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Exosomes are endosome-derived nanovesicles produced by healthy as well as diseased cells. Their proteic, lipidic and

nucleic acid composition is related to the cell of origin, and by vehiculating bioactive molecules they are involved in cell-to-

cell signaling, both in healthy and pathologic conditions. Being nano-sized, non-toxic, biocompatible, scarcely

immunogenic, and possessing targeting ability and organotropism, exosomes have been proposed as nanocarriers for

their potential application in diagnosis and therapy. Among the different techniques exploited for exosome isolation, the

sequential ultracentrifugation/ultrafiltration method seems to be the gold standard; alternatively, commercially available

kits for exosome selective precipitation from cell culture media are frequently employed. To load a drug or a detectable

agent into exosomes, endogenous or exogenous loading approaches have been developed, while surface engineering

procedures, such as click chemistry, hydrophobic insertion and exosome display technology, allow for obtaining actively

targeted exosomes. 
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1. Introduction

All prokaryotic and eukaryotic cells secrete, in an evolutionary conserved way, extracellular vesicles (EVs), i.e.,

membrane-derived nano- and microvesicles . For a long time, these vesicles were supposed to be either a waste

removal system, products of cellular damage, or experimental artefacts . Nowadays, EVs are recognized as specific

cellular components performing different biological functions .

EVs are classified on the basis of the different sizes, cellular compartment of origin and localization, either inside or

outside the cells . Among them, exosomes, microparticles, shedding vesicles, apoptotic bodies, tolerosomes,

prostasomes and prominosomes have been distinguished . Two main processes for EV formation have been identified:

some EVs, such as exosomes, apparently derive from exocytosis of multivesicular bodies, a part of the endosomal

system including primary endocytic vesicles, early and late endosomes, and lysosomes ; otherwise, EVs may form from

the direct budding of the cell membrane .

Exosomes, firstly identified by Johnestone in 1987 , represent a homogenous class of EVs in terms of size (30–150 nm),

density (1.13–1.19 g/mL ) and membrane composition, differently from the other classes of EVs, which are

characterized by higher heterogeneity . As exosomes derive from the membrane of late endosomes , their

proteome is particularly rich in tetraspanins (CD9, CD63, CD81 and CD82) and heat shock proteins (HSP70, HSP90), but

also includes transmembrane proteins that are specific to the parent cell; for example, exosomes deriving from platelets

contain P-selectin and intercellular adhesion molecule-1, while α- and β-chains of integrins are expressed on the

membrane of exosomes deriving from dendritic cells, reticulocytes and T-cells . As for exosome lipid composition,

phosphatidylserine, sphingomyelin, cholesterol, ceramides, and ganglioside GM3 are particularly abundant . Sharing the

same biogenesis, exosomes and apoptotic bodies present analogous membrane topology, with the interior side of the

vesicle corresponding to the cytosolic side of the parent cell membrane, although phosphatidylserine is specifically

exposed on the outer leaflet of the vesicle membrane, due to the activity of enzymes such as flippase, floppase and

scramblase . Moreover, exosomes carry nucleic acids such as mRNA, siRNA, miRNA and DNA fragments.

2. Biological Function

By vehiculating proteins and genetic material, exosomes are involved in cell-to-cell communication by molecule transfer

from donor to nearby, as well as distant, recipient cells . Some authors have already reviewed the physiologic

functions of exosomes in the immune system ; for instance, an in vitro study on both human and murine models

evidenced that exosomes deriving from lymphocytes stimulate CD4+ T cell clones, revealing that these EVs might be

involved in the transfer of peptidic signals among immune cells .
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The exosomal mechanism of interaction with recipient cells has not been clarified yet (Figure 1). Some studies reported

that exosomes fuse with the plasma membrane of the recipient cell, releasing their content in the cytoplasm ; as

observed by Parolini et al. , the fusion process might be facilitated under acidic pH, typical of the tumor intracellular

environment.

Figure 1. Exosomal mechanism of interaction with recipient cells.

Actually, besides shuttling bioactive molecules among healthy cells, exosomes also play a crucial role under pathologic

conditions such as cancer, and neurodegenerative, cardiovascular, infectious and respiratory diseases .

