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Metallic alloy nanoparticles are synthesized by combining two or more different metals. Bimetallic or trimetallic

nanoparticles are considered more effective than monometallic nanoparticles because of their synergistic characteristics.

In this review, we outline the structure, synthesis method, properties, and biological applications of metallic alloy

nanoparticles based on their plasmonic, catalytic, and magnetic characteristics.
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1.  Introduction

In principle, nanomaterials indicate materials from subnanometer to several hundred nanometers in size that are applied

in material science and nanotechnology due to properties different from those of conventional materials. Metallic

nanoparticles are small particles made of metal and can be synthesized by physical, chemical, or biological-based

methods. Their properties depend on their composition, size, and shape that determine their plasmonic, catalytic, and

magnetic characteristics. Monometallic nanoparticles obtain the property of their constituent metal whereas bimetallic and

trimetallic alloy nanoparticles synthesized from two or three metals show more stable structures and enhanced properties.

Additionally, alloy nanoparticles demonstrate synergistic effects due to hybrid characteristics such as photocatalytic

properties and super-magnetism. Therefore, alloy nanoparticles are being progressively studied for potentially diverse

applications. In this article, we summarized and reviewed the results of scientific research over the last 10 years which

highlighted the role of alloy nanoparticles in biological applications such as bio-imaging, sensors, catalyst, drug delivery,

and therapies as well as their types, synthesis, and properties.

2. Classification of Alloy Nanoparticles

According to atomic ordering, bimetallic nanoparticles can be classified into four types :

2.1. Mixed Alloyed Nanoparticles

They may have a random or ordered arrangement (Figure 1a). Randomly mixed nanoalloys are often termed alloyed

nanoparticles, whereas ordered mixed nanoalloys are termed intermixed or intermetallic nanoparticles .

2.2. Sub-Cluster Segregated Alloyed Nanoparticles

These nanoparticles comprise two small clusters (sub-clusters) in their structure (Figure 1b). There are two kinds of sub-

clusters. One shares the middle interface whereas the other only shares a bone or short interface between two small

clusters .

2.3. Core-Shell Alloyed Nanoparticles

These nanoparticles typically consist of one metal that forms a shell surrounding a core made of another metal or the

recent core–shell type which is composed of an intermixed core surrounded by a pure shell  [5]. This type is created

more commonly and has diverse applications (Figure 1c).

2.4. Multiple Core-Shell Alloyed Nanoparticles

These have two further kinds of multiple arrangements, multiple shell–core nanoparticles created with two or more shells

covering a single core, and multiple core–shell nanoparticles with one simple shell surrounding several cores; the shell

and core are always composed of two different metals  (Figure 1d).
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The degree of mixing and atomic ordering in bimetallic nanoparticles can be controlled by the relative strength of the bond

between two chemicals, the surface energy, atomic size, electric or magnetic effects, etc. .

Figure 1. Types of bimetallic alloyed nanoparticles. (a) Mixed alloyed nanoparticles; (b) Sub-cluster segregated alloyed

nanoparticles; (c) core-shell alloyed nanoparticles; (d) multiple core–shell alloyed nanoparticles .

Trimetallic nanoparticle types are similar to those of bimetallic nanoparticles. These are mixed alloyed nanoparticles with a

mixture of three metals and core–shell alloyed nanoparticles with a mixture of two kinds of chemicals in the core with a

single chemical in the shell or simply one chemical in the core with a mixture of two chemicals in the shell. Another type of

trimetallic nanoparticles is the separate core–shell type in which each of the three chemicals sequentially form the core–

shell–shell .

3. Methods of Synthesizing Alloy Nanoparticles

There are two basic ways to synthesize nanoparticles: the top-down approach and bottom-up approach. The top-down

approach involves the production of nanoparticles from macro-sized materials, whereas the bottom-up approach involves

the creation of nanoparticles from atoms. Between both methods, the bottom-up method is more popular and developed,

and generally relies on synthesis pathways of two main categories: simultaneous method and successive method. The

simultaneous method demands precursor materials of the metals of interest (which can be bimetallic or trimetallic alloy

clusters) in the same reaction. The successive method involves the growth of particles by reducing metal ions over the

surface of another metal core .

