Lysophosphatidic Acid in Cancer | Encyclopedia.pub

Lysophosphatidic Acid in Cancer

Subjects: Medicine, General & Internal

Contributor: Yan Xu

Since the clear demonstration of lysophosphatidic acid (LPA)’s pathological roles in cancer in the mid-1990s, more
than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was
established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of
targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving
LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling
properties of LPA, as well as technical issues, which are discussed in this entry. Potential strategies and
perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that

LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical

applications.
Autotaxin (ATX) ovarian cancer (OC) cancer stem cell (CSC)
electrospray ionization tandem mass spectrometry (ESI-MS/MS) G-protein coupled receptor (GPCR)
lipid phosphate phosphatase enzymes (LPPs) lysophosphatidic acid (LPA)
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| 1. Introduction

Lysophosphatidic acids (LPAs) are simple lipids, but they are involved in virtually every aspect of tumor
development, covering all 10 cancer hallmark activities LIZIBIEIBIGIT They include, but are not limited to,
stimulation of the proliferative signaling B0 evading growth suppressors and resisting cell death by regulating
the apoptotic and other cell death/survival pathways (112 enabling replicative immortality by regulating
telomerase 22l inducing angiogenesis and lymphangiogenesis via upregulation of proangiogenic factors, such as
vascular endothelial growth factor A (VEGFA), vascular endothelial growth factor C (VAGFC), interleukin (IL)-1p3 14!
(1SJI16IA7]I8] gng -8 WI(2021 and activating invasion and metastasis [22123124]125]126] |n addition, LPA affects
genome instability (the autotaxin (ATX)-LPA axis is involved in reactive oxygen species (ROS)-induced genomic
instability 24 and y-irradiation-induced DNA damage repair 28, inflammation by regulating inflammatory factors,
such as cyclooxygenase-2 (COX2), IL6, and Tumor necrosis factor-alpha (TNFa) B3 and energy metabolism
(ATX—LPA signaling contributes to obesity-induced insulin resistance 22 LPA triggers glycolytic shift and induces
metabolic reprogramming in ovarian cancer via Rac-mediated activation of nicotinamide adenine dinucleotide
phosphate oxidase (NADPH oxidase) and generation of reactive oxygen species (ROS), resulting in activation of
hypoxia inducible factor 1-alpha (HIF1a) E3 and the immune system [LIZIBIIEIGIZIEAY |n particular, expression of
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ATX or each of the endothelial-derived G-protein—coupled receptor (EDG)-family LPA receptor (LPAR) (LPAR;_3) in
the mammary epithelium of transgenic mice was shown to be sufficient to induce breast cancer 28], The current
review does not cover these functions or signaling pathways in detail, but rather focuses on the issues pertinent to

the translation of LPA targeting to clinic applications. The different aspects of LPA's functions in cancer were
extensively reviewed over several decades [BI4EIZI[21]35][36](37][38][39][40][41][42][43][44][45][46][47][48][49]

The major challenges in moving LPA targeting to clinical practice include the complex metabolic network of LPA,
the extremely broad and multifaceted pathological activities elicited by LPA, which are overlapping with its
physiological activities, the complicated and potentially opposing cellular activities mediated by different LPA
receptors in an individual cancer and individual patient-dependent manner, and the maze of intertwined G-protein
coupling and downstream signaling pathway elicited by LPA through its own receptors, as well as many other types
of cell receptors and signaling pathways. Moreover, technical issues for LPA detection and/or blockage, as well as
study design issues are also major obstacles to overcome. This review focuses on these issues with perspectives

to improve the LPA translational progress.