Tumor cells release high amounts of EVs, and several studies report a possible involvement of tumor-derived exosomes

in different phases of tumor formation and progression, as reviewed in , although opposing pieces of evidence have

been reported by different research groups. Al-Nedawi et al.  observed that glioblastoma cell-derived EVs membranes

are enriched in a mutant form of the epidermal growth factor receptor, which promotes anti-apoptotic pathways and

increases the anchorage-independent growth capacity; on the other hand, Ristorcelli et al.  evidenced that EVs

secreted by pancreatic tumor cells, due to their high membrane content of cholesterol and sphingomyelin, induce

activation of the mitochondrial apoptotic pathway in tumor cells, and Zitvogel and his group  even demonstrated the

capability of dendritic cell-deriving exosomes to inhibit tumor growth in vivo.

Besides membrane composition, the exosomal content may also influence tumor progression. Some studies evidenced

the role of miRNA present in tumor-derived exosomes in promoting neovascularization and angiogenesis ; also, a

recent work of Gerloff et al.  evidenced that cutaneous melanoma-derived exosomes are enriched in miR-125b-5p,

which induces a tumor-promoting phenotype in tumor-associated macrophages, while Kurahashi et al.  observed

increased miR-204-5p levels in urinary exosomes of transgenic mice used as a model of a rare form of renal cancer.

An important aspect of tumor progression is the capacity of cells to elude the immune system, and several studies

demonstrated that tumor-derived exosomes are involved in this process. Chalmin et al.  isolated exosomes deriving

from different murine and human cancer cell lines and identified the interaction between Hsp-72, associated with the

exosome membranes, and Stat3, expressed by the parent cells, as the key factor inducing the immunosuppressing

activity of both mouse and human myeloid-derived suppressor cells.

Moreover, several papers highlighted the involvement of tumor-derived exosomes in the metastastic process .

For example, Peinado et al.  demonstrated that the highly metastatic behavior of primary melanomas might be ascribed

to the abundant generation of exosomes influencing bone marrow progenitors, although different pieces of evidence were

obtained in a replication study in 2018 . Ramteke et al.  demonstrated that prostate cancer cell-derived exosomes,

secreted under the hypoxic conditions typical of the malignancy, enhance the invasiveness of the tumor through induction

of the cleavage of E-cadherin, a protein involved in the adherens junctions among epithelial cells. Another study 

demonstrated that exosomes deriving from bladder cancer cells promote lymphatic metastasis through the action of a

long non-coding RNA vehiculated by the vesicles; similarly, miR-105, miR-122 and miR-200-containing EVs promote

breast cancer cell metastasis  and miR-221-containing exosomes derived from gastric cancer mesenchymal stem

cells were found to promote migration of human gastric cancer cells in vitro .
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3. Applications in Therapy

Exosomes are endowed with several characteristics suitable for drug delivery: they are nano-sized, non-toxic,

biocompatible, scarcely immunogenic, and possess targeting ability and organotropism . Indeed, exosomes are similar

to small unilamellar liposomes in terms of size and capacity to carry both hydrophilic and lipophilic molecules, but the

asymmetrical lipid distribution and specific protein composition of exosome membranes justify their organotropism and

homing ability , confirmed by the evidence that cancer-derived exosomes fuse preferentially with their parent cells .

However, the clinical translation of exosomes as drug carriers is affected by several technical issues, including low

production yield, considerable structural heterogeneity and complexity, difficulties in drug loading and in developing

standard, scalable, and cost-effective GMP procedures for exosome isolation and purification . To overcome these

issues, bioinspired exosome-like vesicles have emerged as an alternative to naturally derived exosomes. Most of the

artificial exosome-mimetic systems proposed to date stem from liposomes—the so-called hybrid exosomes derive from

the fusion of exosome and liposome membranes —or are obtained by serial extrusion of a parent cell suspension

through decreasing pore size membranes .

Many research groups have developed exosomes and exosome-mimetic systems as nanocarriers for cancer treatment

, proposing different techniques for vesicle isolation and purification, drug loading and surface functionalization .

