# **Food Applications of Berberis Plants**

Subjects: Food Science & Technology Contributor: Adedayo Ademiluyi

The genus Berberis includes about 500 different species and commonly grown in Europe, the United States, South Asia, and some northern areas of Iran and Pakistan. Leaves and fruits can be prepared as food flavorings, juices, and teas. Phytochemical analysis of these species has reported alkaloids, tannins, phenolic compounds and oleanolic acid, among others. Moreover, p-cymene, limonene and ocimene as major compounds in essential oils were found by gas chromatography. Berberis is an important group of the plants having enormous potential in the food and pharmaceutical industry, since they possess several properties, including antioxidant, antimicrobial, anticancer activities.

Keywords: Berberis ; food preservative ; alkaloid ; antioxidant ; human health

### 1. Introduction

*Berberis* species. are shrubs in the family *Berberidaceae*, native to central and southern Europe, western Asia, as well as northwest Africa <sup>[1]</sup>. About 500 species of these plants are found in most areas of central and southern Europe, the north-eastern region of United States, and Asia (including the northern area of Pakistan <sup>[2]</sup> and Iran <sup>[3]</sup>). The genus *Berberis* consists of spiny deciduous evergreen shrubs which are characterized by yellow wood and flowers <sup>[2]</sup>, dimorphic long and short shoots (1–2 mm). Some *Berberis* fruits are small oblong berries 7–10 mm long and 3–5 mm broad and turn blue or red upon ripening during the late summer or autumn <sup>[1]</sup>.

*Berberis spp.* are mainly consumed fresh, dried or used in juice production <sup>[4]</sup>. The fruits are very popular, known as *zereshk* in Iran where they are commonly used for cooking and in jam production, thus, encouraging the production of fresh edible seedless barberries fruits reaching about 22,000 tons per annum <sup>[5]</sup>. The fruits are also processed into beverages, drinks, syrups, candy and other confectionary products which are popular Iran. Furthermore, the leaves and fruits have also found applications in the production of food flavorings and teas. *Berberis* are popular due to their nutritional importance; however, they have found most usefulness in folk and traditional medicine where various parts, including roots, bark, leaves and fruits serve as major ingredients of herbal remedies in Ayurvedic, Iranian and Chinese medicine dating back at least 3000 years <sup>[6]</sup>. Currently, this species flower is popularly used amongst Tibetan speaking population in areas, such as Litang, China <sup>[2]</sup>.

The effect of cold-pressed filtered oil of *Berberis* spp. seeds in delaying soybean oil oxidation in comparison to commercial antioxidants were carried out, and the study reported that *Berberis* oil contributed to oxidative stability of soybean oil comparably to commercial antioxidants <sup>[8]</sup>. Antioxidant and antibacterial activity of water extract of barberry has suggested their possible application as preservatives in food industries <sup>[9]</sup>.

Isoquinoline alkaloids are the major bioactive constituents in *Berberis* <sup>[10]</sup>. Protoberberines and bisbenzyl-isoquinoline alkaloids, such as berbamine, tetrandrine and chondocurine, which have been known for their anti-inflammatory and immunosuppressive properties, have been detected by phytochemical analysis of the root and stem back extracts of *B. vulgaris*. Berberine (an isoquinoline alkaloid) and berbamine are the most abundant phytochemicals of *Berberis* species <sup>[2]</sup>. The fruits contain a high amount of alkaloids, tannins, phenolic compounds and oleanolic acid <sup>[3][11]</sup>, gum, pectin, oleoresins, organic acids, anthocyanins and carotenoids. In addition, palmitine <sup>[10]</sup>, stigmasterol and its glycoside <sup>[12]</sup> have all been detected in various species of the *Berberis* plant.

Some *Berberis* fruits have been employed in the treatment of guts <sup>[13]</sup> kidney stones <sup>[14]</sup> and liver <sup>[15]</sup> and gall bladder <sup>[10]</sup> conditions. The root bark and stem of the *Berberis* have found usage as a diuretic, febrifuge, cathartic and antiseptic. Furthermore, preparations of the stem and root bark have been used to treat mouth and stomach ulcers <sup>[16]</sup>. Several parts of the plant have been reported to possess astringent and antiseptic properties, while the stem bark and flowers were found to be anti-rheumatic <sup>[17]</sup>. The alkaloid rich root bark of the plant has also been used as purgative and treatment for both diarrhea and rheumatism <sup>[18]</sup>. The berberine-rich rhizomes of *Berberis* species possess marked antibacterial and

antitumor properties, with reported efficacies in treatment of various eye conditions <sup>[10][19]</sup>. Furthermore, the antiinflammatory activity of berberine has been extensively studied amongst other pharmacological actions <sup>[10][20]</sup>.

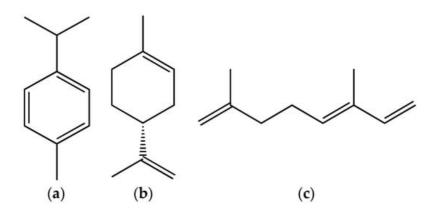
Berberine sulphate which is an alkaloid extracted from the roots and bark of various *Berberis* spp. Have been reported to possess antibacterial, antifungal and antiprotozoal activities. Reported the bacteriostatic activity of berberine against streptococci, and that the sub-minimum inhibitory concentrations (MICs) of the compound blocked the adherence of streptococci to host cells, immobilized fibronectin, and hexadecane in epithelial cells <sup>[21]</sup>. Furthermore, blood glucose and lipid regulatory properties of *Berberis* have been demonstrated <sup>[3][22][23][24]</sup>; and this was due to berberine-induced improvement in insulin sensitivity through regulation of adipokine secretion <sup>[25][26][27]</sup>. Effectiveness of *Berberis* species in the maintenance of heart health has been demonstrated in their ability to improve hypertension, ischemic heart disease, cardiac arrhythmias and cardiomyopathy <sup>[2][28]</sup>.

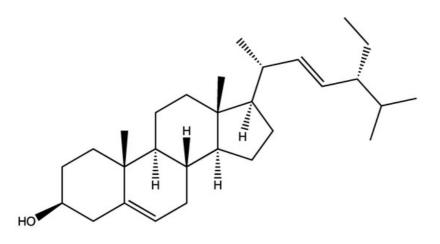
The health-promoting effect of *Berberis* spp. cannot be overemphasized, as well as its popularity; however, this is restricted to central and southern Europe, western Asia, as well as northwest Africa. Hence, efforts should be geared towards making the *Berberis* plant also available to other regions of the world. Furthermore, most studies on *Berberis* spp. have been on berberine; therefore, efforts should be made towards researching possible therapeutic benefits of all other important phytoconstituents of the plant. Furthermore, the synergistic or additive effect of these phytoconstituents should be studied so as to elucidate the complex molecular interaction amongst various phytochemicals leading to the observed therapeutic properties. In addition, the modulatory effect of the plant/plant materials on gene expression should be prioritized.

#### 2. Berberis Plants Essential Oils and Phytochemical Composition

Essential oils (EO) are volatile, complex natural compounds, which formed in aromatic plants as secondary metabolites. They are used in pharmaceutical, agricultural, and food industries, as well as are associated with antibacterial, antiinflammatory, antioxidant, and insecticidal potential <sup>[29][30][31]</sup>.

The gas chromatography coupled to mass spectrometry (GC-MS) analysis of various parts of *B. vulgaris* revealed that benzaldehyde, benzyl alcohol, 1-hexanol and I-2-hexenal  $\frac{[32]}{2}$  were major compounds of the EOs from fruit, while *p*-cymene, limonene and ocimene were identified as major compounds of the EOs (Figure 1) from leaves and flowers  $\frac{[33]}{2}$ .

