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Thermally modified wood (TMW) is a material derived from a treatment that combines temperature and moisture, avoiding

harmful substances while providing better energy efficiency and drying quality. Such types of processes can considerably

improve the performance of timber in several aspects. The treatment is usually achieved at temperatures between 120 °C

and 260 °C, depending on the industrial process and desired end-product characteristics.
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1. Introduction

There are a wide variety of applications of wooden structures, and nobody questions the value of the majority of these

products  for building materials, including indoor and outdoor products, structural frames, window and door frames,

floors, and façade systems . However, wood is a complex biological tissue composed of different cell types . This

cellular diversity, with a diverse molecular structure, largely determines the physical and mechanical properties and

profoundly influences the performance of wood as a construction material and its demand as such . Therefore,

knowledge of the wood structure and species identification is essential .

For outdoor use, wood is exposed to many abiotic and biotic factors, such as weather conditions and biodegradation,

which negatively affect the wood material’s physical, biological, chemical, and mechanical properties .

Due to the environmental problems associated with chemicals, many industries, including the wood industry, are looking

for environmentally friendly wood treatments to improve wood durability.

2. Wood Modification

Thermally modified wood (TMW) is a material derived from a treatment that combines temperature and moisture, avoiding

harmful substances while providing better energy efficiency and drying quality . Such types of processes can

considerably improve the performance of timber in several aspects. The treatment is usually achieved at temperatures

between 120 °C and 260 °C, depending on the industrial process and desired end-product characteristics ( Table 1 ).

Table 1. Different thermal modification industrial processes (adapted from Sandberg et al. ).

Process
App.
Year

Temperature
(°C)

Process
Duration
(h)

Pressure
(MPa)

Atmosphere System Type

FWD 1979 120–180 ≈15 0.5–0.6 Steam Closed system

Plato 1980
150–180/

170–190

4–5/70–

120

up to

weeks

Super

atmospheric

pressure

(partly)

Saturated

steam/

heated air

A four-stage

process
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ThermoWood 1990
130/185–

215/80–90
30–70 Atmospheric Steam

Continuous steam

flow through the

wood under

processing removes

volatile degradation

products.

Le Bois

Perdure
1990 200–230 12–36 Atmospheric Steam

The process

involves drying and

heating the wood in

steam.

Retification 1997 160–240 8–24 -
Nitrogen or

other gas

The nitrogen

atmosphere

guarantees a

maximum oxygen

content of 2%.

OHT 2000 180–220 24–36 - Vegetable oils Closed system

This kind of treatment is widely used, established by several company trademarks and patents around the globe .

The first process we studied was carried out by Burmester, who studied the effects of temperature, pressure, and

moisture in a closed system, then named Feuchte-Wärme-Druck (FWD) . Throughout this technology development,

several commercial processes were created, such as Lignostone ® and Lignifol ® in Germany, and Staypak ® and

Staywood ® in the United States of America. More recently, other commercial methods were introduced in Europe: the

Thermowood ® process in Finland, the Plato ® process in The Netherlands, and the Perdure ® process and Retification ®

in France . During the 2000s, other thermal modification processes were created: those using vegetable oils,

such as OHT ® (oil heat treatment) and those using a vacuum system, such as VacWood ® (Thermo vacuum-treated

wood) . In Europe, the ThermoWood process is the one most commonly used commercially . Table 2 shows the

wood species that are widely used in Finland and other countries.

Table 2. Wood species studied for commercial purposes .

Softwood Species Hardwood Species

Pine (Pinus sylvestris) Birch (Betula pendula)

Spruce (Picea abies) Aspen (Populus tremula)

Radiata pine (Pinus radiata) Ash (Fraxinus excelsior)

Maritime pine (Pinus pinaster) Larch (Larix sibirica)

  Alder (Alnus glutinosa)

  Beech (Fagus sylvatica)

  Eucalyptus (Eucalyptus sp.)

