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Exosomes are endosome-derived nanovesicles produced by healthy as well as diseased cells. Their proteic, lipidic
and nucleic acid composition is related to the cell of origin, and by vehiculating bioactive molecules they are
involved in cell-to-cell signaling, both in healthy and pathologic conditions. Being nano-sized, non-toxic,
biocompatible, scarcely immunogenic, and possessing targeting ability and organotropism, exosomes have been
proposed as nanocarriers for their potential application in diagnosis and therapy. Among the different techniques
exploited for exosome isolation, the sequential ultracentrifugation/ultrafiltration method seems to be the gold
standard; alternatively, commercially available kits for exosome selective precipitation from cell culture media are
frequently employed. To load a drug or a detectable agent into exosomes, endogenous or exogenous loading
approaches have been developed, while surface engineering procedures, such as click chemistry, hydrophobic

insertion and exosome display technology, allow for obtaining actively targeted exosomes.

exosomes extracellular vesicles diagnosis theranostic

| 1. Introduction

All prokaryotic and eukaryotic cells secrete, in an evolutionary conserved way, extracellular vesicles (EVs), i.e.,
membrane-derived nano- and microvesicles 2. For a long time, these vesicles were supposed to be either a waste
removal system, products of cellular damage, or experimental artefacts [2. Nowadays, EVs are recognized as

specific cellular components performing different biological functions B4,

EVs are classified on the basis of the different sizes, cellular compartment of origin and localization, either inside or
outside the cells . Among them, exosomes, microparticles, shedding vesicles, apoptotic bodies, tolerosomes,
prostasomes and prominosomes have been distinguished . Two main processes for EV formation have been
identified: some EVs, such as exosomes, apparently derive from exocytosis of multivesicular bodies, a part of the
endosomal system including primary endocytic vesicles, early and late endosomes, and lysosomes [&: otherwise,

EVs may form from the direct budding of the cell membrane 2.,

Exosomes, firstly identified by Johnestone in 1987 [, represent a homogenous class of EVs in terms of size (30—
150 nm), density (1.13-1.19 g/mL [EI®) and membrane composition, differently from the other classes of EVs,
which are characterized by higher heterogeneity 191 As exosomes derive from the membrane of late
endosomes W, their proteome is particularly rich in tetraspanins (CD9, CD63, CD81 and CD82) and heat shock
proteins (HSP70, HSP90), but also includes transmembrane proteins that are specific to the parent cell; for

example, exosomes deriving from platelets contain P-selectin and intercellular adhesion molecule-1, while a- and
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B-chains of integrins are expressed on the membrane of exosomes deriving from dendritic cells, reticulocytes and
T-cells 12, As for exosome lipid composition, phosphatidylserine, sphingomyelin, cholesterol, ceramides, and
ganglioside GM3 are particularly abundant @&, Sharing the same biogenesis, exosomes and apoptotic bodies
present analogous membrane topology, with the interior side of the vesicle corresponding to the cytosolic side of
the parent cell membrane, although phosphatidylserine is specifically exposed on the outer leaflet of the vesicle
membrane, due to the activity of enzymes such as flippase, floppase and scramblase 1. Moreover, exosomes

carry nucleic acids such as mRNA, siRNA, miRNA and DNA fragments.

| 2. Biological Function

By vehiculating proteins and genetic material, exosomes are involved in cell-to-cell communication by molecule
transfer from donor to nearby, as well as distant, recipient cells 2314 Some authors have already reviewed the
physiologic functions of exosomes in the immune system L311281: for instance, an in vitro study on both human and
murine models evidenced that exosomes deriving from lymphocytes stimulate CD4+ T cell clones, revealing that

these EVs might be involved in the transfer of peptidic signals among immune cells (&,

The exosomal mechanism of interaction with recipient cells has not been clarified yet (Figure 1). Some studies
reported that exosomes fuse with the plasma membrane of the recipient cell, releasing their content in the
cytoplasm LZ1I28l: 55 observed by Parolini et al. 221, the fusion process might be facilitated under acidic pH, typical

of the tumor intracellular environment.
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Exosome DNA fragment
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Figure 1. Exosomal mechanism of interaction with recipient cells.