| 2. LPA: From Bench to Bedside

2.1. A Brief History and Milestones of LPA Research
2.1.1. Before the Identification of LPA Receptors

LPA was first described in the early 1960s 2951 |t was later studied in almost all type of cells in organisms ranging
from bacteria to plants to animals. In the 1960s, only eight papers were published related to LPA. This number
increased to ~40, ~100, and ~300 in the 1970s, 1980s, and 1990s, respectively. At the turn of the century, the
number of LPA-related studies increased exponentially to more than 4000 papers related to LPA published since
the year 2000 (Figure 1). Among these LPA papers, ~1300 papers are related to cancer/tumor, covering almost all
types of solid and blood cancers/tumors (Figure 1). This list includes, but is not limited to, cancers of ovarian, lung,
gastric, colorectal, breast, prostate, bladder, endometrial, renal, oral, pancreatic, cervical, and brain (including
glioblastoma) origin, as well as leukemias, non-Hodgkin's lymphomas, fibrosarcoma, osteosarcoma, and
melanoma [BI4121148152] Among these publications, ~20% of the papers are related to ovarian cancer (OC) alone.
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Figure 1. Lysophosphatidic acid (LPA)-related papers published in decades and the milestones in LPA research.
The blue bars are the total number of LPA-related papers published in each decade. The orange bars are the
numbers of LPA studies related to cancer. The pink circled numbers are milestones related to LPA research in
general, and the green circled numbers are cancer-related milestones. (1) LPA's mitogen and growth factor like
activity, as well as G-protein-mediated signaling mechanisms were discovered in the late 1980s and early 1990s
[35][531[54](551(561[571[58159] (2) |n 1995, the pathological significance of LPA in cancer was first reported BIEII20 (3)
From 1996 to 2009, six LPA G-protein coupled receptors (GPCRs) were identified and cloned [EQ[611[62](63]64][65](66]
(6716816970171 " (4) From 1998 to the present, LPA as a putative cancer marker was reported [2272Z31[74][75][76][77)[78]
[7lB0l8L82] (5) From 2000 to the present, new technologies, including the electrospray ionization tandem mass
spectrometry (ESI-MS/MS) methods, were developed for LPA analyses [2[83IB4IBSI86IB7] |n addition, LPA
antibodies were developed and further improved. In 2008, Lpath Inc. successfully humanized an anti-LPA antibody.
(6) In 2002, the major LPA-producing enzyme ATX was identified and cloned E8189 (7) From 2011 to 2017, ATX
and LPA G-protein coupled receptors (GPCRSs) were crystalized with their structures determined [29[81I32][93](94] " (g)

From 2013 to the present, FDA-approved ATX and LPA receptor (LPAR) inhibitors entered clinical trials for fibrosis
[95]

LPA was first isolated from brain extracts in 1961 9. Most studies on LPA at the early stage (from 1960s to 1970s)
focused on the biochemical analyses of LPA, including enzymes involved in LPA metabolism and catabolism, as
well as the tissue, cellular, and sub-cellular locations of LPA. Several of these studies are structure—activity studies,
as LPAis a group of more than 20 molecules, varying in their fatty-acid chain location (sn-1 vs. sn-2 on the glycerol
backbone), the numbers of carbons in the fatty-acid chain, the number and location of the double bonds in the

fatty-acid chain, and also the chemical linkage between the fatty acid and the glycerol (ether linkage vs. ester
linkage) [2611971[98]

The 1980s were the beginning decade for extensive functional and signaling studies of LPA. LPA-induced platelet
aggregation and alterations in arachidonate metabolism were the earliest LPA functions revealed, which were
further studied over the following decades [31I261[99][100][101][102][103][104] 'The effects of LPA on ion channels were
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noticed as early as the 1980s 98 and regained more interest in recent years [98I[105][106][107][108][109][110] The
intravenous injection of LPA induces hypertension in animals 2Z[L11L12)[113] The mitogen (cell proliferation) activity
of LPA was discovered in the late 1980s and early 1990s, before the molecular cloning of LPA receptors 331(53154]
(35581 |n addition, the potent effects of LPA on cell skeleton-related activities were reported in various cell types
and/or organisms even before its receptors were identified/cloned in 1996. LPA induces contraction of rat isolated
colon 114 reverts the B-adrenergic agonist-induced morphological response in C6 rat glioma cells 113 induces
neuronal shape changes B4, and is a chemoattractant for Dictyostelium discoideum amoebae and human
neutrophils [B8IL16  Moreover, LPA inhibits gap-junctional communication and stimulates phosphorylation of

connexin-43 in while blood cells. Focal adhesion kinase (FAK), paxillin, and p130 are important LPA-targeting
genes/proteins L17I[L18][119]

In terms of signaling properties, calcium and cyclic adenosine monophosphate (CAMP) are the earliest revealed
downstream signaling molecules for LPA [229, |ts regulation of protein phosphorylation was also discovered 1171118]
[L191121] ' One of the milestone papers for LPA signaling published by Moolenaar’s group in the late 1980s showed
that LPA initiates at least three separate signaling cascades: activation of a pertussis toxin-insensitive G-protein
mediating phosphoinositide hydrolysis with subsequent Ca?* mobilization and stimulation of protein kinase C:
release of arachidonic acid in a guanosine triphosphate (GTP)-dependent manner, but independent of prior
phosphoinositide hydrolysis; and activation of a pertussis toxin-sensitive G;-protein mediating inhibition of
adenylate cyclase 531, Later, the same group of investigators identified Ras activation as an important downstream
signaling pathway for LPA in fibroblasts B9 Another important finding is that the cell skeleton effects of LPA are
linked to the small GTP-binding protein Rho 122,