3.1. Physical Methods-Based Nanoparticle Synthesis

3.1.1. Sputtering

Sputtering is a procedure in which nanoparticles are created by bombarding the target metal with high energy . Atom

beam sputtering involves three basic steps: migration of atoms from the surface of materials, nucleation and growth of

nanoparticles, and absorption onto another material in an electric field . Magnetron sputtering involves sputtering

in a magnetic field, in which one or more materials are deposited on the surface of another material such as metal or

ceramics through a high-rate vacuum coating technique . This method can provide high purity but it is

difficult to control the morphology of the nanoparticles formed; moreover, its energy requirement is too high, which can

pose a danger . There are many studies on making thin films with alloy nanoparticles on the surface using the

sputtering method, such as Au–Ag alloy nanoparticles in SiO  or TiO  thin films .

3.1.2. Thermal Decomposition

Thermal decomposition-based methods synthesize nanoparticles based on temperature. Synthesis of transition metal

nanoparticles such as Fe, Ni, and Co requires high temperatures because these metal nanoparticles are not stable at

room temperature. This method is also applied for metals that have low reduction potential or difficult reduction

characteristics. The process starts with forming particles of the metal precursor having lower decomposition temperature,

followed by the next metal precursor that decomposes when the temperature is increased . This method is used for

fabricating good quality crystals or commercial value crystals. The main disadvantage of this technique is the need for

high temperatures, which can be dangerous, and difficulty in isolating unstable nanoparticles from the reaction at high

temperature . Fe-, Ni-, and Co-based alloy nanoparticles such as Pt–Co, Au–Fe, Au–Ni, Au–Co, Fe–Co, Fe–Ni, Co–

Pt, Ni–Mo, Pt–Ni–Fe, Sn–Zn–Cu, and Au–Cu–Pt are produced by thermal decomposition

.

3.1.3. Radiolytic Method
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Fabrication of metal nanoparticles by irradiation is called radiolytic synthesis. In this case, the gamma (γ) ray or electron

beam is used to reduce metal ions in soluble precursors thus forming metal nanoparticles. This method can produce alloy

nanoparticles that are not stable when created by thermal decomposition. The type of alloy nanoparticle created depends

on the dose of irradiation. A low dose can lead to the creation of core–shell alloy nanoparticles whereas a higher dose

controls the making of mixed alloy nanoparticles . The difficulty of the radiolytic method is in directing the

nanoparticles’ shape. However, irradiation-based techniques are low-cost, environment-friendly, and show promise for

large applications . There are many examples of the alloy nanoparticles fabricated based on radiolytic synthesis,

such as Rh–Pd, Rh–Pt, Au–Ag, Au–Pt, Au–Pt–Ag, Pt–Ru–Sn, Pd–Ru–Ni, and Zr–Ni–Cu alloy nanoparticles

.

3.1.4. Sonochemical Synthesis

The sonochemical synthesis method is based on ultrasound. In solution, ultrasound can cause high temperature or high

pressure. Due to the increased temperature, small metal nanoparticles are created at a rapid reaction rate. Ultrasound

induces the collapse or formation of tiny bubbles in a solution that allows the creation of hollow nanoparticles. Further, the

production of oxidizing and reducing radicals is crucial for the synthesis of metal nanoparticles . Figure 2

showed brief  schematics of the sonication reactor. Sonochemical synthesis has been in use for more than twenty years to

synthesize bimetallic alloy nanoparticles such as Au–Pd nanoparticles  and has been recently combined with other

techniques for the creation of alloy nanoparticles . Various alloy nanoparticles such as Au–Pd, Co–Cu, Fe–Pt, Hg–

Pd, Au–Ru, Pt–Cu, Fe–Ag–Pt, Pd–Co–Pt have been manufactured by using sonochemical synthesis method

.

