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Mitochondria contain the majority of cellular nicotinamide adenine dinucleotide (NAD+), which an essential cofactor that

regulates metabolic function. A decrease in both mitochondria biogenesis and NAD+ is a characteristic of metabolic

diseases, and peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) orchestrates mitochondrial

biogenesis and is involved in mitochondrial NAD+ pool.
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1. Introduction

Mitochondria are powerhouses that generate the majority of cellular ATP via fatty acid oxidation, tricarboxylic acid (TCA)

cycle, electron transport chain (ETC), and ATP synthase. Mitochondrial dysfunction is linked to metabolic diseases and

health issues, including insulin resistance and type 2 diabetes, cancer, Alzheimer’s disease, and others .

Nicotinamide adenine dinucleotide (NAD ) is an essential cofactor that regulates metabolic function, and it is an electron

carrier and signaling molecule involved in response to alterations in the cellular metabolic redox state, including muscle

contraction, high-fat diet (HFD), insulin resistance, and type 2 diabetes mellitus (T2DM) . NAD  plays a key role in

cellular signaling and regulation of metabolism in glycolysis, oxidative phosphorylation, the TCA cycle, and DNA repair 

. Moreover, NAD  is reduced to NADH by accepting two electrons and a proton from glycolysis and the TCA cycle,

and mitochondrial NADH is oxidized through mitochondrial respiratory complex I (NADH ubiquinone oxidoreductase) in

the ETC . This is one of the essential steps during oxidative phosphorylation; therefore, an optimal ratio of NAD /NADH

is required for mitochondrial metabolism , and lower NAD  levels and dysregulation of NAD /NADH ratio can be

one of the reasons for developing metabolic diseases and T2DM . In particular, NAD  biosynthesis and its function

crucially influence the bioenergetic process in mitochondria  and are clearly linked to peroxisome proliferator-activated

receptor γ coactivator 1-α (PGC-1α) .

2. NAD –SIRT1–PGC-1α Pathway in Metabolic Diseases

Plasma glucose homeostasis is critical for the functioning of mammalian organisms; thus, glucose levels should be strictly

regulated according to nutrient conditions and energy demands. To maintain glucose homeostasis at the cellular level and

to adapt to various challenges such as high-nutrient condition, disuse, and sarcopenia, it is necessary to improve or

stabilize mitochondrial function, number, and size, which are important for maintaining the cellular NAD  pool 

.

PGC-1α is a master regulator that interacts with various transcription factors involved in cellular metabolic functions ;

thus, PGC-1α mediates the transcriptional activity and biological response related to them . SIRT1 (Sirtuin 1) is

involved in the regulation of systemic metabolism via the control of glucose and lipid homeostasis by deacetylating various

targets, especially PGC-1α . Therefore, the NAD –SIRTs–PGC-1α pathway plays a vital role in cellular metabolic

function. NAD  depletion is a characteristic of diabetes , and sirtuins, including SIRT1-3 and SIRT6, influence cellular

functions such as glucose metabolism, mitochondrial function, and oxidative stress . It is well documented that

PGC-1α expression is reduced in T2DM muscle .

The NAD  pool is important for cell physiological and metabolic functions for cell integrity; however, metabolic diseases,

such as insulin resistance in tissues and diabetes, increase NAD  consumption; thus, lower levels of cellular NAD  are

clearly linked to metabolic diseases . In this context, SIRT1, which consumes NAD  for cellular

metabolic function, is downregulated in several cells and tissues, including myotubes, HEK293, peripheral blood

mononuclear cell, human skeletal muscle, and adipose tissue, in insulin-resistant states . A previous study has

shown that SIRT1 regulates glucose homeostasis by regulating the secretion of insulin and protecting beta (β)-cells in the

pancreas , enhancing mitochondrial biogenesis and glucose uptake in skeletal muscle , and promoting glucose
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production and fatty acid oxidation in the liver . β-cell-specific SIRT1 overexpression in mice improves insulin secretion

and glucose tolerance in response to glucose . Age-related downregulation of SIRT1 activity due to a lack of systemic

NAD  biosynthesis results in a decrease in insulin secretion from β-cells in response to glucose; however, treatment with

nicotinamide mononucleotide (NMN), which is a derivative of niacin and an intermediate in NAD  biosynthesis in the

salvage pathway, restores insulin secretion and improves glucose tolerance in aged mice with β-cell-specific SIRT1

overexpression. Therefore, SIRTs regulate glucose–lipid metabolism and mitochondrial biogenesis via PGC-1α 

. Overall, NAD  boosting can be one of the strategies to improve metabolic dysfunction via SIRTs–PGC-1α; therefore,

we will discuss the role of the SIRTs–PGC-1α pathway in increasing NAD  biosynthesis and decreasing NAD

consumption.