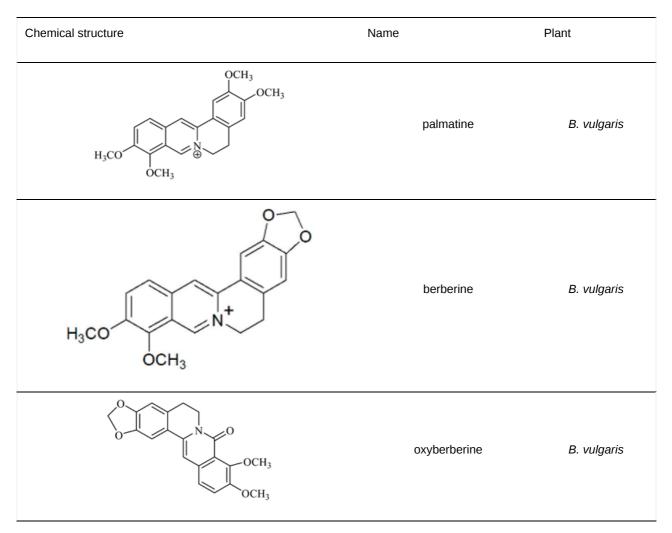


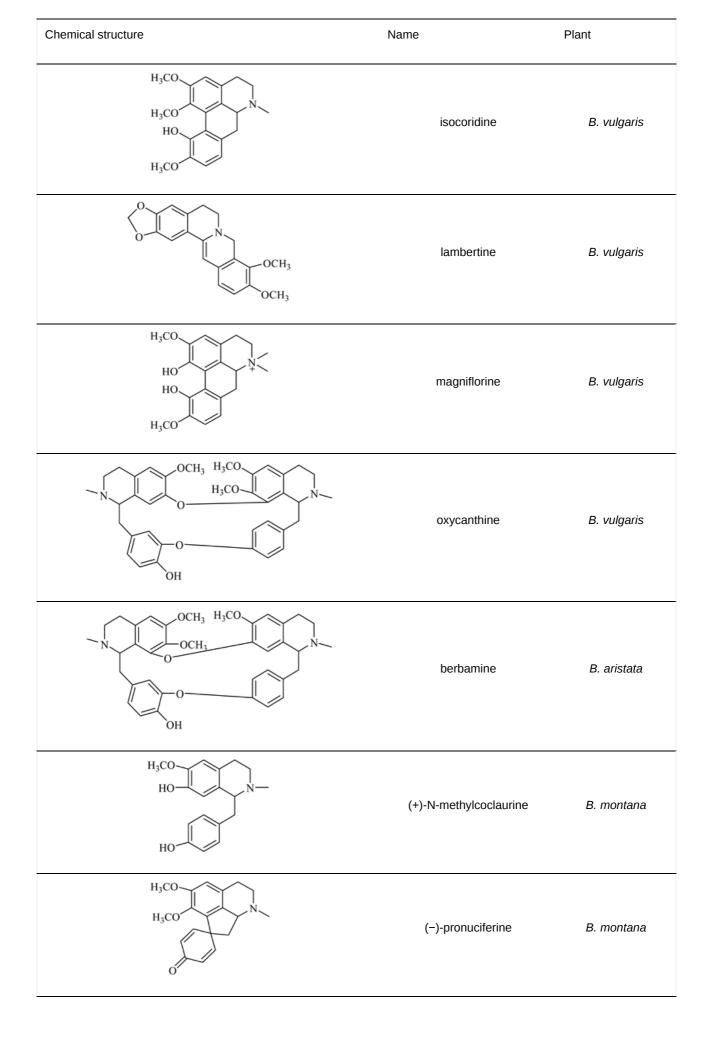


Figure 1. Major compounds of the essential oils (EOs) of *Berberis vulgaris* leaves and flowers. (a) *p*-cymene; (b) limonene; (c) ocimene.

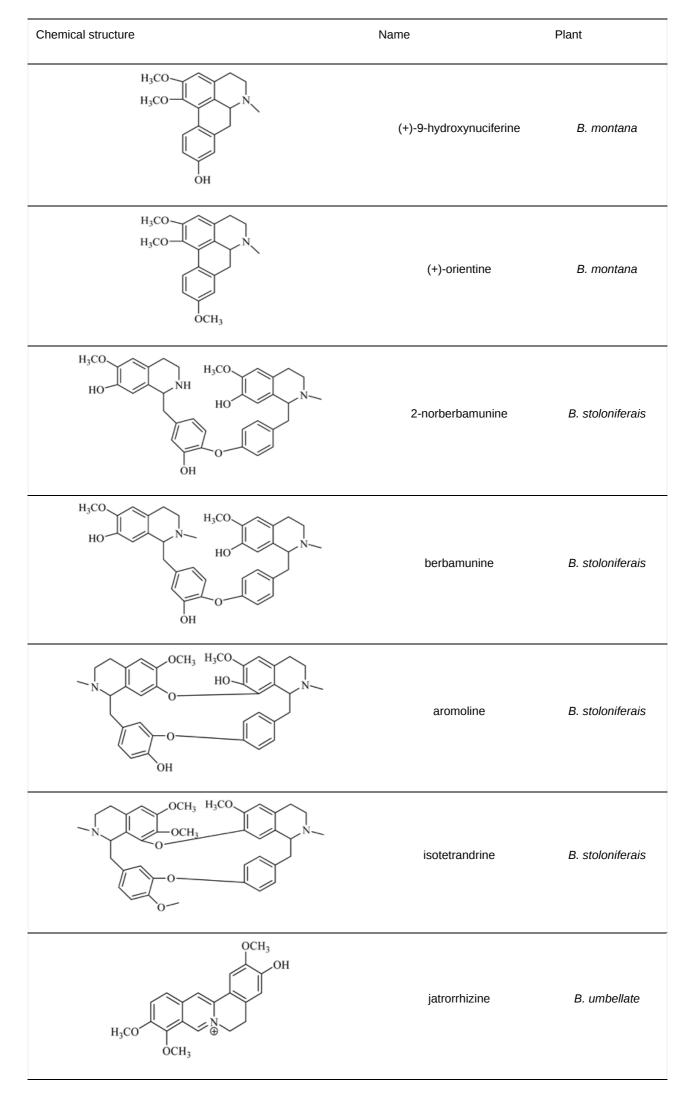
Turkish *B. crataegina* fruit berry has 22 volatile compounds which are aldehydes had the highest concentration (5382  $\mu$ g/kg), followed by alcohols (2487  $\mu$ g/kg) and lactone (2422  $\mu$ g/kg).

Major volatile compounds of the *B. crataegina* fruit are  $\gamma$ -butyrolactone, 3-hexanal and 2,6-dimethylphenol. Moreover, the olfactometric analysis of dry *B. crataegina* resulted eight aroma active compounds <sup>[34]</sup>.

EOs of the roots of *B. integerrima* were analyzed by using modified microwave-assisted hydrodistillation (MAHD). Chemical diversity of 10 and 18 compounds were obtained from MAHD, MAHD with modified anyl, and with modified phenyl magnetic nanoparticles, the yields of the EOs were 0.16, 0.61 and 0.71 *w/w* %, respectively. Hexadecanoic acid was identified as a major compound for MAHD and modified MAHD methods <sup>[35]</sup>.


Moreover, the GC/MS study on hexane extracts of the *B. aetnensis* and *B. libanotica* roots was showed that *B. aetnensis* have twenty-six and *B. libanotica* have thirty-seven non-polar compounds. Stigmasterol (Figure 2) is the major compound





#### Figure 2. Stigmasterol.

On the other hand, alkaloids (Table 1) represent the main compounds in *Berberis* species, and many of them have been identified by different spectroscopic techniques previously mentioned. The most known are berberine, berbamine, palmitine, jatrorrhizine, and isotetrandrine. They are located mainly in the cortical tissues of the roots and stems and have important biological activities. In fact, in vitro and in vivo anti-proliferative and anti-metastatic effects on various types of cancers have been reported for different alkaloids. These compounds, such as vinblastine, have already used as anticancer drugs <sup>[3]</sup>.

Table 1. Alkaloids from Berberis species.







-

## 3. Food Preservative Applications of Berberis Plants

Food preservation is the most vital issue in food industries to ensure food safety for a longer period. Basically, the process of food preservation depends on the growth inhibition of undesirable microorganisms. Use of chemical agents with antimicrobial activity is commonly used a traditional method for food preservation <sup>[37]</sup>. However, antimicrobial agents also gain momentum, due to their fewer side effects and compatibility with the human body. Further, synthetic antimicrobials and their toxicological safety as food additives needed to be ensured by regulatory authorities. Moreover, processed foods with natural preservatives have great demand and considered safer and beneficial for public health <sup>[38]</sup>. The naturally occurring compounds demonstrated antimicrobial activity in foods as natural ingredients and can be used as additives to other foods.

*Berberis* is an important plants having enormous potential in the food industry. However, only a few reports are available on the direct application of these plants in food products. For example, seed oil and fruit extracts of *B. crataegina* were supplementing into chitosan matrix for preparation of a chitosan-based edible film. The films produced have been analyzed for the physiochemical and biological activities. Results showed that chitosan-fruit extract film exhibited higher thermal stability, antimicrobial, antioxidant, and anti-quorum sensing activity as compared to other films. Furthermore, the addition of *B. crataegina* seed oil and fruit extract into the chitosan film create a mark reduction in the UV-vis transmittance but improve the tensile strength. Likewise, hydrophobicity of the chitosan-seed oil film was found to be higher than chitosan-control film, while chitosan-fruit extract film displayed slightly lower hydrophobicity than chitosan film. These results indicated that chitosan-fruit extract film of *B. crataegina* fruit extract film of *B. crataegina* fruit extract film displayed slightly lower hydrophobicity than chitosan film.

