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Yeast communities associated with insects were identified either from entire insect bodies, which were previously
surface-sterilized or not, or from dissected organs using culture-dependent and independent approaches.
Independent cultural approaches usually involved DNA extractions from insect tissues followed by the amplification
of taxonomic markers allowing a discrimination at the genus or species level, such as the Internal Transcribed
Spacer (ITS) regions and the D1/D2 region of 26S ribosomal DNA.
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| 1. Introduction

With nearly one million described species and 5.5 million estimated ones, insects represent more than 80% of the
animal biodiversity on Earth [l Such diversity is reflected by a broad spectrum of evolutionary acquired traits,
some of them being linked to their feeding mode 2. The evolutionary success of many insects is closely tied to
symbiotic associations with microorganisms having complementary potential that is otherwise lacking in insects
and restricts them when inhabiting an ecologically challenging niche or invading new environments B4l Therefore,
our understanding of insect biology is facing a paradigm shift where these higher organisms can no longer be
considered as an isolated entity and instead should be studied in relation with its microbiota (bacteria, fungi,

protists, and viruses) with which it interacts and forms a metaorganism, often referred to as the holobiont REIZIE],

To date, most studies have mainly focused on bacteria which establish parasitic, commensal, or symbiotic
relationships with their hosts by colonizing different tissues such as ovaries &, cuticle 19, or specialized host cells
(bacteriocytes) often grouped into an organ called the bacteriome 1. However, most of bacterial microbiota inhabit
the digestive tract B4, which is composed of three regions with specific functions ( Figure 1 ). These regions vary
extensively in terms of morphology and physicochemical properties across insect orders, factors that are known to
greatly influence microbial community structure Bl The midgut, which hosts a dense and diverse microbial
community in most insect orders, is the primary site of digestion and absorption [, In comparison, few studies to
date have investigated the bacterial diversity in the foregut (the region dedicated to food intake, storage, filtering
and partial digestion). In Diptera (including flies and mosquitoes) and Lepidoptera (butterflies and moths), the crop
is a ventral diverticulum of the oesophagus that serves as primary storage organ for sugars from the nectar before
it is transferred into the midgut for digestion [&. Interestingly, a diverse and rich bacterial community was recently
observed in the crop of mosquitoes, raising questions about symbiotic associations occurring in this organ 1213l
Finally, in the hindgut where the bacterial density is very low for certain insect orders and stronger for others (

Figure 1), the absorption is completed and feces are formed.
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Figure 1. The internal anatomy of an insect (A) and variability of bacterial density across the digestive tract (B),

taking the bee as example (according to Tofilski A.; http://honeybee.drawwing.org, accessed on 5 March 2021 and

KeSnerova et al. 14). All insects present an internal cavity (the hemocoel) containing a circulatory fluid
(hemolymph) and all organs forming the digestive (in yellow), reproductive (in green), circulatory (in red),

respiratory or nervous (in blue) systems.

Insect bacterial microbiota offer a wide range of benefits to their host, ranging from increased fecundity 2],
oviposition (281 and longevity 17 to shorter larval development 28, Associated bacteria also influence many other
aspects of insect biology, such as complementing host nutrition 22, facilitating dietary breakdown 2%, providing
protection against pathogens 2122l and performing the detoxification of xenobiotics or dietary components [23124]
(2326 The nature of gut microbiota-host associations appears to be variable among insects. While weevils 7,
burying beetles (28], and social insects such as termites 2989 pees Bl or certain ants B2 harbor specialized gut
microbial communities mostly transmitted vertically and representing longstanding microbiota-host interactions,
other insects like fruit flies or mosquitoes are mainly colonized by transient microbial communities acquired from