3. NAD  Biosynthesis

Cellular NAD  availability is maintained by the regulation of NAD  biosynthesis and degradation. There are five major

precursors and intermediates in NAD  synthesis in mammals; tryptophan (Trp), nicotinamide (NAM), nicotinic acid (NA),

nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN); they stimulate NAD  synthesis via different

pathways  (Figure 1). These pathways can synthesize 300–800 µM of cellular NAD , depending upon the tissue and

organ . In addition, NAD  can be resynthesized from an intermediate, such as NMN, of NAD . This section

focuses on the NAD  biosynthesis pathway.

Figure 1. PGC-1α is involved in the pathway of NAD  biosynthesis and consumption in the metabolic tissue such as

muscle, liver, and adipose tissue. (A). NAD  de novo synthesis from Trp. PGC-1α may promote QA synthesis via blocking

ACMSD. PGC-1α1 may promote de novo synthesis via KAT activation. (B). NAD  biosynthesis from NA in the Preiss–

Handler pathway; QA from de novo synthesis also can be synthesized to NAD  in the Preiss–Handler pathway. (C). PGC-

1α may influence many enzymes in the salvage pathway. ACMS, α-amino-β-carboxymuconate-ε-semialdehyde; ACMSD,

ACMS decarboxylase; NAMPT, nicotinamide phosphoribosyltransferases (three isoforms exist); NMNAT, NMN

adenylyltransferase; PARP, poly (ADP-ribose) polymerase. Dashed lines indicate additional evidence is required to reveal

the mechanisms.

4. PGC-1α1 Regulates the Mitochondrial NAD  Pool via Malate–Aspartate
Shuttle

NAD  levels in mitochondria are important for maintaining metabolic functions and cell survival in oxidative metabolic

tissues, including the skeletal muscle, heart, and liver. In metabolic tissues that dominantly use oxidative phosphorylation

to generate ATP, NAD  levels in mitochondria should be maintained at a higher level than that in the cytoplasm 

. Malate dehydrogenase (MDH) and aspartate aminotransferase (AST) form the malate–aspartate shuttle (MAS), which

plays a vital role in the exchange of cytosolic NADH for mitochondrial NAD , which is an irreversible step in the exchange

of mitochondrial aspartate and cytosolic glutamate and a proton by the aspartate–glutamate carrier (AGC) 

(Figure 2). Thus, MAS can regulate mitochondrial NAD  pool, and since the mitochondrial NAD  pool is well maintained

and higher than that in the cytoplasm (cytosolic/nuclear NAD  levels are ~100 µM, while mitochondrial NAD  levels are

~250 µM) , mitochondrial numbers and size regulate NAD  levels in metabolic tissue. Mitochondria function as an

NAD  warehouse. Even if a large amount of NAD  is depleted from the cytoplasm, mitochondrial NAD  levels can be

conserved for at least 24 h and possibly up to three days , indicating that mitochondrial NAD  has

specific roles in metabolism and is separated from the cytoplasm.
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Figure 2. PGC-1α1 regulates malate and aspartate system (MAS) and increases mitochondrial NAD  levels in skeletal

muscle. NADH produced during glycolysis enters the mitochondrial matrix via the MAS. MDH, malate dehydrogenase;

AST, aspartate aminotransferase; KATs, kynurenine aminotransferases. This concept was referenced from the study by

Agudelo et al. (2019) .

This speculation leads to the hypothesis that MAS-induced increase in the mitochondrial NAD  pool can increase the

expression of sirtuin family (SIRT1-7) members and PGC-1α. Indeed, a previous study has shown that MAS regulates the

intracellular NAD /NADH ratio; moreover, calorie restriction increases the mitochondrial NAD  pool and SIRT2 expression

via MAS .

An AGC1 knockout study has been shown to decrease the cellular NAD /NADH ratio and impair aspartate delivery to the

cytosol . Moreover, muscle-specific PGC-1α1 overexpression in mice enhances the expression of SLC25A12, another

gene name for AGC1 . MAS activated by PGC-1α1 rigidly maintains the NAD  pool to maintain oxidative metabolism

when energy demand is high (Figure 2), such as muscle contraction during exercise. Trained muscle has a higher level of

NAD  pool , and PGC-1α1 regulates mitochondrial biogenesis and cellular oxidative metabolism. Overall, these studies

lead us to speculate that MAS is linked to mitochondrial and metabolic functions. Furthermore, a previous study has

shown that deficiency in MDH, which plays an essential role in the MAS and TCA cycle, is a metabolic defect

characterized by a severe neurodevelopmental phenotype .