A list of the antimicrobial potential of the *Berberis* species evaluated across the globe is provided which support the use of *Berberis* species in food preservation (Table 2).

**Table 2.** A list of the antimicrobial potential of the *Berberis* species evaluated across the globe is provided which support the use of *Berberis* species in food preservation.

| S.<br>No. | Species     | Part                  | Country | Extract/Model/Compound             | Tested Micro-<br>Organism                                                        | Results                                                                                                                                                                          | Reference |
|-----------|-------------|-----------------------|---------|------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1         | B. aristata | Stem<br>and<br>leaves | Nepal   | Hexane, Ethyl acetate,<br>Methanol | Staphylococcus<br>aureus, Kleibsella<br>pneumoniae,<br>Salmonella<br>typhimurium | Against S.<br>aureus: methanol<br>significant zone<br>of inhibition (21<br>mm), ethyl<br>acetate extracts<br>moderate activity,<br>hexane extract of<br>stem slightly<br>active. | [40]      |

| S.<br>No. | Species                                   | Part                   | Country               | Extract/Model/Compound | Tested Micro-<br>Organism                                                                                                                       | Results                                                                                                                                                                                                                                                                                                                                                                | Reference |
|-----------|-------------------------------------------|------------------------|-----------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 2         | B. aristata,<br>and B.<br>ligulata        | Bark<br>stem<br>Leaves | Nepal                 | Ethanol                | Bacillus subtilis,<br>Escherichia coli,<br>Pseudomona<br>aeruginosa,<br>Salmonella. typhi,<br>Salmonella<br>dyjenteriae,<br>Salmonella cholerae | Ethanol extract of<br><i>B. aristata:</i><br>largest zone of<br>inhibition (21<br>mm) against <i>B.</i><br><i>subtilis</i> and the<br>smallest MBC<br>value (90 mg/mL)<br>for <i>S. aureus.</i><br>Gram positive<br>bacteria more<br>susceptible to<br>the ethanol<br>extract. <i>B.</i><br><i>aristata</i> relatively<br>broad-spectrum<br>antibacterial<br>activity. | [41]      |
| 3         | B. vulgaris                               | Stem                   | Iran                  | Ethanol                | P. aeruginosa,<br>Acinetobacter<br>baumannii, E. coli<br>and Salmonella<br>enteritidis                                                          | MIC<br>determination:<br>stem extracts<br>inhibit the growth<br>of all the studied<br>bacteria (3900 to<br>37,500 µg/mL)<br>by synergistic<br>effects with<br>ciprofloxacin.                                                                                                                                                                                           | [42]      |
| 4         | B. asiatica                               | Leaves                 | Uttarakhand,<br>India | Methanol               | E. coli, Enterobacter<br>aerogenes, Proteus<br>vulgaris, P.<br>aeruginosa, K.<br>pneumoniae, B.<br>subtilis, S. aureus                          | Methanol<br>extracts of<br>leaves: high<br>inhibitory<br>potential on S.<br><i>aureus, K.</i><br><i>pneumoniae, E.</i><br><i>coli, B. subtilis</i><br>and <i>P. vulgaris</i> in<br>all concentration.                                                                                                                                                                  | [43]      |
| 5         | B. aristata,<br>B. asiatica,<br>B. lycium | Stem                   | Bangalore,<br>India   | Methanol               | Nocardia sp., S.<br>aureus, S.<br>pneumonia, P.<br>aeruginosa,<br>Streptococcus<br>viridians, E. coli                                           | Sensitivity to<br>Nocardia sp., S.<br>pneumonia and<br>E. coli.                                                                                                                                                                                                                                                                                                        | [44]      |

| S.<br>No. | Species                                                              | Part         | Country  | Extract/Model/Compound | Tested Micro-<br>Organism                                                                                                                           | Results                                                                                                                                                                                                                     | Reference |
|-----------|----------------------------------------------------------------------|--------------|----------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 6         | B.<br>glaucocarpa                                                    | Root<br>wood | Pakistan | Ethanol                | SMRSA, EMRSA,<br>Mycobacterium<br>marinum, E. coli,<br>Trypanosoma brucei                                                                           | Berberine (MIC =<br>12.5 and 25<br>µg/mL),<br>berberine<br>chloroform (MIC<br>= 25 and 12.5<br>µg/mL) and<br>syringaresinol<br>(12.5 µg/mL):<br>very active<br>against SMRSA,<br><i>M. marinum</i> and<br><i>T. brucei.</i> | [45]      |
| 7         | B. vulgaris                                                          | Stem<br>bark | Romania  | Ethanol                | Botrytis cinerea                                                                                                                                    | <i>B. vulgaris</i> bark<br>extract,<br>berberine, and<br>fluconazole<br>significantly<br>inhibited growth<br>of <i>B. cinerea</i> .                                                                                         | [46]      |
| 8         | B. vulgaris                                                          |              |          | Ethanol                | S. aureus,<br>Staphylococcus<br>epidermidis, K.<br>pneumoniae, B.<br>subtilis, E. coli,<br>Aspergillus niger,<br>Trichoderma,<br>Alternaria solanai | 20 mm zone of<br>inhibition against<br><i>E. coli.</i> Good<br>activity against <i>B.</i><br><i>Subtilis,</i><br>moderate against<br><i>Trichoderma,</i><br>insignificant<br>against other<br>stains.                       | [47]      |
| 9         | <i>B. vulgaris</i><br>and its<br>active<br>constituent,<br>berberine | Root         | Egypt    | Ethanolic extract      | Candida albicans, E.<br>coli                                                                                                                        | Berberis<br>ethanolic extract<br>and berberine<br>standard can<br>inhibit C.<br>albicans and E.<br>coli growth.                                                                                                             | [48]      |
| 10        | B. vulgaris                                                          | Fruit        | Pakistan | Distilled water        | S. aureus, Proteus,<br>S. typhi, Salmonella<br>paratyphi A,<br>Salmonella paratyphi<br>B, K. pneumoniae, E.<br>coli, P. aeruginosa                  | Antibacterial<br>activity against<br>all tested<br>pathogens.                                                                                                                                                               | [49]      |

| S.<br>No. | Species            | Part                     | Country  | Extract/Model/Compound                                   | Tested Micro-<br>Organism                                                                                | Results                                                                                                                                                                                                                                                                                                                                                                                                     | Reference |
|-----------|--------------------|--------------------------|----------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 11        | B.<br>thunbergii   | Fruit                    | Hungary  | Juice; water extract and -<br>methanol extract           | B. subtilis, Bacillus<br>cereus var. mycoides,<br>E. coli, Serratia<br>marcescens                        | Juice, water<br>extract and<br>methanol extract<br>showed activity<br>against all<br>bacteria.                                                                                                                                                                                                                                                                                                              | [50]      |
| 12        | B.<br>calliobotrys | Stems<br>and<br>branches | Pakistan | Methanol                                                 | B. subtilis, P.<br>aeruginosa, S.<br>aureus fungal strains<br>namely C. albicans,<br>Penicillium notatum | The methanol<br>extract, ethyl<br>acetate and n-<br>butanol fractions:<br>maximum zone<br>of inhibition<br>against all<br>bacterial strains<br>especially <i>S.</i><br><i>aureus</i> and<br>antifungal<br>effects.                                                                                                                                                                                          | [51]      |
| 13        | B. lycium          | Roots                    | Libya    | Distilled water, ethanol,<br>isopropanol and<br>methanol | Pseudomonas sp., E.<br>coli, Streptococcus<br>sp., Staphylococcus<br>sp.                                 | Methanolic<br>displayed<br>maximum<br>inhibitory zone<br>(16 mm),<br>isopropanol<br>extract (13 mm)<br>and ethanol<br>extract (12 mm).<br>The aqueous<br>extract (12 mm).<br>The aqueous<br>extract exhibited<br>the least<br>inhibitory zone<br>(10 mm). The<br>methanolic<br>extract:<br>maximum<br>inhibitory zone<br>(12 mm),<br><i>Pseudomonas</i><br>(11 mm) and<br><i>Staphylococcus</i><br>(10 mm). | [52]      |