The implications of the potential roles of LPA in cancer stem from the findings for LPA’'s mitogen- and growth factor-
like activity in the late 1980s and early 1990s [B3I53IB4IBSIB6IBTBEIRA However, the majority of these studies were
conducted in model cellular systems (mainly in fibroblasts). In 1995, in searching for the “ovarian growth factor” in
human ascites from ovarian cancer patients, Xu et al. published three seminal papers linking pathologic LPA to
cancer (breast and ovarian cancer cells, as well as leukemia cells) BRI Since then, the research on the

relevance of LPA in cancer and human health is booming (Figure 1).
2.1.2. Post Identification of LPA Receptors

Although G-protein-mediated LPA signaling pathways were identified as described above, molecular identification
and cloning of LPA receptors in 1996 and the following years established the corner stones for rapid growth of LPA-
related studies and targeting, as G-protein coupled receptors (GPCRs) represent targets for ~40% of

pharmacological drug antagonists 1231,

The first LPA receptor was identified and cloned in 1996 89, which was followed by cloning and identification of a
total of six LPA receptors, namely LPAR{/EDG2, LPAR,/EDG4, LPARS/EDG7, LPAR /purinergic G protein-coupled
receptor P2Y9 (P2Y9/GPR23, LPARs/GPR92, and LPARg/P2Y5 [61I621[63][641[65][66][67](68][69][70I[71]  Several additional
G-protein coupled receptors (GPCRs) were also shown to be putative LPA receptors, including GPR87 [124]125]

GPR35 [128] and P2Y10 (27, However, they are less studied and/or not confirmed as LPA receptors. Moreover, the
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nuclear receptor peroxisome proliferator-activated receptor gamma (PPARYy) was identified as an intracellular LPA
receptor [128][129[130)[131] ppARy belongs to the nuclear receptor superfamily of PPARs (PPARa, PPARP/S, and
PPARY). PPARSs play a role in inflammation and a variety of cancers which include prostate, breast, glioblastoma,
neuroblastoma, pancreatic, hepatic, leukemia, and bladder and thyroid cancers [132] and they are mainly studied
by using their natural and synthetic agonists or antagonists, including thiazolidinediones, different unsaturated fatty
acids, and GW9662. The results are contradictory, with both pro- and anti-tumor roles of PPARYy reported 321, | PA
was identified as a new ligand for PPARYy in 2003 89, Until recently, LPA—PPARYy studies were mainly limited to the
vascular and metabolic processes 139, We recently showed that LPA upregulates an oncogene ZIP4 in epithelial
ovarian cancer (EOC) cells, mainly via PPARy, and LPA’'s cancer stem cell (CSC)-promoting activities are mediated
by PPARYy [133],

Another important milestone in LPA research was the identification of the major LPA-producing enzyme, autotaxin
(ATX). Although the enzymatic activity of the lysophospholipase D in the production of LPA was described earlier in

rat plasma 1341 the gene encoding this enzyme for this activity was not known until 2002 (8189,

The crystallization and structure determination for LPA GPCRs belonging to each of the two subclasses (EDG and
purinergic receptors), as well as ATX [RURLOZI934] iy recent years were pivotally important in design and
development of anti-cancer reagents targeting them. In fact, Food and Drug Administration (FDA)-approved

inhibitors against ATX and LPA monoclonal antibody entered into clinical trials for fibrosis 22! (Figure 1).

The functions/cellular effects of LPA (both physiological and pathological) are very broad, which were extensively
reviewed [BI32I[36](135][136][137][138] The signaling pathways, mainly those mediated by LPA GPCR receptors, were
also extensively studied and reviewed [(I221[61]1135][136][138]139] ' Thjs review focuses on the challenges in moving

bench LPA studies to clinical practice (bedside).
2.2. Challenges and Obstacles of LPA Clinical Applications in Cancer
2.2.1. The Issues with LPA as a Marker for Cancer

We initially reported LPA as a potential marker for ovarian cancer (OC) 22, which is supported by blinded 22 and

numerous independent studies [3ZASIZEI7I7Z8I7BAEL | pA was also shown to be a biomarker for other

gynecological cancers 72, as well as for gastric cancer 2,

However, we are facing several challenges in moving LPA as a cancer marker to clinical application . These
issues are tightly related to the biochemical nature of LPAs, which are metabolites, having a quick turnover time
due to their producing and degradation enzymes, as well as several other potential factors [IEL140][141] Mgny
epidemiological factors, such as diet, smoking, and drinking may also have significant effects on LPA levels
detected, which are not always included in various studies. Technical issues are another major concern. These

issues include many different lipid extraction, storage, and detection methods used, which may generate LPA
artefacts [Z[141],