5. Role of PGC-1α in NAD  Metabolism in Metabolic Diseases

SIRT1 is a nicotinamide adenosine dinucleotide (NAD)-dependent deacetylase that removes acetyl groups from histone

and nonhistone proteins . It potentially mediates the effects of calorie restriction on health benefits for longevity , and

exercise also increases NAD /NADH turnover . Increased NAD /NADH turnover rate by glycolysis, TCA cycle, and

mitochondrial oxidative phosphorylation system during cellular high energy-demand and increased NAD  by SIRT1

increase mitochondrial biogenesis , which induces the salvage pathway to regenerate NAD , because this pathway can

quickly regenerate NAD  from NAM in two steps. NAMPT and NMNAT are enzymes involved in the salvage pathway.

The findings to date show that PGC-1α has the most influence on the salvage mechanism of NAD  metabolism. PGC-1α

is activated by specific SIRTs, and PGC-1α promotes NAD  re-biosynthesis via the salvage pathway and increases

mitochondrial biogenesis, thereby improving mitochondrial function and protecting against high fat diet induced obesity

. Here, we focus on the PGC-1α mechanism in various NAD  consumption and biosynthesis pathways related to

metabolic diseases.

6. NAD –SIRT1–PGC-1α Pathway in Diabetes

Mitochondrial function is involved in whole-body and cellular glucose homeostasis, and mitochondrial functions are

decreased in states of insulin resistance and diabetes . It is well established that an increase in mitochondrial function
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by exercise training in various metabolic tissue, including skeletal muscle and adipose tissue, of the insulin resistance or

diabetes subjects improves glucose homeostasis . Thus, mitochondrial function is important for glucose

homeostasis.

SIRTs directly interact with PGC-1α and deacetylate at specific lysine residues in an NAD -dependent manner, activating

PGC-1α . Thus, NAD –SIRTs–PGC-1α pathway plays a critical role in glucose homeostasis in diabetes and lifespan

. As we discussed above, since mitochondria function as a warehouse of NAD , and PGC-1α regulates mitochondrial

biogenesis in metabolic tissue, NAD , SIRT1, and PGC-1α play an important role in their function of regulating glucose

homeostasis in each other. In metabolic tissue, including skeletal muscle, liver, and adipose tissue, of T2DM state, PGC-

1α protein and NAD  levels are downregulated, as is SIRT1 activity . These shifts are clearly linked to the

mitochondrial functions, numbers, and size .

As the strategy to increase cellular NAD  levels, the biosynthesis of NAD  should be increased, and its consumption

should be prevented. Daily intake of NAD  precursor is one of the strategies to increase NAD  synthesis and improve

metabolic function in diabetes. Indeed, a previous study has shown that tryptophan supplementation increases lifespan

through NAD  de novo synthesis , and acipimox, an NAD  precursor, can directly improve skeletal muscle

mitochondrial function in T2DM patients . Mice receiving NR were protected against high fat diet induced weight gain

and had higher insulin sensitivity with increased mitochondrial content in skeletal muscle and brown adipose tissue .

Niacin supplementation can improve lipid profiles in T2DM patients . These data suggest that supplementation of NAD

precursor can be one of the strategies to improve insulin resistance and treat T2DM (Figure 3).

Figure 3. NAD –SIRTs–PGC-1α pathway increases NAD  pool and inhibits NAD  consumption. NAD  precursors:

tryptophan (Trp), nicotinic acid (NA), nicotinamide (NAM), NAM mononucleotide (NMN), nicotinamide riboside (NR),

vitamin B3; metabolic diseases: insulin resistance, type 2 diabetes.

It is widely accepted that exercise can provide many health-beneficial effects for T2DM patients; in this context, exercise

could increase the cellular NAD  pool in an indirect way via endogenous enzyme alteration to activate its synthesis or

protect the NAD  pool against overconsumption. Indeed, a previous study has revealed that trained muscle has a higher

level of NAD  pool, and aerobic and resistance exercise training improves the capacity of NAD  salvage pathway in aged

human skeletal muscle . AMPK is activated by exercise , and it is well evidenced that AMPK regulates the gene

expression related to energy metabolism in mouse skeletal muscle via coordination with SIRT1 and enhances its activity

by increasing cellular NAD  pool . Exercise increases NAMPT in human skeletal muscle , and NAMPT

overexpression in mice skeletal muscle increases muscle NAD  levels and protects against body weight gain in high-fat-

fed mice, as well as increasing mitochondrial gene expression and endurance capacity . Exercise-training-induced

increase in mitochondrial biogenesis in tissue also protects against overconsumption of NAD  because the mitochondrial

capacity for NAD  conservation is higher than that of the cytoplasm  (Figure 3).
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