| S.<br>No. | Species       | Part         | Country   | Extract/Model/Compound                                 | Tested Micro-<br>Organism                                                          | Results                                                                                                                                                                                                                                                                                                                                                                                    | Reference |
|-----------|---------------|--------------|-----------|--------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 14        | B. hispanica  | Root<br>Bark | Marocco   | Ethanolic extract                                      | Mycobactérium<br>smegmatis,<br>Mycobacterium<br>aurum                              | The ethanolic<br>extract from root<br>bark displayed<br>an important<br>antimycobacterial<br>activity. The<br>inhibition zones<br>for <i>M. aurum A</i> +<br>were significantly<br>larger than those<br>for <i>M. smegmatis</i><br>MC2.                                                                                                                                                    | [53]      |
| 15        | B. ruscifolia |              | Argentina | Acetone, chloroform-<br>methanol (1:1) and<br>methanol | E. coli, P. aeruginosa,<br>Listeria<br>monocytogenes, S.<br>aureus                 | All extracts<br>exhibited<br>antibacterial<br>activity with MIC<br>varying from 16<br>to 2 mg/mL. The<br>highest inhibition<br>with acetonic and<br>chloroform-<br>methanolic<br>extracts of<br>species against<br><i>S. aureus</i> (MIC =<br>2 mg/mL).<br>Methanolic<br>extracts <i>B.</i><br><i>ruscifolia</i> showed<br>no antibacterial<br>activity against<br>all tested<br>bacteria. | 54        |
| 16        | B. aristata   | Stem<br>bark | India     | Ethanol and aqueous<br>extracts                        | Shigella flexneri,<br>Shigella sonnei,<br>Shigella dysenteriae,<br>Shigella boydii | Extracts of <i>B.</i><br><i>aristata</i> :<br>antibacterial<br>activity against<br>four strains of<br><i>Shigella</i> (8 and<br>23 mm).                                                                                                                                                                                                                                                    | [55]      |

| S.<br>No. | Species                                                        | Part          | Country  | Extract/Model/Compound   | Tested Micro-<br>Organism                                                                                                                                                                                                                                                                                                                                                     | Results                                                                                                                                                                                                                                                                                                                                                                                 | Reference    |
|-----------|----------------------------------------------------------------|---------------|----------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 17        | B. aristata,<br>B. asiatica,<br>B. chitria<br>and B.<br>Iycium | Root and stem | India    | Ethanol                  | Micrococcus luteus,<br>B. subtilis, B. cereus,<br>Enterobacter<br>aerogenus, E. coli, K.<br>pneumoniae, Proteus<br>mirabilis, P.<br>aeruginosa, S.<br>aureus, S.<br>typhimurium,<br>Streptococcus<br>pneumonia, Fungal<br>strains Aspergillus<br>nidulans, C. albicans,<br>Aspergillus terreus,<br>Trichophyton rubrum,<br>Cistus albidus,<br>Aspergillus flavus, A.<br>niger | <i>B. lycium</i> , <i>B.</i><br><i>aristata</i> and <i>B.</i><br><i>asiatica</i> root<br>extract showed<br>significant<br>antifungal activity<br>against <i>A.</i><br><i>terreus</i> and <i>A.</i><br><i>flavus. B. aristata</i><br>root and <i>B.</i><br><i>lycium</i> (stem)<br>extracts gave<br>very low MIC<br>values (0.31<br>μg/mL) as<br>compared to<br>other tested<br>species. | [56]         |
| 18        | B. Lycium                                                      | Root          | Pakistan | Ethanol, petroleum ether | S. aureus, S.<br>epidermidis, B.<br>subtilis, S. typhi, E.<br>coli, C. albicans                                                                                                                                                                                                                                                                                               | The ethanolic<br>and aqueous<br>crud root extract:<br>most effective<br>antifungal and<br>antibacterial<br>agents.                                                                                                                                                                                                                                                                      | <u>(57</u> ] |
| 19        | B.<br>integerrima<br>Syn: B.<br>densiflora                     | Roots         | Iran     | Methanol                 | Brucella abortus                                                                                                                                                                                                                                                                                                                                                              | MIC and MBC<br>results,<br>jatrorhizine<br>exhibited higher<br>antibacterial<br>activity with MIC<br>(0.78 μg/mL) and<br>MBC (1.56<br>μg/mL)<br>compared with<br>the standard<br>(streptomycin, 10<br>μg/mL).                                                                                                                                                                           | [58]         |

| S.<br>No. | Species     | Part               | Country  | Extract/Model/Compound          | Tested Micro-<br>Organism                                                                                   | Results                                                                                                                                                                                                                                                                                                                       | Reference   |
|-----------|-------------|--------------------|----------|---------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 20        | B. lycium   | Roots              | Pakistan | Hydric extract                  | E. coli,<br>Pseudomonas,<br>Staphylococcus,<br>Proteus                                                      | Significant<br>activity against <i>E.</i><br><i>coli</i> and Proteus<br>(80 to 100%),<br>while it<br>demonstrated a<br>good activity<br>against<br><i>Pseudomonas</i><br>and<br><i>Staphylococcus</i><br>(60 to 70%).                                                                                                         | [59]        |
| 21        | B. aristata | Bark and<br>leaves | India    | Methanol, ethanol and<br>hexane | B. subtilis,<br>Agrobacterium<br>tumefaciens, E. coli,<br>Xanthomonas.<br>Phaseoli, Erwinia<br>chrysanthemi | All the extracts of<br>tested plants<br>showed variable<br>activity against<br>all the tested<br>bacterial strains.<br>Methanol extract<br>revealed highest<br>antibacterial<br>activity (11 mm)<br>recorded against<br><i>E. chrysanthemi</i> .<br>Hexane extract:<br>totally inactive<br>against all the<br>tested strains. | [60]        |
| 22        | B. aristata | Roots              | India    | Aqueous and alcohol<br>extracts | S. aureus, B. subtilis,<br>E. coli, S.<br>typhimurium                                                       | Alcoholic and<br>aqueous extract<br>showed<br>antimicrobial<br>activity against<br>four tested<br>bacteria. <i>B.</i><br><i>aristata</i> exhibited<br>highest zone of<br>inhibition for <i>B.</i><br><i>subtilis</i> followed<br>by <i>S. aureus</i> , <i>E.</i><br><i>coli</i> and <i>S.</i><br><i>typhimurium.</i>          | <u>[61]</u> |

| S.<br>No. | Species           | Part                          | Country  | Extract/Model/Compound                                     | Tested Micro-<br>Organism                                                                                                       | Results                                                                                                                                                                                                                                                   | Reference |
|-----------|-------------------|-------------------------------|----------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 23        | B.<br>microphylla | Leaves,<br>stems<br>and roots | Chile    | Methanol                                                   | E. coli, S.<br>typhimurium, L.<br>monocytogenes, E.<br>aerogenes, S.<br>aureus, B. cereus, S.<br>epidermidis and B.<br>subtilis | All extract<br>possesses<br>significant<br>antibacterial<br>activity against<br>Gram-positive<br>bacteria but not<br>against Gram-<br>negative<br>bacteria.                                                                                               | [62]      |
| 24        | B. lycium         | Root<br>bark                  | Pakistan |                                                            | E. coli, K.<br>pneumoniae, P.<br>aeruginosa, S.<br>aureus, B. subtilis                                                          | Silver<br>nanoparticles<br>were very active<br>against Gram-<br>negative and<br>Gram-positive<br>bacteria Aqueous<br>bark extract (10<br>µg/mL) possess<br>highest activity<br>against <i>E. coli</i><br>and <i>P.</i><br><i>aeruginosa.</i>              | [63]      |
| 25        | B. vulgaris       | Fruit                         | Iran     |                                                            | L. monocytogenes                                                                                                                | Average diagonal<br>of growing area<br>in disk diffusion<br>test for species:<br>12 mm and MIC<br>was 125 µg/mL<br>and MBC of <i>B.</i><br><i>vulgaris</i> was 500<br>µg/mL.                                                                              | [64]      |
| 26        | B. aristata       | Stem<br>bark                  | Alcohol  | In vivo in an animal<br>model using Sprague<br>Dawley rats | Carbapenem-<br>resistant <i>E. coli</i>                                                                                         | An aquo-<br>alcoholic extract<br>of the species:<br>effectively<br>manage<br>peritonitis<br>induced by<br>Carbapenem-<br>resistant <i>E. coli</i><br>in a rat model at<br>a single post-<br>exposure<br>prophylactic dose<br>of 0.5 mg/kg<br>body weight. | [65]      |