the environment [331(34],
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While an increasing number of studies on insect-associated microbiota have focused on bacteria, other microbial
partners such as fungi have been more neglected 33, Fungal communities (mycobiota) and more particularly
yeasts have been demonstrated to be associated with many insect species [B€l. Yeasts, which can dominate the
mycobiota of certain insects, establish mostly commensal or symbiotic relationships with their host. Like bacteria,
yeasts colonize different tissues, such as cuticle, and some yeast species referred to as yeast-like symbionts (YLS)
or endosymbionts are localized in fat body specialized cells (mycetocytes) of certain insect species belonging to
the Hemiptera and Coleoptera orders 28, However, yeasts predominantly colonize the digestive tract where they
may act as nutrient providers, digestion facilitators, or protectors against pathogens and toxic compounds E71,
Insects are then highly dependent on their gut microbiota, including yeasts, for their development and survival.
Based on the degree of dependence, their association can be classified as obligate (or primary) and facultative (or
secondary). If YLS located in the mycetocytes of the planthopper Nilaparvata lugens (28! and the aphid Cerataphis
brasiliensis 2 are primary symbionts, some endosymbiotic yeasts are considered secondary symbionts, as they
are associated with bacterial species. For example, Metschnikowia pimensis and another unidentified YLS (Hp-
YSL) of the planthopper Hishimonus phycitis are associated with six bacterial endosymbionts including Sulcia and
Nasuia species 49, Similarly, in several cicada species ( Meimuna opalifera , Graptopsaltria nigrofuscata |,
Cryptotympana facialis , Hyalessa maculaticollis , and Mogannia minuta ), the primary bacterial endosymbionts
Sulcia is associated with an YLS phylogenetically related to entomoparasitic Ophiocordyceps fungi 41, This review
highlights the diversity of commensal and symbiotic yeast communities associated with insects, as well as their
impact on insect life-history traits (development, survival, reproduction), immunity, and behavior. As Drosophila
melanogaster -yeast interactions have been extensively documented (421431 this insect species was not included in

the present review.

2. Diversity of Yeast Communities Associated with Insects
and Variation Factors

The diversity of yeast communities was mostly studied for insect species with a major impact on humans and their
environment such as crop auxiliaries (lacewings) 443l pollinators (bees, bumblebees, fruit flies, or floricolous
beetles) [“6l47148]149]  plant pests (moths, planthoppers, bark beetles) BIBABLG2 gnd pathogen vectors
(mosquitoes, sandflies) B3IB455] Yeast communities associated with insects were identified either from entire
insect bodies, which were previously surface-sterilized BLES! or not (48149 or from dissected organs [L3BA56] ysing
culture-dependent 42B7E8] gnd independent approaches BABA. |ndependent cultural approaches usually involved
DNA extractions from insect tissues followed by the amplification of taxonomic markers allowing a discrimination at
the genus or species level, such as the Internal Transcribed Spacer (ITS) regions and the D1/D2 region of 26S
ribosomal DNA. Amplified sequences analyzed using DGGE B850 T-RFLP 81l Sanger 621631 or high-throughput

sequencing 22184 were used to characterize insect associated-yeast communities.

Depending on the insect order, the composition of associated-yeast communities was not equally analyzed for all
developmental stages ( Table S1 ). While only larvae were studied for Lepidoptera Y63l the adult stage was

preferentially analyzed for many other insect orders “1BLI5SIE6I67I68]  However, for some species belonging to
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several insect groups, such as mosquitoes 23, bark or sap beetles 189 and planthoppers 4, all life stages were
analyzed and the presence of yeast species was detected at all developmental stages ( Table S1 ). These insect-
yeast communities are mainly acquired from the environment B8IIZAZUIZ273] For example, mosquito larvae acquire
yeast communities mainly from the water of breeding sites, while adults obtain it from water at emergence as well
as from sugar (plants or flower nectars) and/or blood meals for females during their entire life span 4. In
Hymenoptera (bees and bumblebees), adults acquire yeasts mainly from the nectar of flowers, while larvae obtain

them from the provisions (pollen) supplied by adults [63Il73],

As previously mentioned, insects acquire a large part of their yeast communities from their nutrient sources
(flowers, fruits, sap, etc.) and/or breeding sites UABSIBSIEEITLIZ6] The environment is therefore one of the main
factors shaping yeast communities associated with insects. A study analyzing the structure of yeast communities
associated with several Drosophila species worldwide has shown that the insect diet has a greater impact than the
host species per se 48, Similarly, Lachance et al. 2l demonstrated that the composition and structure of yeast
communities inhabiting the ventral diverticulum of Drosophila species feeding on cactus sap ( Drosophila
mojavensis , D. mettleri ...) are very different from those feeding on sap or tree fruits ( D. pseudoobscura , D.
Miranda ...). Yeasts vectored by stingless bees differ in southeastern and northern Neotropical savannas of Brazil,
suggesting a strong influence of the visited vegetation 42, Yeast communities associated with bark and ambrosia

beetles were demonstrated to be strongly influenced by environmental factors such as host tree species and
seasons [BI73I78]