https://encyclopedia.pub/entry/13259 5/37



Lysophosphatidic Acid in Cancer | Encyclopedia.pub

The analytic methods for LPA were greatly advanced from earlier (1960-1990s) thin-layer and high-performance
liquid chromatography-based analyses (814211143l {5 modern electrospray ionization tandem mass spectrometric
(ESI-MS/MS) methods [Z3I[831841[851[861[87]  Another major technological advancement in LPA detection and targeting
is the development of antibodies against LPA. LPA is not immunogenic, since all animal species produce LPA and
LPA is very small (molecular weights ranging from 400 to 500 Da), lacking structural specificity to elicit a specific
immune response. Nevertheless, Lpath Inc. successfully developed monoclonal LPA antibodies via their
proprietary technique, which were used in research 1441451 and commercially available LPA enzyme-linked
immunosorbent assay (ELISA) detecting kits (e.g.; Echelon Biosciences, T-2800s). These methods, however, have
a limitation where it is not possible to distinguish individual LPA species as the ESI-MS/MS analysis does.

To overcome these obstacles, one possibility is to measure the levels of ATX, the key enzymes producing LPA (€8l
(891 such as in the case of breast cancer and follicular lymphoma 148112471 However, LPA levels are controlled by a
complex array of enzymes and other conditions (see Section 2.2.2); therefore, ATX levels may not always correlate
well to LPA levels. For example, while LPA levels are elevated in EOC [22Z2Z3I[74]75][76][771[78][79[8ANEL] ATX |evels

are indifferent in control and EOC subjects [Z7[148],

It may be critical to develop more direct detection methods for LPA from human samples, such as a drop of
fingertip blood on a filter paper, to avoid effects derived from variations in lipid extraction and storage conditions.
Direct imaging/reporter-based methods may represent another direction to bypass the sample handling related

artefacts.
2.2.2. Targeting LPA Metabolism

As mentioned above, LPA represents a group of compounds varying in their chemical linkage to the glycerol
backbone, number of carbons, and number and location of double bonds, with their molecular weights between
400 and 500 Da [6U491 |n addition, several chemically closely related compounds, including sphigosine-1
phosphate (S1P) 2150151 - cyclic phosphatidic acid (cPA) [122l153]1154][155] ' and platelet-activating factor (PAF)
(156][157][158] 55 well as other lysophospholipids {21 share similar, distinct, or opposing signaling and functions to
LPA. While this review focuses on LPA, it is important to note that these additional lipids and their strong
intertwining metabolic/catabolic pathways and interactions in function make targeting LPA much more complex and

challenging 4,

LPA production and catabolism are controlled by a complex network of enzymes. Extracellular LPA is mainly
produced by ATX and soluble phospholipase A, enzymes (sPLA,s) 122, Other PLA,s [169][161][162][163][164][165][166]
and lipid phosphate phosphatase enzymes (LPPs) [RI167I168] play important roles in LPA generation and
degradation, respectively. PLA,s are not only critical in generating the substrates for ATX to produce LPA, but they
also generate LPA directly by acting on phosphatidic acid as its substrate [159][160[161][162][163][164][165] Tq_(ate,
among the 22 identified human PLA,s, at least 10 were studied in cancer, with most of them being aberrantly

expressed in cancer 289 (Figure 2).
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Figure 2. LPA metabolism as potential targets. Phospholipids (PLs), phosphatidic acid (PA), lysophospholipids
(LPLs). The enzymes in red color, autotaxin (ATX), phospholipase A; (PLA,), phospholipase D (PLD), and
monoacylglycerol kinase (MAK), need to be inhibited to reduced LPA. ATX inhibitors are currently in clinical trials.
The enzymes in blue, lipid phosphate phosphatase enzymes (LPPs), lysophospholipase transacylase (LLPT), or
LPA acyltransferase (LPAT), need to be enhanced to increased LPA degradation. However, these enzymes are
also involved in the metabolism of other lipid molecules, and the overall outcome may be complex. ATX may have
multiple functions. It also produces sphingosine-1 phosphate (S1P) from sphingosylphosphorylcholine (SPC) and
cyclic phosphatidic acids from lysophospholipids (LPLs). Cyclic PAs (cPAs) have anti-tumor activities 169,

LPPs are major LPA catabolic enzymes. By removing the phosphate from LPA, they inactivate most of LPA’'s
biological effects [BIL67I168] Other LPA-related enzymes include several mono- or diacylglycerol kinases (MAGs
and DAGSs) involved in generating intracellular pools of LPA 1287011711 and |ysophospholipase transacylase
(LLPT) or LPA acyltransferases (LPATs) inactivating LPA by converting it to phosphatidic acid 17273111741 (Figure
2).