| S.<br>No. | Species     | Part                 | Country  | Extract/Model/Compound                                                                           | Tested Micro-<br>Organism                                                                                                                                                                                                                                                                                                 | Results                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Reference |
|-----------|-------------|----------------------|----------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 27        | B. aristata | Roots                | India    | Aqueous and alcoholic<br>extract of fresh roots, as<br>well as aqueous extract<br>of dried roots | S. aureus, S.<br>epidermidis,<br>Streptococcus<br>pyogenes,<br>Streptococcus<br>viridans,<br>Enterococcus<br>faecalis, B. subtilis,<br>B. cereus, E. coli, K.<br>pneumoniae, P.<br>aeruginosa, P.<br>vulgaris, P. mirabilis,<br>S. typhi, S. paratyphi<br>A, S. typhimurium, S.<br>dysenteriae type 1,<br>Vibrio cholerae | All three extracts<br>displayed wide<br>antibacterial<br>activity against<br>Gram-positive<br>bacteria. Among<br>the Gram-<br>negative bacteria<br>tested, the<br>antibacterial<br>activity was<br>limited to <i>E. coli</i> ,<br><i>S. typhimurium</i> ,<br><i>S. dysenteriae</i><br>type 1 and <i>V.</i><br><i>cholerae</i> . All<br>extracts also<br>possess<br>antifungal activity<br>against the<br>fungal species<br>tested, except<br><i>Candida krusei</i> . | 66        |
| 28        | B. aristata | Root<br>Stem<br>Leaf | Pakistan |                                                                                                  | E. coli, S. typhi, S.<br>aureus, Shigella,<br>Citrobacter, P.<br>vulgaris,Enterobacter,<br>Streptococcus<br>pyrogenes, V.<br>cholera, Klebsiella<br>spp., A. niger,<br>Cladosporium,<br>Rhizoctonia,<br>Alternaria,<br>Trichoderma,<br>Penicillium,<br>Curvularia,<br>Paecilomyces and<br>Rhizopus                        | The extracts<br>significantly<br>inhibited the<br>growth of the<br>studied<br>microbes, except<br><i>A. niger,</i><br><i>Curvularia,</i><br><i>Paecilomyces</i><br>and <i>Rhizopus.</i>                                                                                                                                                                                                                                                                              | [67]      |

| S.<br>No   |              | Species                                   | Part                                      | Country                                   | Extract/Model/Compound                                          | Tested Micro-<br>Organism                              | Results                                                                               | Reference           |
|------------|--------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------|
|            |              |                                           |                                           |                                           |                                                                 |                                                        | All the strains o                                                                     | f                   |
|            |              |                                           |                                           |                                           |                                                                 |                                                        | V. cholerae are                                                                       |                     |
|            |              |                                           |                                           |                                           |                                                                 |                                                        | susceptible. Al                                                                       |                     |
|            |              |                                           |                                           |                                           |                                                                 |                                                        | the Salmonella                                                                        | !                   |
|            |              |                                           |                                           |                                           |                                                                 |                                                        | sp.,                                                                                  |                     |
|            |              |                                           |                                           |                                           |                                                                 |                                                        | Pseudomonas sp., and some c                                                           |                     |
|            |              |                                           |                                           |                                           |                                                                 |                                                        | the E. <i>coli</i> strain                                                             |                     |
| Re         | fei          | rences                                    |                                           |                                           |                                                                 |                                                        | are highly                                                                            | 5                   |
| 1. N       | Mina         | aiyan, M.;                                | Ghannadi, A<br>pride effects              | A.; Mahzouni, F<br>on acetic acid         | P.; Jaffari-Shirazi, E. Compa<br>-induced colitis in rats. Iran | arative study of be<br>. J. Pharm. Res. 20             | resistant, excep<br>rberis yulgaris fruit                                             | extract and         |
|            |              |                                           |                                           | dnia, S.; Goha<br>Icogn. Rev. 20          | ri, A.; Kurepaz-Mahmoodal<br>14, 8, 8.                          | oadi, M. Phytocher                                     | are susceptible                                                                       |                     |
|            |              |                                           |                                           |                                           | ni-Gharaghoshi, H.; Rafieia<br>2017, 20, 569–587.               | an-Kopaei, M. Bert                                     | All <i>Xanthomona</i><br>peris vuൃളക് <del>ല് പ്രെട്ടിന്റ</del><br>susceptible.       |                     |
| 4. F       | =arl<br>Son  | hadi Chitga<br>B. aristata<br>lication on | ar, M.; Aalan<br><sup>1</sup> the Quality | ni, M.; Maghso<br>India<br>of Barberry (B | oudlou, Y.; Milani, E. Compa<br>erberis Vulgaris) Juice. J. F   | arativ <del>o Studyao</del> n th<br>Good ProgessisPres | e Effect of Heat Te<br>serv. 2017, 41, e129<br>antifungal action                      | 56. <sup>[68]</sup> |
|            |              |                                           |                                           | M.H.; Hassan<br>I. Sci. 2008, 3           | -Beygi, S.R. Specific heat a<br>, 330–336.                      | and thermal condu                                      | albicans,                                                                             | uit (Berberis       |
|            |              | lsall, T.C.;<br>2. 1997, 2,               |                                           | Berberine: The                            | rapeutic potential of an alka                                   | aloid found in seve                                    | Candida<br>ral medicinal plants<br>tropicalis,<br>Trichophyton                        | . Altern. Med.      |
| l          | use<br>12    | d in the my                               | ycophilous T                              | ibetan commu                              | ues, G.; Pietras, M.; Łuczaj<br>Inity of Zhagana (Tewo Cou      | inty, Gansu, China                                     | Ł. Wiłdeforad/planytas<br>). J. Ethnnio bisplo Ethn<br>avpseum                        | omed. 2016,         |
| 8          | Tava         | akoli, A.; S                              | ahari, M.A.;<br>stability of sc           | Barzegar, M. /                            | Antioxidant activity of Berbe<br>J. Food Prop. 2018, 20, S2     | eris integerrima se<br>2914–S2925.                     | Cryptococcus<br>ed oil as a natural a<br>neoformans an<br>Sporothrix                  | ntioxidant on       |
|            |              |                                           |                                           |                                           | . A Study on Antioxidant Po<br>an Diet. J. Food Biochem. 2      | =                                                      | terial Acti <b>sityeof</b> kiiWat<br>Mycobacterium                                    | 1                   |
| LO. S<br>E | Sriv<br>3erl | astava, S.<br>beris (Berl                 | ; Srivastava<br>peridaceae).              | , M.; Misra, A.;<br>EXCLI J. 201          | Pandey, G.; Rawat, A. A re<br>5, 14, 247–267.                   | eview on biological                                    | tuberculosis val<br>and chemical diver<br>hominis H <sub>37</sub> RV<br>and Entamoeba | sity in             |
|            |              |                                           | -                                         |                                           | I, M.H.; Koochaki, A.; Mola<br>SBN 9789290814993.               | filabi, A. Berberis: I                                 |                                                                                       |                     |
| L2. S      | Saie         | ed, S.; Beg                               | gum, S. Phyt                              | ochemical stu                             | dies of Berberis vulgaris. C                                    | hem. Nat. Compd.                                       | . 2004, 40, 137–140                                                                   |                     |
|            |              |                                           |                                           |                                           |                                                                 |                                                        |                                                                                       |                     |

- Yazdani, A.; Poorbaghi, S.L.; Habibi, H.; Nazifi, S.; Rahmani Far, F.; Sepehrimanesh, M. Dietary Berberis vulgaris extract enhances intestinal mucosa morphology in the broiler chicken (Gallus gallus). Comp. Clin. Path. 2013, 22, 611– 615.
- 14. Bashir, S.; Gilani, A.H.; Siddiqui, A.A.; Pervez, S.; Khan, S.R.; Sarfaraz, N.J.; Shah, A.J. Berberis vulgaris root bark extract prevents hyperoxaluria induced urolithiasis in rats. Phyther. Res. 2010, 24, 1250–1255.
- Hermenean, A.; Popescu, C.; Ardelean, A.; Stan, M.; Hadaruga, N.; Mihali, C.V.; Costache, M.; Dinischiotu, A. Hepatoprotective effects of Berberis vulgaris L. extract/β cyclodextrin on carbon tetrachloride-induced acute toxicity in mice. Int. J. Mol. Sci. 2012, 13, 9014–9034.
- 16. Amjad, M.S.; Arshad, M.; Qureshi, R. Ethnobotanical inventory and folk uses of indigenous plants from Pir Nasoora National Park, Azad Jammu and Kashmir. Asian Pac. J. Trop. Biomed. 2015, 5, 234–241.
- 17. Altundag, E.; Ozturk, M. Ethnomedicinal studies on the plant resources of east Anatolia, Turkey. Procedia Soc. Behav. Sci. 2011, 19, 756–777.
- 18. Javadzadeh, S.; Fallah, S. Therapeutic application of different parts of Berberis vulgaris. Int. J. Agric. Crop Sci. 2012, 4, 404–408.
- 19. Phillips, R.; Foy, N. Herbs; Pan Books Ltd.: London, UK, 2002; ISBN 0-330-30725-8.