Actually, besides shuttling bioactive molecules among healthy cells, exosomes also play a crucial role under

pathologic conditions such as cancer, and neurodegenerative, cardiovascular, infectious and respiratory diseases
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[141[201[201(22][23],

Tumor cells release high amounts of EVs, and several studies report a possible involvement of tumor-derived
exosomes in different phases of tumor formation and progression, as reviewed in 241, although opposing pieces of
evidence have been reported by different research groups. Al-Nedawi et al. 23] observed that glioblastoma cell-
derived EVs membranes are enriched in a mutant form of the epidermal growth factor receptor, which promotes
anti-apoptotic pathways and increases the anchorage-independent growth capacity; on the other hand, Ristorcelli
et al. [28 evidenced that EVs secreted by pancreatic tumor cells, due to their high membrane content of cholesterol
and sphingomyelin, induce activation of the mitochondrial apoptotic pathway in tumor cells, and Zitvogel and his

group & even demonstrated the capability of dendritic cell-deriving exosomes to inhibit tumor growth in vivo.

Besides membrane composition, the exosomal content may also influence tumor progression. Some studies
evidenced the role of miRNA present in tumor-derived exosomes in promoting neovascularization and
angiogenesis [2829: also, a recent work of Gerloff et al. B9 evidenced that cutaneous melanoma-derived
exosomes are enriched in miR-125b-5p, which induces a tumor-promoting phenotype in tumor-associated
macrophages, while Kurahashi et al. B observed increased miR-204-5p levels in urinary exosomes of transgenic

mice used as a model of a rare form of renal cancer.

An important aspect of tumor progression is the capacity of cells to elude the immune system, and several studies
demonstrated that tumor-derived exosomes are involved in this process. Chalmin et al. 32 isolated exosomes
deriving from different murine and human cancer cell lines and identified the interaction between Hsp-72,
associated with the exosome membranes, and Stat3, expressed by the parent cells, as the key factor inducing the

immunosuppressing activity of both mouse and human myeloid-derived suppressor cells.

Moreover, several papers highlighted the involvement of tumor-derived exosomes in the metastastic process [231134]
[3336] For example, Peinado et al. B2 demonstrated that the highly metastatic behavior of primary melanomas
might be ascribed to the abundant generation of exosomes influencing bone marrow progenitors, although different
pieces of evidence were obtained in a replication study in 2018 28, Ramteke et al. BJ demonstrated that prostate
cancer cell-derived exosomes, secreted under the hypoxic conditions typical of the malignancy, enhance the
invasiveness of the tumor through induction of the cleavage of E-cadherin, a protein involved in the adherens
junctions among epithelial cells. Another study 4% demonstrated that exosomes deriving from bladder cancer cells
promote lymphatic metastasis through the action of a long non-coding RNA vehiculated by the vesicles; similarly,
miR-105, miR-122 and miR-200-containing EVs promote breast cancer cell metastasis 414243 gnd miR-221-
containing exosomes derived from gastric cancer mesenchymal stem cells were found to promote migration of
human gastric cancer cells in vitro 44!,

| 3. Applications in Therapy

Exosomes are endowed with several characteristics suitable for drug delivery: they are nano-sized, non-toxic,

biocompatible, scarcely immunogenic, and possess targeting ability and organotropism “2. Indeed, exosomes are
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similar to small unilamellar liposomes in terms of size and capacity to carry both hydrophilic and lipophilic
molecules, but the asymmetrical lipid distribution and specific protein composition of exosome membranes justify
their organotropism and homing ability 48, confirmed by the evidence that cancer-derived exosomes fuse