Figure 2. Schematics of the sonication reactor .

3.2. Chemical-Method Based Nanoparticle Synthesis

3.2.1. Chemical Reduction

The chemical reduction method is used for producing bi-/tri-metallic alloy nanoparticles through the reduction of

appropriate precursors to the zero-valent state. This method involves two phases, reduction and growth. The reduction

process occurs sequentially: at first, the metal precursors owning to the highest redox potential precipitate to form the

core, followed by the second and possibly third precursor being deposited as a shell . Organic solvents are

used to prevent agglomeration and maintain the stability of nanoparticles in the solution phase . The

advantages of the co-reduction technique include simplicity of steps and versatile application but still has the

disadvantage of presence of impurities; for instance, the Au-Pd-Pt trimetallic alloy nanoparticle created by simultaneous

reduction of multiple metal precursors had an Au core with a mixed Pd and Pt shell that was not separated into two

separate layers as the Pd shell and Pt shell . Due to its simplicity, bimetallic (Pt–Ag, Pt–Co, Pt–Au, Pd–Ag, Pd–Pt, Au–

Ag, Au–Pt, Ag–Au, Ag–Co) and trimetallic (Pt–Pd–Co, Co–Ni–Cu, Ni–Au–Pd, Pd–Pt–Ni, Au–Pd–Pt) alloy nanoparticles

have been produced by this method and will be further improved in future .
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Galvanic displacement reactions are possibly considered as a chemical reduction subsection that is used to produced

bimetallic hollow and porous nanoparticles . This method is the replacement reaction which is based on electrical

potential difference between two metals that are templates and a salt precursor in a suspension . This is common in

creation a metallic shell coating the metallic exited core of nanostructures with a large range of various morphologies such

as nanospheres, nanoboxes, nanorings, nanotubes and nanocages . Ni–Pt, Au–Ag and Cu–Ag nanoparticles are

examples that are produced by galvanic displacement method .

3.2.2. Electrochemical Synthesis`

Electrochemical synthesis uses electricity as the main source of composite reactions. This method is mostly used in

industrial applications. An electrical field is created by two electrodes. Reduction occurs at the metallic anode or with the

anode itself dissolved in solution along with the metal precursor, and new metallic nanoparticles are formed at the

cathode. A stabilized chemical for stabilization of fresh metal particles has to be included there. This method has

advantages of controlling the nanoparticle size, imparting high purity, and being environmentally-friendly and cost-

effective . Therefore, this technique is applied in the large scale manufacture of many bimetallic (Rh–Pd, Au–Pt,

Pt–Au, Ag–Au, Cu–Ag, At–Ni) and trimetallic (Pd–Fe–Ni, Pd–Ag–Cd) alloy particles

.

3.2.3. Hydrothermal Methods-Based Nanoparticle Synthesis

In this method, nanoparticles are synthesized in high-temperature aqueous solutions at a high vapor pressure. Although

this method allows monitoring of the nanoparticle growth, and their physical and chemical properties, its disadvantages

include high-temperature conditions and high-cost equipment . Many bimetallic nanoparticles such as NiFe O

(nickel ferrite), co-doped Zn Co Mn O, Ni–Cu, Au–Cu, Ag–Co, Ni–Fe, and Co–Ni nanoparticles are created using the

hydrothermal method .

3.2.4. Chemical Precipitation-Based Nanoparticle Synthesis

Chemical precipitation involves the formation of solids from a solution by creating a supersaturated condition or by

converting the soluble material into an insoluble form via pH change, electrooxidising potential, or adding of a precipitation

reagent . A typical chemical precipitation method contains four stages: precipitation, flocculation, sedimentation,

and solid-liquid separation . This method is a single-step process that is useful in large-scale production of

nanoparticles. Chemical precipitation is popularly utilized in water purification . Some studies have reported the

fabrication of Mg–Zn, Pd–Fe, and Fe–Ni–Ce alloy nanoparticles by the chemical precipitation method .