While depletion of ATX is embryonically lethal, postnatal decreases in the expression of ATX or LPPs produce little
obvious phenotypic change, suggesting less toxicity is expected when targeting these enzymes 22, Inhibitors
against ATX and LPA monoclonal antibody entered into clinical trials for fibrosis, but are yet to do so for cancer 25,

Targeting LPPs was not tested clinically, although in vitro and preclinical studies support their anti-cancer roles 22!
175

At any rate, the complex array of enzymes and their regulations in LPA metabolism is a major obstacle in targeting
LPA production. In addition, the enzymes shown in Figure 2 are also involved in the metabolism of other lipid
molecules, further complicating the overall outcome. For example, ATX also generates cyclic phosphatidic acids
(cPAs: naturally occurring analogs of LPA), which have anti-proliferative and anti-tumor activities 78169 (Figure
2).
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This situation is further complicated with the involvement of the tumor microenvironment (TME), which was recently
reviewed extensively [E8I133] |t was shown that ~40% of ATX in the body is produced by adipocytes, and this is
increased further by inflammation in obesity linked to insulin resistance 2377 Cross-regulation of the
immune/inflammation system, and the preferred adipose tissues for LPA production are emerging as critical targets

for breast and multiple aggressive abdominal cancers, including colon, ovarian, and pancreatic cancers 93],
2.2.3. Targeting LPA Receptors

GPCRs are the largest superfamily of receptors, with the identification of 865 human GPCR genes 178, Compared
to other plasma membrane receptor types with more specific ligand types, including receptor tyrosine kinases
(RTKs), integrins, and ion transporters, ligands of GPCR cover very diverse chemicals, including amino acids,
amine derivatives, peptides, proteins, lipid molecules, mechanical stimuli, and even ions, such as Ca?*, protons,
and photons 179, GPCRs are involved in almost all of the important physiological and many critical pathological
processes. About 40% of drugs on the market act on GPCRs as agonists or antagonists 1231, The majority of LPA's
tumor-promoting activities are mediated by LPA GPCR receptors, naturally making them one of the most important

targets.

One of the challenges in targeting LPA GPCR receptors is their complex array of G-protein coupling, resulting in
multi-faceted outcomes. While most of the other individual GPCRs, including most of the best-studied (3-adrenergic
receptors, neurotransmitter receptors, and sensor GPCRs (olfactory, taste, and photosensory receptors) 1801[181]
(182][183][184] coyple to one or two specific types of trimeric G-protein, each LPAR couples to multiple G-proteins 641,
Further studies after the review in 2014 61 showed single G-protein coupled LPARg and double G-protein coupled
LPAR; to couple to both Gy/13 and G; for LPARg 1831881187 and G5, in addition to G4 and G; for LPAR, (1881189
(Figure 3).
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EDG receptor, Purinergic receptors
LPAR2 LPAR3 | para

. G/l 1 T r'e
Gaizis @' * Ei‘r f“ ﬁ 'G..;..Em

LC RAS 3 PIZK
LPA V - N
IP2 DAG AC
S 4 Rac AKT
R i J MAPK |
YAP i
LIMK
MLC
Could be anti-proliferation
PPARY ;u;ﬂz;:mnr-pmmnﬂm and anti-tumor
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Figure 3. LPA receptors as targets. In general, the EDG family LPA receptors (LPAR;_3) are coupled to G;, G, and
G113 proteins (G118 and are more involved in tumor-promoting activities. The purinergic family LPA receptors
(LPAR,_g) are all coupled to Gj,13 and other trimeric proteins [BLI185I[186I187] Theijr anti-tumor effects may be

mediated by their ability to elevate cyclic adenosine monophosphate (CAMP) levels [149],

Of interest, G4 coupling is involved in many essential physiological functions, ranging from cardiovascular effects
mediated by adrenergic receptors to neurotransmission by dopamine and serotonin receptors, various hormonal
effects by hormone receptors, energy and inflammation regulation mediated by purinergic receptors, and skin
pigmentation regulation by melanocortin receptors [184I[190][191][192][193][194][195]I196][197] |n particular, all olfactory
GPCRs, which consist of ~40% of all GPCRs in humans, are coupled to G4 [18J1198] However, G4 in general is

involved in anti-cancer activities.

While tumor-promoting activities are more consistently associated with LPAR;_3, which are all coupled to the
Gi/Ras/IMAPK pathway [ LPAR, g predominantly show anti-tumor activities. For example, in colon cancer cells,
LPAR; and LPARg positively and negatively regulate colony formation, respectively 199 | PAR, reduces cell
proliferation, motility, and invasiveness in head and neck squamous cells 299 |n pancreatic cancer cells,
downregulation of LPAR, and LPARgs enhanced the cell motility and colony formation activities 294,
LPARs inhibited the cell motility activity of sarcoma and endothelial cells 222, These inhibitory effects are most
likely associated with the predominate ability of LPAR,_g-mediated cAMP elevation via G¢-coupling (such as in the
case of LPAR, and LPARg) or a potentially Ge-independent pathway to increase cAMP via LPARg [149]
Contradictory effects of LPARs were also shown to enhance cell proliferation and motility in rat lung and liver
cancer cells 298 which may be related to its ability to couple to Gq and/or Gyp/13 61 On the other hand, the

inhibitory effects of LPARs in cytotoxic T cells may actually have a pro-tumorigenic effect 294! (Figure 3).