Thermal modification treatments alter the structure and chemical composition of the wood cell walls . These

changes are responsible for modifying physical and mechanical properties. The main effects are improvement of

dimensional stability, reduction of hygroscopicity (due to a decrease in the equilibrium moisture content and wettability),

and the improvement of resistance to biological attack . On the downside, these treatments can cause a reduction in

some mechanical and physical properties, namely, in the modulus of elasticity (MOE), the modulus of rupture (MOR),

impact toughness, abrasion resistance, hardness, and roughness , depending on the wood species ( Table
3 ).

Table 3. Examples of the mechanical properties of some wood species before and after the thermal modification.
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Species Thermal
Modification Time MOE

(MPa)
MOR
(MPa)

Roughness
(µm)

Hardness
(kg) Reference

Ash
(Fraxinus excelsior)

Control
90 min in steam

atmosphere

7760
(850.94)

90.68
(5.78)

- -

212 °C 9990
(1838.94)

74.04
(7.59)

Iroko
(Milicia excelsa)

Control
90 min in steam

atmosphere

11960
(1719.88)

121.90
(18.85)

- -

212 °C 12860
(960.73)

114.83
(16.14)

Scots pine
(Pinus sylvestris)

Control
90 min in steam

atmosphere

9644
(498.33)

89.54
(7.45)

- -

190 °C 8808
(1219.58)

74.18
(9.77)

Spruce
(Picea orientalis)

Control
90 min in steam

atmosphere

7618
(320.66)

75.20
(3.00)

- -

190 °C 8985
(1244.55)

72.50
(8.92)

Black Alder
(Alnus glutinosa) 190 °C 3 h - -

36.08 (1.5) 341.6
(26.1)

35.35 (1.6) 361.29
(24.3)

Red Oak
(Quercus rubra) 190 °C 3 h - -

57.82 (6.5) 662.00
(73.7)

54.28 (3.1) 533.72
(38.3)

Southern Pine
(Pinus taeda) 190 °C 3 h - -

27.16 (1.4) 263.44
(28.4)

27.00 (1.4) 270.97
(29.5)

Yellow Poplar
(Liriodendron

tulipifera)
190 °C 3 h - -

44.08 (1.8) 352.34
(50.8)

44.01 (1.4) 354.65
(46.3)
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Species Thermal
Modification Time MOE

(MPa)
MOR
(MPa)

Roughness
(µm)

Hardness
(kg) Reference

Maritime pine
(Pinus pinaster)

Control

2 h

1110
(13.5%)

130
(21.5%)

- -

200 °C 1130
16.4%)

127
(17.4%)

240 °C 1070
(17.2%)

104
(12.2%)

260 °C 1130
(34.9%)

76
(24.2%)

300 °C 7800
(<2%)

51
(11.0%)

Eucalyptus
(Eucalyptus globulus)

Control

2 h

1440
(5.5%)

129
(5.9%)

- -

200 °C 1580
(14.9%)

105
(21.7%)

240 °C 1260
(14.9%)

86
(25.6%)

260 °C 1410
(8.6%)

91
(13.9%)

300 °C 4600
(< 2%) 28 (8.2%)

Beech
(Fagus sylvatica)

Control

2 h

1190
(24.0%)

146
(26.6%)

- -

200 °C 1230
(18.5%)

167
(6.5%)

240 °C 9600
(25.8%)

124
(11.5%)

260 °C 1040
(20.2%)

105
(21.6%)

300 °C 8140
(<2%)

52
(12.0%)

Acacia
(Acacia melanoxylon)

Control

2 h

1610
(4.1%)

138
(6.7%)

- -

200 °C 1640
(7.5%)

141
(2.8%)

240 °C 1040
(14.9%) 83 (9.7%)

260 °C 1300
(5.9%) 82 (2.8%)

300 °C 8400
(13.8%)

47
(28.9%)

Oak
(Quercus faginea)

Control

2 h

1130
(9.9%)