The sex and social status of insects may also have a significant impact on the structure of yeast communities. In
the planthoppers N. lugens 22 and D. kuscheli B9, YLS abundance gradually increases until the adult stage and
remains relatively stable in females, while it strongly decreases upon emergence in males. In Ae. albopictus ,
yeasts belonging to the genus Aureobasidium are 11 to 15 times more abundant in the ventral diverticulum and
midgut of males compared to females 23], Yeast community composition is also affected by the social status of
their hosts, as has been demonstrated for Apis mellifera bees. The gut of young bees and nurses presents a low
yeast diversity and is highly dominated by Saccharomyces species (representing 97% to 99% of the yeast
diversity). In contrast, foraging bees and queens are colonized by diverse yeast species and dominated by

Zygosaccharomyces species (87%), respectively (11,

3. Influence of Yeasts on Insect Life-History Traits and
Immune System

Whatever their stage of development, insects may use obligate or facultative yeast symbionts to compensate
diverse metabolic functions. Yeasts associated with insects are known to facilitate the host feeding on recalcitrant
food [8283l84] provide immunity and protection against various pathogens and parasites 4485 mediate inter- and
intra-specific communication diet 887 aid digestion, and supply essential amino acids, metabolic compounds,
and nutrients B8 Those yeasts are essential for the optimal development and survival of many insects,
demonstrated by the fact that Drosophila suzukii larvae reared in a yeast-free environment do not reach the pupal

stage R |t has also been demonstrated that axenic mosquito larvae (microbiota-free larvae) exhibit delays in
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growth of more than six days 18 compared to conventionally-raised ones, or do not develop beyond the first instar,
while the development is restored when living yeasts are supplied 22l Similarly, in the brown planthopper ( N.
lugens ), the absence of yeast-like symbionts in mycetocytes prevents the abdominal segmentation and the

differentiation of the embryo 23, while a decrease in their density leads to a reduction in nymph weight (24!,

At the adult stage, several phytophagous and blood-sucking insects feed on plant substances enriched in fructose,
glucose, and sucrose [93I38I97] |f 5 certain proportion of these plant sugars is digested by enzymes contained in
saliva and directly assimilated by the insect, most of them are stored in the crop or in the ventral diverticulum
where a wide variety of yeast genera are present, such as Candida , Debaryomyces , Hanseniaspora ,
Meyerozyma , Metschnikowia , and Pichia ( Table S1 ) L223I47AI7B8] gygars will then be gradually transported to
the midgut where they will preferably be used as an energy source by the microbiota, and particularly yeasts 29,
For example, it has been shown that yeasts of the genus Malassezia associated with both male and female Ae.

albopictus actively utilize fructose, while yeasts of the genus Cyberlindnera are more active in females 22,

Insects only have an innate immune system that is based on the recognition of conserved microbe-associated
molecular patterns (MAMPS) by a set of pattern-recognition receptors (PRRs) localized on the surface of host cells
(1001 several classes of PRRs are able to detect fungal surface molecules and secondary metabolites, which then
induce the activation of protein kinases or transcription factors. In turn, those protein kinases and transcription
factors stimulate the production of insect antimicrobial peptides (AMPs) including cecropins, defensins, diptericin,
and gambicin, or other effector molecules, as well as phagocytic and melanization responses ( Figure 2 ). Infection
by fungi, and therefore yeasts, activate several signaling pathways, and more particularly the Toll and
TEP/Melanization pathways [190][101]

https://encyclopedia.pub/entry/13766 5/18



Yeast Communities Associated with Insects | Encyclopedia.pub

i Y i N
/ IMD pathway / Toll pathway *\

Antimicrobial peptides "‘1\ f Artimicrobial peplides A

(defensins, cecroping, gambicin) (defesins, cacropins, gambicin) H\
LY

+

{*’ NE-KB transcription factor

MF-kB transcription factor
(REL2) /,f iﬁﬂﬁh />
B-1,3-glucan reo:rgnlilm Toll-like receptor /

proteins (GRPs) _ : \ - (TLR) /
/" Receptor tyrosine \ Domeless receptor '\
kinases {R'm} \\ (Dome} b

+

Transcription factor (Sat928)
Kinases

\ D
[J“K.’r I_MF-PI{ p38)

s paa
Thioester-containing SImCTob e e
E i {gambicin)
EIfactor protems prdems (TEPS) A
JNK/MAPKp38 W JAK-STAT
pathway B! pathway

ﬁ MAP Hnases 4 /
[Mﬂpl‘{li]

Melanization
Phagocytosis

TEP/Melanization
pathway

Figure 2. Signaling pathways of insects’ innate immunity stimulated by yeast colonization. Yeast surface molecules
or secondary metabolites are recognized by specific receptors. This recognition induces the activation of kinases or
transcription factors that stimulate the production of antimicrobial peptides or other effector proteins, as well as
phagocytosis of yeast cells and melanization. These signaling pathways stimulated by yeast are Toll, Imd (Immune
deficiency), JAK/STAT (Janus Kinase/Signal Transducer), JNK/MAPKp38 (Jun N-terminal Kinase/Mitogen
Activated Protein Kinase p38), TEP (ThioEster-containing Protein), and TEP/Melanization.