Many LPA GPCR receptor agonists and antagonists were developed . However, most, if not all, of them have
cross-activities on more than one LPA receptor or other target [l potentially complicating the outcomes using
these inhibitors. Different LPARs are differentially expressed in different cancers and different individuals. In
addition, the existence of non-GPCR LPA receptors, such as PPARYy, also needs to be considered. Studies using
inhibitors against LPAR,, LPAR43, ATX, and LPA monoclonal antibodies recently entered clinical trials for fibrosis
93] Cancer treatment using these reagents may be expected in the near future. However, more specific targeting
of the particular tumor promoting LPAR(s) on an individual cancer and person-based manner is likely to be critical

to make this targeting clinically beneficial.

As mentioned above, there are many different species of LPAs, which have preferences to bind to different LPA
receptors. For example, LPAR; preferentially binds to LPA with unsaturated fatty acids 52051 |n addition, LPA
GPCR receptors were shown to have ligands in addition to LPAs. For example, peptone (protein hydrolysates) and
farnesyl pyrophosphate are agonists for LPARs. GPR35 is a receptor for a number of naturally occurring lipids,
including kynurenic 2-arachidonoyl LPA and lysophosphatidylinositol 228l149] These issues are under-investigated,

but may play significant roles in clinical practice.
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2.2.4. Targeting LPA Cross-Talk
2.2.4.1. Cross-Talk between LPA Signaling and Other Cell Signaling Receptors

LPA elicits multiple and complex signaling pathways, which were extensively reviewed in recent years [21311[48](61]

[95][206][207][208][209] | pA signaling pathways intertwine with almost all other major cell signaling pathways. We
postulate that this network, instead of an individual LPA signaling pathway, represents a more effective target.
Hence, this review focuses on LPA cross-talk with other signaling molecules. These molecules are often more

“targetable” with FDA-approved inhibitors in clinical trials.

The cross-talk between LPA and other signaling molecules was extensively demonstrated, covering virtually every
type of cell plasma membrane receptors, including ligand-gated ion channels, receptor tyrosine kinases (RTKS),
receptors with other enzymatic activities (serine or serine/threonine kinases and guanylyl cyclase enzymatic
activities), other GPCRs, integrins, cytokine receptors, and T- and B-cell receptors, as well as intracellular

receptors, such as PPARYy. Listed below are examples from these categories (Figure 4).

Tumor and metastases

RTKs (e.g. EGFR) *
T Cell proliferation
MMP and ADAM .
to process ligads |Phosphorylation CSC
Oct4, AHDH1
S-:L:xz. Sox9 Cell migrationfinvasion

Tumor metastasis

actwatinr_:__ -
Cytokine production;
Cytokine recaptqrs =

Figure 4. LPA cross-talk as potential targets. LPA interacts with major types of plasma membrane receptors,
including ion channels, metal ion transporters, other transporters, receptor tyrosine kinases (RTKs), other GPCRs,
integrins, and cytokine receptors. Examples from each category of receptors are discussed in the Section 2.2.4.
Certain potential mechanisms of cross-talk are presented by words in red, including ligand production and/or

processing, receptor phosphorylation, and production of downstream molecules mediating the cross-talk.

LPA stimulates and regulates several ion channels, including the Ca* and Ca2*-activated potassium channels, and
the Na*/H* exchanger 3 (NHE3) via the LPARg receptor, which also involves the epidermal growth factor receptor
(EGFR) [210211] | pA also regulates glucose transporters in skeletal muscle and adipose tissue 212, We recently

showed that LPA upregulates ZIP4 (a zinc transporter) expression mainly via PPARy £33 (Figure 4).
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The cross-talk between receptor tyrosine kinase (RTK)-GPCR signal complexes is a focal point for the study of
integration of cell signaling, which plays an important role in signal transduction (213, The cross-talk between LPA
and EGFR is the best studied [2141215][216][217][218][219] | pPA also regulates and/or transactivates platelet derived

growth factor receptor (PDGFR) [229(2211[222][223][224] tropomyosin receptor kinase A (TrkA), the receptors for nerve

growth factor (NGF) [223], Toll-like receptors 228, and c-Met, the receptor for hepatocyte growth factor (227,