3.2.5. Other Chemical Methods of Nanoparticle Synthesis

The above-mentioned methods involve synthesis in homogeneous liquids such as water or organic solvents; however,

there are other synthesis methods that use the gas phase or heterogeneous phases such as sol-gel and micro-emulsion.

There are some methods by which metal nanoparticles are synthesized in a gaseous environment such as the selective

catalytic reduction method and flame spray pyrolysis. In the flame spray pyrolysis method, a metal precursor solution that

is sprayed is reduced by temperature, turning into a metal particle . In the selective catalytic reduction technique,

the reaction changes nitrogen oxides using a gaseous catalyst such as urea and ammonia .

The sol–gel approach involves the basic steps of hydrolysis, condensation, and drying. There are two types, aqueous sol–

gel in which the solvent is water, and nonaqueous sol–gel in which the solvent is an organic solvent. This method is

simple, economical, and can be processed at low temperature .

The micro-emulsion method, in its simple definition, is a system comprising three components: a minor droplet (dispersed

phase), an immiscible solvent (continuous phase), and a surfactant that covers the droplet. Depending on the properties

of the dispersed phase, continuous phase, and the hydrophilic–lipophilic balance value of the surfactant, there are many

types of micro-emulsions, such as water–oil, oil–water, and water-Triton X-100 among others. The metal nanoparticles are

synthesized inside droplets that can be designed to the desired size and composition. This method has been applied

broadly in the synthesis of bimetallic and trimetallic alloy nanoparticles .

3.3. Biological Methods of Nanoparticle Synthesis

Since the development of nanotechnology, many approaches for nanoparticle synthesis have been discovered and

improved. Most of these are chemical methods based on hazardous chemicals, enormous energy, and high temperature

and form nanoparticles with limited properties. To overcome these disadvantages, green synthesis approaches, such as

those based on microwave, electrochemical, hydrothermal, and sonochemical methods have been developed. Another
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green synthesis method that has progressed recently is based on biological sources such as plants, microorganisms, and

industrial and agricultural wastes . Biological synthesis has been applied to a large extent in

nanoparticle production and has also been used for fabricating bimetallic or trimetallic alloy nanoparticles.

3.3.1. Microorganisms to Produce Nanoparticles

Micro-sized organisms, including bacteria, fungi, yeasts, and even viruses have been considered as nano-factories to

produce nanoparticles (Figure 3) because of their ability to accumulate and detoxify heavy metals via various reductase

enzymes . The metal reduction can be carried out in the extracellular or intracellular environment. The genes, proteins,

enzymes, and biomolecules of the microorganisms play roles as reducing factors. Bacteria such as Escherichia coli,
Salmonella typhimurium, Listeria monocytogenes, Bacillus subtilis, and Rhodopseudomonas capsulata

 have been used to create Au–Pd, Pd–Pt, Pd–Ag, Au–Ag, Pd–Fe, Au–Fe, Pd–Au–Fe, and Cu–Ag alloy

nanoparticles.

Figure 3. Schematic of metal nanoparticle synthesis by microorganisms .

Fungi and yeasts have been used for nanoparticle synthesis. Compared to bacteria, they have some advantages such as

high accumulation, high yield, easy to culture, and presence of complex proteins that help in nanoparticle synthesis. When

fungi are exposed to a metal ion environment, they produce compounds or biomolecules such as naphthoquinones,

anthraquinones, or nitrate reductase as reducing factors to create metal particles . Fungi such as Fusarium
semitectum, Neurospora crassa, Fusarium oxysporum, Pleurotus ostreatus, Coriolus versicolor and yeasts such as

Saccharomyces cerevisiae, Schizosaccharomyces, Schizosaccharomyces pombe, and Candida glabrata have been used

to manufacture Au-Ag and Cd-S alloy nanoparticles .