The drug loading methods, in particular, can be classified in two main classes, endogenous and exogenous loading .

Endogenous loading includes the genetic modification of the parent cells, to have them to express specific proteins or

nucleic acids to be included in the released vesicles, or their simple incubation with the drug to be loaded; exogenous

loading implicates the incorporation of the drug in exosomes previously isolated from cell culture media or body fluids

(urine, blood, saliva, breast milk, etc.).

Various active principles have been loaded into vesicles developed for the treatment of different types of cancer, such as

doxorubicin , paclitaxel , gemcitabine , but also aspirin , imperialine , several miRNA 

and mRNA molecules , tumor necrosis factor-α  and recombinant methioninase .

4. Applications in Diagnosis

Beyond their possible use as therapeutic active carriers, exosomes can be employed in the diagnostic field with two

different approaches. Passive diagnostic applications involve the use of naturally derived tumor exosomes as cancer

diagnostic and prognostic biomarkers , since, differently from circulating cancer cells, their abundance in blood

allows for easy detection in small volumes of frozen plasma or serum . By analyzing the proteomic and genomic profile

of these exosomes, including mRNA, miRNA and mitochondrial RNA, it is possible to determine the type of tumor and its

stage . As an example, Zong et al.  developed silicon quantum dots (Si-QD) decorated with a CD63

aptamer to bind CD63 expressed on exosomes isolated from human breast SKBR3 cancer cells , thus obtaining a

nanoprobe for super-resolution microscopy suitable for trafficking studies in live cells and for the investigation of exosome

role in cancer metastasis. Moreover, Chen et al.  developed an exosome-based system for super-resolution

microscopy, demonstrating the possibility of simultaneous dual-color imaging by immunofluorescent labeling of CD63 and

HER2 molecules expressed on SKBR3-derived exosomes.

On the other hand, some researchers proposed to exploit exosomes as an active diagnostic tool, by manipulating them

with compounds or nanoparticles (NP) detectable using different imaging techniques, such as optical fluorescence,

computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography

(SPECT), and magnetic resonance imaging (MRI), for their use in the diagnosis of some forms of cancer that are difficult

to reach, such as brain tumors, or in the early detection of cancer recurrences and metastasis, within a precision medicine

approach .

On the wave of growing interest in exosome and EVs applications, the aim of this review is to summarize the diagnostic or

theranostic platforms based on exosomes (Table 1) or exosome-mimetic vesicles (Table 2) that have been developed so

far, classified on the basis of the labeling probes; in particular, the review focuses on the diverse manufacturing (Figure 2),

loading and surface modification procedures, and on applications in oncology; the final paragraph briefly reports on

exosome applications in other pathologic conditions.
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Figure 2. Different strategies for exosome isolation.

Table 1. Theranostic platforms based on exosomes, classified by loading strategy.

Ref.
Labeling
Strategy

Parent Cells
Exosome
Isolation Method

Labeling
Compound

Therapeutic
Compound

Loading/Labeling
Procedure

Surface
Engineering

Detection
Technique

Tests



Table 2. Theranostic platforms based on exosome-mimetic vesicles.

Nanoparticle-

loaded

exosomes

Raw264.7

mouse

macrophages

Sequential

centrifugation
SPION Curcumin

Exogenous

(electroporation)

NRP-1 binding

peptide by click

chemistry

MRI

In vitro: U251

cells

In vivo: BALB/c

nude mice

transplanted

with U251 cells

SKBR3

breast cancer

cells

Exosome isolation

kit

Gold-carbon

QD  

Exogenous (incubation

exploiting targeted

loading through anti-

HER2 antibodies)

 
Fluorescence

imaging

In vitro: HeLa

cells

MCF-7 breast

cancer cells

Exosome isolation

kit

Vanadium

carbide QD  
Exogenous

(electroporation)