LPA inhibits the natriuretic peptide-induced generation of cGMP via a non-receptor tyrosine kinase Csk [2281229]1230]
The best example of LPA’s effect on non-membrane receptors is its functions with regard to Src family kinases 231
(232][233][234] | addition, LPA regulates cytokines, such as IL-6, and its downstream signal transducers and

activators of transcription (Stat) signaling molecules [233],

LPA interacts with other GPCR receptors. Free fatty-acid receptors (FFARs; FFA1 and FFA4) have a potential
negative cross-talk between LPA receptors and EGF receptors 21712361 | pA stimulates endothelin (a GPCR ligand)
expression and production in vascular smooth muscle cells 237 |n addition, a cross-talk between the LPAR—
G13/p115RhoGEF/RhoA pathway and the B2-adrenergic receptor/Gg/adenylyl cyclase pathway was reported 2381,
LPA also cross-talks with al adrenoceptors 239, At physiological concentrations, LPA is capable of modulating

opioid receptor binding 249,

There are close interactions between two oncogenic lysolipids, LPA and S1P, in their overlapping signaling
pathways and/or directly in their receptors (241, These two lipids can also cross-talk via ATX [2421243] Transforming
growth factor beta (TGFB) may play a role in the LPA-S1P cross-talk 244, LPA upregulated expression of the
cyclin-dependent kinase inhibitor p21(Wafl) in a TGFB-dependent manner 243, Cross-talk between TNF-a and
LPA results in the amplification of COX-2 protein expression via a conserved protein kinase D (PKD)-dependent
signaling pathway [248. Hisano et al. used a genome-wide CRISPR/dCas9-based GPCR signaling screen to
identify that LPAR, is an inducer of S1PRq/B-arrestin coupling. This interaction promotes the porous junctional
architecture of sinus-lining lymphatic endothelial cells and enables efficient lymphocyte trafficking [247. The
functional link between LPA and integrins was established. Active integrin B1 is required for migration of fibroblastic
cells (2281 | aminin, but not other extracellular matrix proteins, induces LPA production in ovarian cancer cells via a
B-integrin 1841 LPA induces avp6-integrin-mediated TGF( activation via the LPAR, and the small Gq (2491 | pA
upregulates integrins 2592511 and integrin signaling regulates the nuclear localization and function of the LPAR; in
mammalian cells 252, Moreover, LPA-induced RhoA activation integrates the functions of integrins 251112531 gnd
integrin a6B4 promotes expression of ATX in breast cancer cells (224, Most noticeably, ATX directly binds to several

integrins [BH[255] producing LPA close to the cell membrane 2581 (Figure 4).

LPARs functions as an inhibitory receptor able to negatively regulate T-cell receptor (TCR) signaling [294],
LPARs also inhibits B-cell receptor (BCR) signal transduction via a Ggy,13/Arhgefl pathway 257, On the other
hand, LPA augments IL-13 secretion from T cells via induction of submaximal T-cell activation (258]

The cross-talk can be mono- or bidirectional and can be either positive or negative cross-talk, dependent on the

type of interaction, the cell types, and the biological effects involved 259, For example, while LPA transactivates
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nerve growth factor signaling via the TrkA receptor, the latter also uses a G-protein-mediated mechanism to
regulate the p42/p44 MAPK pathway 269 The bidirectional regulation between LPA and integrins is mentioned
above (Figure 4).

It is important to note that LPA is involved in several stem cell/cancer stem cell (CSC) signaling pathways. The
ATX-LPA signaling pathway is recognized as a critical new player in CSC 8, LPA is involved in classical stemness
pathways, such as the Wnt, Notch, and Hippo pathways [1891261](262][263][264]265]

2.2.4.2. The Molecular Mechanisms of LPA Cross-Talks

LPA cross-talks with other signaling molecules at many different levels with divergent mechanisms. Firstly,
interactions are through direct binding/interactions. Homo- and heterodimerization of LPA/S1P receptors, ovarian
cancer G protein coupled receptor-1 (OGR1) and GPR4, was shown using LacZ complementation assays 266,
LPA receptors form homo- and heterodimers within the LPA receptor subgroup and heterodimers with other
receptors, such as S1PR;_3 and GPRA4. Interestingly, it was shown that LPA remarkably enhances, through the
LPAR,/G; protein, the OGR1-mediated vascular actions to acidic pH 287, These results suggest that targeting
dimerization may be an effective way to block the signaling mediated by the receptors. Although GPCR
dimerization was known for many years, this is an under-investigated area and warrants further investigation 288
(Figure 4).

Secondly, transactivation is mediated via enzymatic activities regulating phosphorylation and/or ligand processing.
LPA induces EGF receptor transactivation through metalloproteinase (MMP) and a disintegrin and
metalloproteinase (ADAM)-catalyzed membrane shedding of heparin-binding EGF and autocrine/paracrine
activation of EGF [231l[268]269] and EGF can also modulate LPAR; function and the phosphorylation state [268]
(Figure 4).