| 20 <sub>S</sub> Kuo, CL.; Chi, CW.; Liu, TY                                                                                                                                   | . The anti-inflammatory potentia                                       | al of berberine in vitro and                                                                              | in vivo. Cancer Let                                                                                                       | t. 2004,                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------|
| No. Sp291937. Part Co                                                                                                                                                         | ountry Extract/Model/Compo                                             | ound<br>Organism                                                                                          | Results                                                                                                                   | Reference               |
| 21. Sun, D.; Courtney, H.S.; Beach                                                                                                                                            | ey, E.H. Berberine sulfate block                                       | s adherence of Streptoco                                                                                  | ccus pyogenes to e                                                                                                        | epithelial              |
| cells, fibronectin, and hexadeca                                                                                                                                              | ane. Antimicrob. Agents Chemo                                          | ther. 1988, 32, 1370–1374                                                                                 | . The aqueous                                                                                                             |                         |
| 22. Hajzadeh, M.A.R.; Rajaei, Z.; S<br>(Berberis Vulgaris) on serum gl                                                                                                        | Shafiee, S.; Alavinejhad, A.; San<br>lucose and lipids in streptozotoc | narghandian, S.; Ahmadi, I<br>sin-diabetic rats. Pharmaco                                                 | M. Effect of Barberi<br>heterophylla do<br>plogyonline 2011, 1<br>not possess                                             | ry fruit<br>., 809–817. |
| 23. Meliani, N.; Dib, M.E.A.; Allali, I                                                                                                                                       | H.; Tabti, B. Hypoglycaemic effe                                       | ect of Berberis vulgaris L. i                                                                             | n normsighandnatrep                                                                                                       | tozotocin-              |
| induced diabetic rats. Asian Pa                                                                                                                                               | c. J. Trop. Biomed. 2011, 1, 468                                       | 3–471.                                                                                                    | antimicrobial                                                                                                             |                         |
| 24. Zhou, X.; Chan, S.W.; Tseng, H<br>Danshensu is the <b>Imajoes</b> marker<br>extracts <b>P</b> roduced <b>by</b> a <b>diffe</b> rent <b>f</b><br>a0 heterophylla and roots | r for the antioxidant and vasorel<br>geat water-extractions. Phytome   | Paeruginosa, E. coli,<br>laxation effects of Danshei<br>C. albicans, Candida<br>edicine 2012, 19, 1263–12 | ; Lam, <u>Activity</u> . Lee,<br>Berberine<br>n (Salvia miltiorrhiz<br>displayed a<br>69. significant                     | a) water-               |
| 25. Zhu, X.; Bian, H.; Gao, X. The l<br>Disease. Molecules 2016, 21, 1                                                                                                        | Potential Mechanisms of Berber                                         | rine in the Treatine and Ida c                                                                            | ona <b>locibactie</b> nFaatatydLi                                                                                         | ver                     |
| Disease. Molecules 2016, 21, 1                                                                                                                                                | 1336.                                                                  | lusitaniae, C. krusei,                                                                                    | antifungal activity                                                                                                       |                         |
| 26. Yang, J.; Yin, J.; Gao, H.; Xu, L<br>and Adjusting Adipokines Profil<br>Complement. Altern. Med. 2012                                                                     | e in Human Preadipocytes and                                           | Candida parapsilosis<br>rine Improves Insulin Sen<br>Metabolic Syndrome Patie                             | against S.<br>sitivity by Inhibiting<br><i>aureus</i> and<br>ents, EvidBased<br>different <i>Candida</i><br>spp., some of | Fat Store               |
| 27. Zhang, Y.; Ye, J. Mitochondrial                                                                                                                                           | inhibitor as a now class of insul                                      | in consitizor. Acto Dharm                                                                                 | •••                                                                                                                       | 240                     |
| <ol> <li>28. Imenshahidi, M.; Hosseinzadeh<br/>1764.</li> <li>29. Imanshahidi, M.; Hosseinzadeh<br/>constituent, berberine. Phyther.</li> </ol>                               | n, H. Pharmacological and thera                                        | apeutic <b>ettentis al Barbari</b> ș                                                                      |                                                                                                                           |                         |
| -                                                                                                                                                                             |                                                                        | Kocuria rhizophila, M.                                                                                    |                                                                                                                           |                         |
| <ol> <li>Alemardan, A.; Asadi, W.; Reza<br/>integerrima 'Bidaneh'): A medic</li> <li>Potdar, D; Hirwani, R.R.; Dhula</li> </ol>                                               | inal shrub. Ind. Crops Prod. 20                                        | epidermidis, B.<br>13, 50, 276–287.<br>subtilis subsp.                                                    | No significant                                                                                                            |                         |
| 31<br>2012abbr@157s-830.<br>leaves                                                                                                                                            | Korea                                                                  | pneumoniae,                                                                                               | gram-negative                                                                                                             | [70]                    |
| 32. Dolezal, M.; Velisek, J.; Famful                                                                                                                                          | ikova, P. Chemical composition<br>I, Norwich, UK, 26–28 Septemb        | closeso Salmonalla                                                                                        | bacteria.<br>In Proceedings of t<br>241–244.                                                                              | he                      |
| 33. Hamedi, A.; Moheimani, S.M.; S                                                                                                                                            | Sakhteman, A.; Etemadfard, H.;                                         | Moein, M. Ante Ooxen Riew o                                                                               | n Indications and C                                                                                                       | Chemical                |
| Composition of Aromatic Water                                                                                                                                                 | s (Hydrosols) as Functional Bev                                        | verages in <b>Rengjanosta</b> utritic                                                                     | on Culture and Folk                                                                                                       | Medicine                |
| for Hyperlipidemia and Cardiov                                                                                                                                                | ascular Conditions. J. EvidBas                                         | sed Complement. Altern. M                                                                                 | <i>M</i> ed. 2017, 22, 544                                                                                                | -561.                   |
| 34. Sonmezdag, A.S.; Kelebek, H.;                                                                                                                                             | Selli, S. Volatile and key odour                                       | ant compounds of Turkish                                                                                  | Berberis crataegir                                                                                                        | a fruit using           |

- 35. Hashemi-Moghaddam, H.; Mohammadhosseini, M.; Azizi, Z. Impact of amine- and phenyl-functionalized magnetic nanoparticles impacts on microwave-assisted extraction of essential oils from root of Berberis integerrima Bunge. J. Appl. Res. Med. Aromat. Plants 2018, 10, 1–8.
- 36. Bonesi, M.; Loizzo, M.R.; Conforti, F.; Passalacqua, N.G.; Saab, A.; Menichini, F.; Tundis, R. Berberis aetnensis and B. libanotica: A comparative study on the chemical composition, inhibitory effect on key enzymes linked to Alzheimer's disease and antioxidant activity. J. Pharm. Pharmacol. 2013, 65, 1726–1735.
- 37. Jay, J. Modern Food Microbiology; Aspen Publishers Inc.: Gaithersburg, MD, USA, 1998; ISBN 978-0-387-23180-8.
- 38. Pszczola, D.E. Emerging ingredients: Believe it or not! Food Technol. 1999, 53, 98–100.

GC-MS-Olfactometry. Nat. Prod. Res. 2018, 32, 777-781.

- Kaya, M.; Ravikumar, P.; Ilk, S.; Mujtaba, M.; Akyuz, L.; Labidi, J.; Salaberria, A.M.; Cakmak, Y.S.; Erkul, S.K. Production and characterization of chitosan based edible films from Berberis crataegina's fruit extract and seed oil. Innov. Food Sci. Emerg. Technol. 2018, 45, 287–297.
- 40. Thusa, R.; Mulmi, S. Analysis of Phytoconstituents and Biological Activities of Different Parts of Mahonia nepalensis and Berberis aristata. Nepal J. Biotechnol. 2017, 5, 5–13.
- 41. Pokhrel, N.R.; Adhikari, R.P.; Baral, M.P. In Vitro screening and evaluation of antimicrobial activities of some medicinal plants of Nepal. Nepal J. Sci. Technol. 2003, 5, 1.
- 42. Ebrahimi, A.; Chavoushpour, M.; Mahzoonieh, M.R.; Lotfalian, S. Antibacterial activity and ciprofloxacin-potentiation property of Berberis vulgaris asperma stem extracts on pathogenic bacteria. J. HerbMed Pharmacol. 2016, 5, 112–115.
- 43. Singh, S.K.; Vishnoi, R.; Dhingra, G.K.; Kishor, K. Antibacterial activity of leaf extracts of some selected traditional medicinal plants of Uttarakhand, North East India. J. Appl. Nat. Sci. 2012, 4, 47–50.