RGD peptide

introduced by

incubating

exosomes with

DSPE-PEG-

RGD

Photoacoustic

imaging

In vitro: MCF-7,

A549, NHDF

cells

In vivo: tumor-

bearing BALB/c

nude mice

Urine of

gastric cancer

patients

Sequential

centrifugation

Chlorine-6

labeled gold

NP
 

Exogenous

(electroporation)  
Fluorescence

imaging

In vitro: MGC-

803, Raw264.7

cells

In vivo: MGC-

803 tumor-

bearing BALB/c-

nude mice

Murine

adipose stem

cells

Exosome isolation

kit
USPION  

Endogenous (cell

incubation)
 MRI

In vitro:

exosomes

immobilized in

an agarose

matrix

In vivo:

C57BL/6 mice

Mesenchymal

stem cells

Sequential

centrifugation
Gold NP  Exogenous (incubation)  CT

In vivo: C57bl/6

mice
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Ref. Cell Line
Labeling
Compound

Therapeutic
Compound

Vesicle
Preparation
Method

Loading/Labeling
Procedure

Detection
Technique

Tests

Bel-7402

human

hepatoma

cancer cells

NP-

encapsulated

doxorubicin

NP-

encapsulated

doxorubicin

Coating of the NP

with cell

membranes

through extrusion

Incubation
Fluorescence

imaging

In vitro: Bel-

7402, MCF-7, L-

O2 cells

J774A.1

mouse

macrophages

Gd-

conjugated

liposomes

 

Sonication and

extrusion of the

exosome/liposome

mixture

Obtained during

vesicle

preparation

procedure

MRI

In vitro: K7M2,

NIH/3T3 cells

In vivo:

osteosarcoma—

bearing NU/NU

immunodeficient

mice
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Transition metal-

labeled

exosomes

Human

umbilical cord

mesenchymal

stem cells

Sequential

centrifugation

Gd

(complexed

by DOTA)

 

Exogenous (lipid

insertion technique with

Gd-DOTA-DSPE)

 MRI

In vitro: K7M2

mouse and 14B

human

osteosarcoma

cells

In vivo:

immunodeficient

NU/NU nude

mice implanted

with K7M2 cells

Human

umbilical cord

blood

mononuclear

cells

Sequential

centrifugation

Cu

(complexed

by DOTA)

 

Exogenous (reaction

between the maleimide

group of DOTA and thiol

groups on exosome

surface)

 PET/MRI

In vitro: HUVEC

In vivo:

C57BL/6J mice

4T1 breast

cancer cells

Sequential

centrifugation

Cu

(complexed

by NOTA)

 

Exogenous (reaction of

NOTA with exosome

surface proteins)

PEG decoration

using

PEG5k/NHS

PET

In vivo: 4T1

tumor-bearing

BALB/c mice

Mouse

macrophage

HEK293T

cells

Sequential

centrifugation
Tc  

Exogenous (incubation

with fac-

[ Tc(CO) (H O) ] )

DARPin G3

functionalization

by transfection

of the parent

cells

Radioactive

signal by

gamma-

counter

In vitro: SKOV-

3, MCF-7, U87-

MG, HT-29,

A549 cells

In vivo: BALB/c

mice, SKOV-3

xenografted

C57 nude mice

Human

embryonic

kidney

HEK293 cells

Sequential

centrifugation
In  

Exogenous (incubation

with In -oxine)

CSPGAKVRC

peptide,

functionalized

by transfection

of the parent

cells

CT/SPECT

In vitro:

Raw264.7 cells

In vivo: 4T1

tumor-bearing

Balb/c mice

Bioluminescently

labeled

exosomes

Human

embryonic

kidney 293T

cells

Sequential

centrifugation

Gaussia
princeps
luciferase

(Gluc)

 

Endogenous

(transfection of the

parent cells with a gene

encoding for Gluc bound

to a membrane protein)

 IVIS imaging

In vivo:

immunodeficient

athymic nude

mice

Human

embryonic

kidney 293T

cells

Sequential

centrifugation

GFP,

tandem

dimer

Tomato

 

Endogenous

(transfection of the

parent cells with a gene

encoding for

palmGFP/palmtdTomato)

 

Multiphoton

intravital

microscopy

In vitro: 293T

cells

In vivo: C57BL6

(B6) mice

implanted with

mouse

thymoma EL-4

cells
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