective effects, and anti-inflammatory properties LALIGILLT] The chemical structures of these bioactive
compounds are presented in Figure 5.
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Figure 5. Chemical structures of soyasapogenol A, linoleic acid, naringenin, and formononetin-7-O-glucoside, which are
examples of bioactive compounds identified in soy roots.

4.2. Leaves

Leaves and roots are the most-studied underused soy parts. 259 metabolites of 32 classes identified in soy leaves are

presented [B8IEEI68]B2][BEI[BA0[911[94] Almost 90 of these compounds are flavonoids, isoflavonoids, or prenol lipids. Widely
known bioactive flavonoids such as apigenin, kaempferol, rutin, and others were also identified. Apigenin has been
suggested as a potential anticancer agent 118, Glyceollin | and soyasaponin I, an isoflavonoid and a prenol lipid,
presented activities against breast cancer and Parkinson’s disease, respectively [O8I1191 noreover, different
soyasaponins and even trigonelline, which is an alkaloid, were found in this part of the plant. For example, the latter
substance was reported to have potential for lung cancer therapy, memory function recovery, and an anti-obesity effect
(120]1224][122] Figure 6 shows the chemical structures of the aforementioned metabolites.
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Figure 6. Chemical structures of apigenin, glyceollin I, soyasaponin |, and trigonelline, which are examples of bioactive
compounds identified in soy leaves.

4.3. Branches

In soy branches, 197 compounds have already been identified. The most widely reported class among these metabolites
is the organooxygen compounds category (53 compounds), such as alcohols and polyols, carbohydrates and their
conjugates, and carbonyl. Shikimic acid, an example of an organooxygen compound, was linked to therapeutic effects in
osteoarthritis 1231, Metabolites of other classes, such as succinic and stearic acids, presented an apoptotic effect in T-cell
acute lymphoblastic leukemia and antifibrotic activity, respectively 1241125 Flayonoids and isoflavonoids, such as 7,4'-
dihydroxyflavone and glycitin, presented activity against lung diseases 12811271 The chemical structures of these

compounds are shown in Figure 7.
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Figure 7. Chemical structures of shikimic acid, stearic acid, 7,4'-dihydroxyflavone, and glycitin, which are examples of

bioactive compounds identified in soy branches.
4.4. Pods

Similarly to branches, there are few metabolomics works identifying pod metabolites [E8IE8IBEIB2I93I95] - Amino acids,
peptides, and mono-, di-, and tricarboxylic acids and their derivatives are the most mentioned types of compounds in
pods, with some of these substances already widely used in industry, such as citric and fumaric acids. Moreover,
specialized metabolites such as camphene and a-pinene, which were also identified in soy pods, presented anti-skeletal
muscle atrophy and neuroprotective effects, respectively 12811291 Quercetin, which is a widely known flavonoid, may be a
potential anti-inflammatory treatment in patients with COVID-19, as described by Saeedi-Boroujeni and Mahmoudian-Sani
(1301 Hexadecanoic acid, a fatty acyl compound, presented an inhibitory effect on HT-29 human colon cancer cells
131 Figure 8 presents the chemical structures of one compound of each class mentioned. In addition, fatty acyls,
flavonoids, isoflavonoids, and other classes of compounds were identified in pods.

= “  Citric acid
) Carboxylic acids and derivatives
M
Camphene
He Prenol lipids

Quercetin
Flavonoids

Ji§ Hexadecanoicacid
U T e e e e Fatty acyls

Figure 8. Chemical structures of citric acid, camphene, quercetin, and hexadecanoic acid, which are examples of
bioactive compounds identified in soy pods.
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