Other mechanisms, such as resource competition or production of antimicrobial compounds (toxins or other), allow
yeasts to inhibit colonization of the insect host by entomopathogens or human pathogens. An in vitro study has
demonstrated that yeasts of the species M. reukaufii , S. bombi , W. bombiphila , previously isolated from the
midgut of the bumblebee B. terrestris and known to be competitive for resource consumption reduce the

development of the natural parasite of this insect (the protozoan Crithidia bombi ) by 25% to 85% [102],

4. Impact of Yeasts and Their Volatile Compounds on Insect
Behavior

Besides visual signals, insects largely use the olfactory perception of chemical signals, such as emissions of CO 2

and pheromones or volatile organic compounds (VOCs), to move toward or find a partner, a food source (nectar,
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blood, etc.) or a nest site ( Figure 3 ) [87][103][104][105][106] \\hijle plants, vertebrate hosts, or insects themselves
directly produce such chemical compounds, environmental microorganisms or insect microbiota also contribute to
the release of such kairomones. Indeed, CO 2 as along with a wide variety of volatile secondary metabolites are

emitted by yeasts as by-products of fermentation, and play a role in insect attraction [E7207],
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Figure 3. Influence of yeast volatile compounds on blood-sucking and phytophagous insect behavior. Insects use
olfactory perception of chemical cues, such as CO, or volatile organic compounds (VOCSs), to find favorable nest

sites for larval development, vertebrate hosts, flowering plants, or mating partners.

The ability to synthesize and release volatile compounds is also an old phenotypic trait that has been preserved in
yeasts (1981, Several studies have shown that the simultaneous presence of VOCs and CO 2 both produced by
yeasts during the fermentation of various carbon sources is more effective to attract insects than inert yeasts,
industrial CO 2, or octenol (aromatic compound of plant or fungal origin widely used in commercial traps to capture
biting insects) used alone LO9LI0ILIAIZ] For example, it was recently shown that the yeast Cyberlindnera jadinii
adult attracted more efficiently green lacewing adults ( Chrysoperla comanche ) when it was alive, thus

demonstrating the importance of the volatile compounds emitted by yeasts to attract these insects 1131,
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Blood-sucking insects such as mosquitoes which feed on both nectar (males, females) and blood (gravid females
require blood meals to complete oogenesis), locate their food sources through volatile compounds (CO 2 and
VOCs) partly emitted by yeasts found in plant nectar and on the skin of vertebrate hosts 193 However, unlike
nectar-living yeasts, the attractiveness of the yeasts found on human or vertebrate skins has never been tested.
Depending on the nature of the VOCs generated and their concentration, attraction and repulsion behaviors have
been observed towards mosquitoes 114l Even if the fermentation by yeasts of complex carbohydrates such as
honey generates a greater production of VOCs, including attractant compounds such as hexanoic acid or
phenylethyl alcohol, sucrose attracts a greater number of mosquitoes. In this case, the absence of certain VOCs
with repulsive properties could promote the attraction of mosquitoes 141, In addition to their impact on the behavior
of adult mosquitoes, yeasts also impact the feeding behavior of larvae. Yeasts that promote the development of
larvae, through the supply of nutrients or the accumulation of reserves following the detection of a gut hypoxic
signal 227 attract and strongly impact the behavior of larvae 11311161 |ndeed, the presence of S. cerevisiae in
the larval food of Anopheles gambiae reduces the average velocity, rotations, and number of movements of larvae,

while increasing their resting time [116],

A recent study has demonstrated that yeasts isolated from flowers, leaves, or fruits emitted specific VOC profiles
that influence the feeding behavior of larvae of the moth Spodoptera littoralis . These larvae feed exclusively on
leaves and are strongly attracted by yeasts retrieved from the plant phyllosphere ( Metschnikowia lopburiensis and
Papiliotrema nemorosus ), while most of the yeasts isolated from fruits ( M. andauensis and M. pulcherrima ) are
repellent. The attractive VOCs emitted specifically by the yeasts of the plant phyllosphere are geranyl acetone,

cyclohexanone, 2-thyl-1-benzofuran, and 1,3,5-undecatriene [117],
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