| 5. Alamzeb, M. Bioassay guided isolation and characterization of anti-microbi                                                                                                                                         | ial and anti-trypanosomal agents from                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Berberis glaucocarpa Stapf. African J. Pharm. Pharmacol. 2013, 7, 2564–2                                                                                                                                              | 2570. Extracts of both                                                                                                                               |
| <ol> <li>Parvu, M.; Parvu, A.E.; Craciun, C.; Barbu-Tudoran, L.; Vlase, L.; Tamas, M<br/>A.M. Changes in Botrytis cinerea conidia caused by Berberis vulgaris extra<br/>2010, 38, 15–20.</li> </ol>                   | M.; Rosca-Casian, O.; Perseca, O.; Molnar<br>significant<br>act. Not. Bot. Horti Agrobot. Cluj-Napoca<br>antibacterial<br>activity against           |
| 7. Shah, Z.; Ilyas, M.; Khan, M.; Ahmad, A.; Khan, M.; Khan, N. Antimicrobial                                                                                                                                         | , ,                                                                                                                                                  |
| collected from Northern districts of Khyber Pakhtunkhwa, Pakistan. J. Phar                                                                                                                                            | rm. Res. 2012, 5p <b>13129e-11a338</b> ria.                                                                                                          |
| 48. Ghareeb, D.A.; El-Wahab, A.E.A. Biological assessment of Berberis vulgar<br>Antibacterial, antifungal and anti-hepatitis C virus (HCV) effect. J. Med. Pla                                                        | Root extracts of<br>is and its active constituent, berberine:<br><i>B. croatica:</i><br>ants Res. 2013, 7, 1529–1536.<br>activity against <i>P</i> . |
| 9. Shahid, T.; Memon, M.; Malik, R.A.; Ikram, N.; Malik, W.; Ali, A. A study of A                                                                                                                                     |                                                                                                                                                      |
| (Zirishk) Aqueous Plant Extract using Pathogenic Isolates from Patients of Interdiscip. Res. 2017, 3, 1365–1371.                                                                                                      | Islamabad and Ralwalpirtdiction. J.<br>against B.                                                                                                    |
| <ol> <li>Krisch, J.; Galgóczy, L.; Tölgyesì, M.; Papp, T.; Vágvölgyi, C. Effect of fruit<br/>Gram-positive and Gram-negative bacteria. Acta Biol. Szeged. 2008, 52, 2</li> </ol>                                      | 67_270                                                                                                                                               |
|                                                                                                                                                                                                                       | possessed                                                                                                                                            |
| 1. Rasool, S.; Khan, F.Z.; Hassan, S.U.; Ahmed, M.; Ahmed, M.; Tareen, R.B.<br>activities of berberis calliobotrys aitch ex koehne (Berberidaceae). Trop. J.                                                          |                                                                                                                                                      |
| Takia J. Sci. 2013, 11, 00–90.                                                                                                                                                                                        | tilerial activity of Berberia lycium root extra<br>, P. aeruginosa, antibacterial [71]<br>2. albicans                                                |
| <ol> <li>Haouat, A.C.; Haggoud, A.; David, S.; Ibnsouda, S.; Iraqui, M. In vitro evalu<br/>fractionation of Berberis hispanica root bark. J. Pure Appl. Microbiol. 2014,</li> </ol>                                   | uation of the anti <del>ng based in a</del> Bactivity and 8, 917–925. <i>subtilis</i> . Likewise,                                                    |
| 4. Mattana, C.M.; Satorres, S.E.; Juan, V.; Cifuente, D.; Tonn, C.; Laciar, A.L.<br>combined extracts of Berberis ruscifolia, Baccharis sagittalis, Euphorbia de<br>plants from Argentina. BLACPMA 2012, 11, 428–434. |                                                                                                                                                      |
| 5. Joshi, P.V.; Shirkhedkar, A.A.; Prakash, K.; Maheshwari, V.L. Antidiarrheal<br>Berberis aristata. Pharm. Biol. 2011, 49, 94–100.                                                                                   | except when                                                                                                                                          |
| 6. Singh, M.; Srivastava, S.; Rawat, A.K.S. Antimicrobial activities of Indian B                                                                                                                                      | were diluted.                                                                                                                                        |
| 576.                                                                                                                                                                                                                  | extracts of twigs                                                                                                                                    |
| 7. Hussain, M.A.; Khan, M.Q.; Habib, T.; Hussain, N. Antimicronbial activity of                                                                                                                                       | -                                                                                                                                                    |
| royle. Adv. Environ. Biol. 2011, 5, 585–588.                                                                                                                                                                          | <i>B. subtilis</i> and                                                                                                                               |
| 8. Azimi, G.; Hakakian, A.; Ghanadian, M.; Joumaa, A.; Alamian, S. Bioassay                                                                                                                                           | -directed isolation of gaiase Bary                                                                                                                   |
| benzylisoquinolines from Berberis integerrima with bactericidal activity aga                                                                                                                                          |                                                                                                                                                      |
| 2018, 13, 149–158.                                                                                                                                                                                                    | exception of <i>B</i> .                                                                                                                              |
| <ul> <li>9. Bukhari, I.; Hassan, M.; Abbasi, F.; Mujtaba, G.; Mahmood, N.; Fatima, A.;</li> <li>A study on comparative pharmacological efficacy of Berberis lycium and period.</li> </ul>                             | <i>croatica</i> twig<br>Afzal, M.; Rehman, M.; Perveen, P.; Khan,<br>from Kiza locality.<br>enicillin G. African J. Microbiol. Res. 2011,            |

- 61. Malik, Z.; Jain, K.; Ravindran, K.; Sathiyaraj, G. In vitro antimicrobial activity and preliminary phytochemical analysis of Berberis aristata. Int. J. Ethnobiol. Ethnomed. 2017, 4, 1–6.
- 62. Manosalva, L.; Mutis, A.; Urzúa, A.; Fajardo, V.; Quiroz, A. Antibacterial activity of alkaloid fractions from berberis microphylla G. Forst and study of synergism with ampicillin and cephalothin. Molecules 2016, 21, 76.
- 63. Mehmood, A.; Murtaza, G.; Bhatti, T.M.; Kausar, R.; Ahmed, M.J. Biosynthesis, characterization and antimicrobial action of silver nanoparticles from root bark extract of Berberis lycium Royle. Pak. J. Pharm. Sci. 2016, 29, 131–137.
- 64. Anzabi, Y. In vitro study of Berberis vulgaris, Actinidia deliciosa and Allium cepa L. antibacterial effects on Listeria monocytogenes. Crescent J. Med. Biol. Sci. 2015, 2, 111–115.
- 65. Thakur, P.; Chawla, R.; Narula, A.; Sharma, R.K. Protective effect of Berberis aristata against peritonitis induced by carbapenem-resistant Escherichia coli in a mammalian model. J. Glob. Antimicrob. Resist. 2017, 9, 21–29.
- 66. Shahid, M.; Rahim, T.; Shahzad, A.; Latif, T.A.; Fatma, T.; Rashid, M.; Raza, A.; Mustafa, S. Ethnobotanical studies on Berberis aristata DC. root extracts. African J. Biotechnol. 2009, 8, 556–563.