102
(9.2%)

- -

200 °C 1150
(13.3%)

91
(12.6%)

240 °C 1090
(16.4%)

83
(20.2%)

260 °C 1120
(5.2%) 74 (3.0%)

300 °C 1010
(12.8%)

68
(12.8%)
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Species Thermal
Modification Time MOE

(MPa)
MOR
(MPa)

Roughness
(µm)

Hardness
(kg) Reference

Pedunculate Oak
(Quercus robur)

Control

 

11731
(4219)

- - -

160 °C 11021
(350)

180 °C 10846
(1168)

200 °C 11639
(1028)

According to the literature, different reactions occur during thermal treatments . Figure 1 summarizes the chemical

changes that occur during thermal modification. Even at lower temperatures, hemicelluloses are the first structural

components affected by depolymerization and hydrolysis. Cellulose is the next to be affected: hydrolysis and

recrystallization of the amorphous region increase the crystallinity index in cellulose . Finally, lignin reductions

occur, with homolytic cleavage and polycondensation as the main reactions. Other reactions, such as extractive flow from

inside the wood and a decrease in pH, have also been reported .

Figure 1. Chemical changes that occur during thermal modification (adapted from the International Table 2003 ).

3. Weathering

In the last years, several studies have been conducted to evaluate the impact of weathering in thermally modified wood.

Studies on the exposure of wood to natural weathering conditions (urban environments)  or

artificial exposure through the use of climatic chambers (UV radiation, temperature, and humidity)  were

conducted.

Natural weathering modifies the molecular structure of wood through a complex combination of chemical, mechanical,

biological, and light-induced changes that coincide and affect each other .

The authors evaluated the changes in color and moisture content during a two-year exposure period in Ljubljana

(Slovenia). They concluded that blue-stain fungi changes in color and growth on façade and decking correlated with solar

radiation and water condensation. Unmodified wood underwent a greater color change than modified wood, but modified

wood became grey faster than unmodified wood. They also noticed that decking of modified wood had a higher moisture

content than that of unmodified wood, except for modified larch, which was altered at lower temperatures. The authors

theorized that this happened because thermally modified wood has a higher permeability . Finally, after the treatment,

the formation of microcracks occurs, as well as degradation from tylosis.

In all UV resistance studies found in the literature, the researchers evaluated the color stability of thermally modified wood

under artificial weathering, using UV radiation at different exposure times (between 75 and 835 h).

4. Conclusions

This entry allowed us to draw the following conclusions: The main factors with a significant impact on thermally modified

wood degradation were moisture content and UV radiation. The UV radiation promotes color loss and photodegradation of

the wood surface, leading to cracks in the wood structure in both unmodified and modified wood. The moisture content

promotes mold, blue stain, and fungal growth, affecting the wood color. The advantages and disadvantages of thermally
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modified wood were identified. Benefits were the improvement of dimensional stability with thermal modification,

promoting some weathering protection. The disadvantages were that thermal change was not beneficial in some wood

species, and the modified wood can be sensitive to UV radiation. Species are structurally different, with notable

performances in particular environments. It will be essential to consider more studies with a wider range of species

(temperate and tropical) and environments, for example, in industrial and maritime environments where the effect of the

salinity and pollutant gases are very aggressive for metallic materials; the same effects are unknown for modified wood. In

addition, more studies on thermally modified wood are needed for wooden constructions in coastal areas (urban centers

with a higher population density). It is necessary to conduct long-term weathering exposure to know how thermally

modified woods will be affected by atmospheric contaminants and to predict their behavior under current climatic change

scenarios. More field and laboratory tests, including different thermal modification settings and weathering factors, should

be conducted to identify which environmental parameters affect wood the most.

The lack of information mentioned in our review can be an opportunity for future work; that is, to understand the

degradation mechanisms caused by the weathering factors and to search for other forms of wood protection to promote

the improvement of its lifetime service in various weathering contexts.
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