preferentially with their parent cells 42,

However, the clinical translation of exosomes as drug carriers is affected by several technical issues, including low
production yield, considerable structural heterogeneity and complexity, difficulties in drug loading and in developing
standard, scalable, and cost-effective GMP procedures for exosome isolation and purification “&. To overcome
these issues, bioinspired exosome-like vesicles have emerged as an alternative to naturally derived exosomes.
Most of the artificial exosome-mimetic systems proposed to date stem from liposomes—the so-called hybrid
exosomes derive from the fusion of exosome and liposome membranes 49—or are obtained by serial extrusion of

a parent cell suspension through decreasing pore size membranes 29,

Many research groups have developed exosomes and exosome-mimetic systems as nanocarriers for cancer
treatment 43, proposing different techniques for vesicle isolation and purification, drug loading and surface
functionalization B2, The drug loading methods, in particular, can be classified in two main classes, endogenous
and exogenous loading 2. Endogenous loading includes the genetic modification of the parent cells, to have them
to express specific proteins or nucleic acids to be included in the released vesicles, or their simple incubation with
the drug to be loaded; exogenous loading implicates the incorporation of the drug in exosomes previously isolated

from cell culture media or body fluids (urine, blood, saliva, breast milk, etc.).

Various active principles have been loaded into vesicles developed for the treatment of different types of cancer,
such as doxorubicin B3B4 paclitaxel 53, gemcitabine 8, but also aspirin B4, imperialine 28], several miRNA B2

(601(61][62](63][64] and MRNA molecules 83 tumor necrosis factor-a B8 and recombinant methioninase €41,

| 4. Applications in Diagnosis

Beyond their possible use as therapeutic active carriers, exosomes can be employed in the diagnostic field with
two different approaches. Passive diagnostic applications involve the use of naturally derived tumor exosomes as
cancer diagnostic and prognostic biomarkers €889 since, differently from circulating cancer cells, their abundance
in blood allows for easy detection in small volumes of frozen plasma or serum Z9. By analyzing the proteomic and
genomic profile of these exosomes, including mRNA, miRNA and mitochondrial RNA, it is possible to determine the
type of tumor and its stage B8IZUI2IZIT4] As an example, Zong et al. 13 developed silicon quantum dots (Si-QD)
decorated with a CD63 aptamer to bind CD63 expressed on exosomes isolated from human breast SKBR3 cancer
cells 221 thus obtaining a nanoprobe for super-resolution microscopy suitable for trafficking studies in live cells and
for the investigation of exosome role in cancer metastasis. Moreover, Chen et al. /8 developed an exosome-based
system for super-resolution microscopy, demonstrating the possibility of simultaneous dual-color imaging by

immunofluorescent labeling of CD63 and HER2 molecules expressed on SKBR3-derived exosomes.
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On the other hand, some researchers proposed to exploit exosomes as an active diagnostic tool, by manipulating

them with compounds or nanoparticles (NP) detectable using different imaging techniques, such as optical

fluorescence, computed tomography (CT), positron emission tomography (PET), single photon emission computed

tomography (SPECT), and magnetic resonance imaging (MRI), for their use in the diagnosis of some forms of

cancer that are difficult to reach, such as brain tumors, or in the early detection of cancer recurrences and

metastasis, within a precision medicine approach 2.

On the wave of growing interest in exosome and EVs applications, the aim of this review is to summarize the

diagnostic or theranostic platforms based on exosomes (Table 1) or exosome-mimetic vesicles (Table 2) that have

been developed so far, classified on the basis of the labeling probes; in particular, the review focuses on the

diverse manufacturing (Eigure 2), loading and surface modification procedures, and on applications in oncology;

the final paragraph briefly reports on exosome applications in other pathologic conditions.
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Figure 2. Different strategies for exosome isolation.

Table 1. Theranostic platforms based on exosomes, classified by loading strategy.
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