Thirdly, an LPA-regulated transcriptome is involved. LPA regulates many cytokines, including IL-6, IL-8, growth-
regulated oncogene (GRO)-a 1201270112711 and cytokine leukemia inhibitory factor (LIF) (241, |L-6 mediates the
LPA cross-talk between stromal and epithelial prostate cancer cells 22, | PA-induced macrophage migration
inhibitory factor (MIF) promotes both tumor cell growth and angiogenesis via both the Ras/MAPK and Ras—
Akt/PI3K signaling pathways [273]. |L-6 exerts its biological activities through two molecules: IL-6R (IL-6 receptor)
and gp130 2741 Moreover, gp130-mediated Janus kinase (JAK)/signal transducer and activation of transcription 3
(STAT3) is required for ATX expression in adipocytes 77 (Figure 4). LPA stimulates the expression of CSC-
associated genes, including OCT4, SOX2, SOX9, ALDH1, and drug transporters [138l[2751[276] ' \yith most of these
gene products being functionally involved in CSC.

Fourthly, downstream signaling pathway interactions play important roles. The signaling pathways involved in LPA
cross-talk include, but are not limited to the PI3K/Ras 27, the mitogen-activated protein kinase (MAP kinase) [277]
[278] the focal adhesion 119 the Wnt, integrin, the Rho/Rock, and the YAP pathways 2722801 reactive oxygen
species (ROS), the DNA repair pathway, and the glycolytic pathway 24, as well as the Rho—cAMP interaction [281]
(Figure 4).
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Finally, other signaling molecules may regulate metabolic enzymes for LPA and other lipid molecules.
Neurotransmitters, cytokines, and growth factors regulate the activity of a key set of lipid-metabolizing enzymes,
such as phospholipases, to affect LPA and other lipid signaling molecules 282, |n addition, an acylglycerol kinase

that produces LPA modulates cross-talk with EGFR in prostate cancer cells [283],

The targeting of one or more of these cross-talks and/or the major LPA downstream signaling pathways may be
critical and/or more efficient than targeting LPA or LPAR directly. For example, the FDA recently approved the first
PI3K inhibitor for breast cancer treatment. The challenges are identifying one or more driver targets at the level of

individual cancer type and individual patient.
2.2.5. Targeting Tumor-Stromal Interactions in the TME

Targeting the tumor-prone microenvironment gained increasing attention in recent years . Although ATX can be
produced directly by cancer cells, such as in melanomas, glioblastomas, and thyroid tumors 23, it may be mainly
produced by stroma cells, as ~40% of ATX in the body is produced by adipocytes, and this is increased further by
inflammation in obesity linked to insulin resistance 22, In addition, macrophage-derived phospholipase A, (PLA,),
which is a soluble PLA,, produces extracellular LPA and is involved in EOC and associated with early relapse of
EOC (2841285 (Figure 5).
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Figure 5. LPA in tumor cells and in the tumor microenvironment (TME). Tumor, stromal, and immune cells in the
TME express LPA receptors, and they produce and/or respond to LPA [341[119][185][202][247][256][286][287][288][289][290]

(2911 The overall effects produce a tumor-promoting environment as detailed in Section 2.2.5 and in recent reviews
[71[21][135]

While S1P’s functions in the immune system were extensively studied, and the S1P receptor axis represents an

obligatory signal for trafficking of immune cells 24, the role of LPA in the immune system is less studied 241, LPA

affects TCR and BCR as mentioned in Section 2.2.4.1, and LPA converts monocytes into macrophages in both
mice and humans 222 (Figure 5). In addition, ATX represents a connecting point for both S1P and LPA, since it is

an enzyme producing both S1P and LPA 298] More interestingly, a recent study showed that S1P/S1PR4 and
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ATX/LPA/LPARs ¢ appear as critical axes for immune infiltrates (B4 These were robust differences in
sphingolipid/LPA-related checkpoints and the drug response. Genes including CD68 (a monocyte/macrophage
marker), LPAR3; (a LPA receptor), SMPD1 (sphingomyelin phosphodiesterase 1 that converts sphingomyelin to
ceramide), PPAP2B (LPP3, a phosphatidic acid phosphatase, converting phosphatidic acid to diacylglycerol and
LPA to monoacylglecerol 224), and SMPD2 (sphingomyelin phosphodiesterase 2, with lysophospholipase activity)
emerged as the most prognostically important markers. In particular, alignment of data across a variety of
malignancies (over 600 different neoplasm categories) revealed specific preference for ovarian carcinoma B4 It is
interesting that ATX, LPAR{, and LPAR5 are higher in the immune-high tumor (Cd14-, Cd68-, Cd164-, and Cd3E-
high) group, but LPAR, 5 are higher in the immune-low group B4l suggesting the complex regulatory roles of the
ATX~-LPA axis in the tumor-immune system interaction.
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