| No. Species Part Country Extract/Model/Compound                                                                                                                                          | creening of Berberis aris<br>lested Micro-<br>d<br>Organism                                                                                                                                                                                                                                                        | tata. Adv. Life Sci.<br>Results                                                                                                                                                                                                                | 2017, 57,<br>Reference             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 68. Amin, A.H.; Subbaiah, T.V.; Abbasi, K.M. Berberine sulfate: Antim                                                                                                                    | icrobial activity, bioassa                                                                                                                                                                                                                                                                                         | y, and mode of acti                                                                                                                                                                                                                            | on. Can. J.                        |
| Microbiol. 1969, 15, 1067–1076.                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    | Methanolic                                                                                                                                                                                                                                     |                                    |
| 69. Freile, M.L.; Giannini, F.; Pucci, G.; Sturniolo, A.; Rodero, L.; Pucci<br>aqueous extracts and of berberine isolated from Berberis heterop                                          | ci, O.; Balzareti, V.; Enri:<br>hylla. Fitoterapia 2003,                                                                                                                                                                                                                                                           | z, R.D. Antlimicrobia<br>z, R.D. Antlimicrobia<br>was highly<br>74, 702–705.<br>effective against                                                                                                                                              | al activity of                     |
| 70. Hyun, T.K.; Kim, H.C.; Kim, J.S. In vitro Screening for Antioxidant,<br>Hexane extract,<br>Korean Native Plants on Mt. Halla, Jeju Island. Indian J. Pharm. S<br>Methanolic extract, | Sci. 201,59 Zeuloganosz4.                                                                                                                                                                                                                                                                                          | diabetic Rnpperties<br>aureus, B.                                                                                                                                                                                                              |                                    |
| 71. Kosalec, I.; Gregurek, B.; Kremer, D.; Zovko, Mussaskaviáctkandka<br>Horvat): A new source of berberine—Analysis and læntieniaeobial a                                               | S. aureus, B. subtilis,<br>arlović, K. Croatian barb<br>C. albicans, A. niger,<br>ctivity. World J. Microbic<br>Aspergillus fumigates                                                                                                                                                                              | subtilis, C.<br>erry (Berberis croa<br>albicans, A.<br>I. Biotechnol. 2009<br>fumigates. Pure                                                                                                                                                  | tica <sup>[72]</sup><br>, 25, 145– |
| 150.                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                    | berberine was                                                                                                                                                                                                                                  |                                    |
| 72. Malik, T.A.; Kamili, A.N.; Chishti, M.Z.; Ahad, S.; Tantry, M.A.; Hus                                                                                                                | sain, P.R.; Johri, R.K. B                                                                                                                                                                                                                                                                                          | re <b>attingiytene</b> gæisista                                                                                                                                                                                                                | nce of                             |
| Escherichia coli: Antimicrobial activity of Berberis lycium Royle. M                                                                                                                     | licrob. Pathog. 2017, 10                                                                                                                                                                                                                                                                                           | 2, <u>12</u> –20) and C.                                                                                                                                                                                                                       |                                    |
| 73. Musumeci, R.; Speciale, A.; Costanzo, R.; Annino, A.; Ragusa, S.<br>aetnensis C. Presl. extracts: Antimicrobial properties and interacti                                             |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                    |
| 22, 48–53.                                                                                                                                                                               | S. aureus, B. subtilis,                                                                                                                                                                                                                                                                                            | . o. Antimicrob. Ag                                                                                                                                                                                                                            | 2000,                              |
| 74. Villinski, J.R.; Dumas, E.R.; Chai, H.B.; Pezzuto, J.M.; Angerhofe                                                                                                                   | E. faecalis, E. coli, P.<br>r, C.K.; தெரிஷா <sub>ற</sub> து Antiba                                                                                                                                                                                                                                                 | acterial activity and                                                                                                                                                                                                                          | alkaloid                           |
| content of Berberis thunbergii, Berberis vulgaris and Hydrastis ca                                                                                                                       |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |                                    |
| 75. Bereksi, M.S.; Hassaïne, H.; Bekhechi, C.; Abdelouahid, D.E. Eva<br>Plants Extracts Commonly Used in Algerian Traditional Medicine<br>2018, 10, 507–512.                             | 14 strains of<br>against some Pathogen<br>nosocomial origin:                                                                                                                                                                                                                                                       | ic Bacteria. Pharma<br>positive bacteria                                                                                                                                                                                                       |                                    |
|                                                                                                                                                                                          | two strains of S.                                                                                                                                                                                                                                                                                                  | and yeasts than                                                                                                                                                                                                                                |                                    |
| 34 B. Roots Italy Ethanol ether and                                                                                                                                                      | aureus (1 Met-S, 1                                                                                                                                                                                                                                                                                                 | against Gram-                                                                                                                                                                                                                                  |                                    |
| Retrieved from https://encyclopedia.pub/entry/history/show/27619                                                                                                                         | Met-R); four strains of                                                                                                                                                                                                                                                                                            | negative                                                                                                                                                                                                                                       | [73]                               |
|                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                | [73]                               |
|                                                                                                                                                                                          | S. epidermidis (2                                                                                                                                                                                                                                                                                                  | bacteria, except                                                                                                                                                                                                                               | [73]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);                                                                                                                                                                                                                                                                                                   | bacteria, except for <i>P. aeruginosa</i> .                                                                                                                                                                                                    | <u>[73]</u>                        |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E</i> .                                                                                                                                                                                                                                                                    | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform                                                                                                                                                                               | [73]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br><i>coli</i> ; four strains of <i>P</i> .                                                                                                                                                                                                                         | bacteria, except<br>for <i>P. aeruginosa.</i><br>The chloroform<br>extract of leaves                                                                                                                                                           | [73]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br><i>coli</i> ; four strains of <i>P.</i><br><i>aeruginosa, Hafnia</i>                                                                                                                                                                                             | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active                                                                                                                                       | [73]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br><i>coli</i> ; four strains of <i>P.</i><br><i>aeruginosa</i> , <i>Hafnia</i><br><i>alvei</i> and <i>C. albicans</i> ,                                                                                                                                            | bacteria, except<br>for <i>P. aeruginosa.</i><br>The chloroform<br>extract of leaves                                                                                                                                                           | [73]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br><i>coli</i> ; four strains of <i>P.</i><br><i>aeruginosa, Hafnia</i>                                                                                                                                                                                             | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active                                                                                                                                       | [73]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br><i>coli</i> ; four strains of <i>P.</i><br><i>aeruginosa</i> , <i>Hafnia</i><br><i>alvei</i> and <i>C. albicans</i> ,                                                                                                                                            | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active                                                                                                                                       | [73]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br>coli; four strains of <i>P.</i><br>aeruginosa, Hafnia<br>alvei and <i>C. albicans</i> ,<br><i>C. parapsilosis</i> , <i>C.</i>                                                                                                                                    | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active<br>than the ethanol.                                                                                                                  | [23]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br>coli; four strains of <i>P.</i><br>aeruginosa, Hafnia<br>alvei and <i>C. albicans</i> ,<br><i>C. parapsilosis</i> , <i>C.</i>                                                                                                                                    | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active<br>than the ethanol.<br>Ethanolic                                                                                                     | [73]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br>coli; four strains of <i>P.</i><br>aeruginosa, Hafnia<br>alvei and <i>C. albicans</i> ,<br><i>C. parapsilosis</i> , <i>C.</i>                                                                                                                                    | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active<br>than the ethanol.<br>Ethanolic<br>extracts more                                                                                    | [73]                               |
| B.                                                                                                                                                                                       | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br>coli; four strains of <i>P.</i><br>aeruginosa, Hafnia<br>alvei and <i>C. albicans</i> ,<br><i>C. parapsilosis</i> , <i>C.</i>                                                                                                                                    | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active<br>than the ethanol.<br>Ethanolic<br>extracts more<br>active against                                                                  | [23]                               |
|                                                                                                                                                                                          | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br><i>coli</i> ; four strains of <i>P.</i><br><i>aeruginosa, Hafnia</i><br><i>alvei</i> and <i>C. albicans,</i><br><i>C. parapsilosis, C.</i><br><i>krusei</i>                                                                                                      | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active<br>than the ethanol.<br>Ethanolic<br>extracts more<br>active against<br>studied bacteria,                                             | [73]                               |
| В.                                                                                                                                                                                       | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br><i>coli</i> ; four strains of <i>P.</i><br><i>aeruginosa, Hafnia</i><br><i>alvei</i> and <i>C. albicans,</i><br><i>C. parapsilosis, C.</i><br><i>krusei</i><br><i>E. coli, P. aeruginosa,</i>                                                                    | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active<br>than the ethanol.<br>Ethanolic<br>extracts more<br>active against<br>studied bacteria,<br>strongest activity                       |                                    |
| B.<br>35 thunbergii, Roots USA                                                                                                                                                           | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br><i>coli</i> ; four strains of <i>P.</i><br><i>aeruginosa</i> , <i>Hafnia</i><br><i>alvei</i> and <i>C. albicans</i> ,<br><i>C. parapsilosis</i> , <i>C.</i><br><i>krusei</i><br><i>E. coli</i> , <i>P. aeruginosa</i> ,<br><i>S. aureus</i> , <i>S. mutans</i> , | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active<br>than the ethanol.<br>Ethanolic<br>extracts more<br>active against<br>studied bacteria,<br>strongest activity<br>against <i>S</i> . |                                    |
| B.<br>35 thunbergii, Roots USA                                                                                                                                                           | Met-S, 2 Met-R);<br>three strains of <i>E.</i><br><i>coli</i> ; four strains of <i>P.</i><br><i>aeruginosa</i> , <i>Hafnia</i><br><i>alvei</i> and <i>C. albicans</i> ,<br><i>C. parapsilosis</i> , <i>C.</i><br><i>krusei</i><br><i>E. coli</i> , <i>P. aeruginosa</i> ,<br><i>S. aureus</i> , <i>S. mutans</i> , | bacteria, except<br>for <i>P. aeruginosa</i> .<br>The chloroform<br>extract of leaves<br>was more active<br>than the ethanol.<br>Ethanolic<br>extracts more<br>active against<br>studied bacteria,<br>strongest activity                       |                                    |

| S.<br>No. | Species     | Part         | Country | Extract/Model/Compound | Tested Micro-<br>Organism                                                             | Results                                                                                                                                                                                                                                      | Reference |
|-----------|-------------|--------------|---------|------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 36        | B. vulgaris | Root<br>bark | Algeria | Methanol and water     | S. aureus, E.<br>faecalis, E. coli, E.<br>cloacae, K.<br>pneumoniae, P.<br>aeruginosa | The extracts of<br>species root<br>barks presented<br>a strong activity<br>against <i>S.</i><br><i>aureus</i> (23.0<br>mm), a weak<br>activity against <i>E.</i><br><i>faecalis</i> (13.0<br>mm) and no<br>activity toward<br>other strains. | [75]      |