Viruses, which are not considered as a complete living organism, are also utilized in nanomaterial synthesis. Particularly,

plant virus capsids work as a useful bio-template in nanoparticle production . Some plant viruses (Cowpea

mosaic virus, tobacco mosaic virus, Red clover necrotic mosaic virus) have been used in producing Fe–Pt, Co–Pt, Co–Fe,

Cd–Se alloy nanoparticles .

3.3.2. Plants as Source of Nanoparticles

Recently, plants have been explored as an option for the green synthesis of nanomaterials. It involves the application of

various plant organs such as the root, stem, leaf, seed, fruit peel, and flowers and their extracts to manufacture

nanoparticles. This method is eco-friendly and stable, and the created nanoparticles have potential use in biomedical and

environmental applications. It is proposed that plant constituents, including protein, amino acids, organic acid, and

polysaccharides, and secondary metabolites such as polyphenols, flavonoids, alkaloids, heterocyclic, and terpenoid

compounds play roles as reducing agents and stabilizing factors . Monometallic nanoparticles as well as

metallic alloy nanoparticles have been manufactured using plant-based approaches. For instance, Ag–Ni, Ag–Co, Pt–Cu,
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Au–Ag, Ag–Cu, and Zn–Ag nanoparticles have been produced using the leaf extracts of Canna indica, Alchornealaxiflora,

Azadirachta indica, Cacumen Platycladi, palm, Mirabilis jalapa, and Moringa oleifera , Au–Ag–

Sr, and Fe–Ag–Pt nanoparticles were produced from the roots of coriander, Platycodon grandiflorum , and Au-Ag

nanoparticles have been produced from the Chinese wolfberry fruit extracts .

Algae are small eukaryotic organisms also used for the synthesis of alloy nanoparticles; for instance, Phaeodactylum
tricornutum, Chlamydomonas reinhardtii, and Spirulina platensis were utilized to prepare CdS and Au-Ag

nanoparticles .

3.3.3. Agricultural and Industrial Waste as Source of Nanoparticles

In recent years, nanoparticles have been synthesized largely from agricultural and industrial wastes (Figure 4). Post-

harvest wastes such as fruit peels, rice husk, and egg shells form approximately 80% of the biomass on the field, and

industrial waste such as timber dust, sugar cane bagasse, and wild weeds including unwanted plants, herbs, or shrubs

that are usually burned, can be used as biological sources for the green synthesis of nanoparticles. The use of these

waste materials compared with the physical and chemical methods has benefits including reduction of using harmful

chemicals, low-cost, low energy, and renewing waste material . Many monometallic nanoparticles were

manufactured using citrus fruit peel extract, grape waste, mango peel, rice husk, sugar cane bagasse and leaves,

bamboo leaves, egg shell, and coconut shells. Moreover, Au–Ag and CdS alloy nanoparticles were also manufactured

using banana peels and the otherwise useless weed Antigonon leptopus .

Figure 4. Synthesis of nanoparticles using waste materials .

Typically, biological synthesis depends on pH, temperature, pressure, time, and protocol. It has plenty of advantages such

as being an ecofriendly, low-cost, safe, and simple method that requires a short time. The biosynthesized nanoparticles

have biocompatible characteristics and can be introduced into biological and pharmacological applications without an

additional step of attaching to bioactive compounds. However, these synthesis methods also have some disadvantages

due to the complicated parameters or complex constituents in plant organs; the size and shape of nanoparticles can be

seldom controlled well. In some cases, the generated nanoparticles cause toxicity to the plant, and bacteria .

Nowadays, alloy nanoparticles with supports like carbon, silica substrates, and graphene sheets among others are being

increasingly manufactured, thereby generating a variety of useful of nanoparticles.

4. Properties of Alloy Nanoparticles

The most distinctive feature of bimetallic or trimetallic alloy nanoparticles is the combination of physicochemical properties

of the chemicals from which they are created. Typically, there are three main metal groups based on their characteristics:

Cu, Ag, Au for plasmonic; Pd, Pt, Ru, and Rh for catalysis; and Fe, Ni, Co for magnetism. Combining two or more metals

almost always increases the inherent characteristics. For example, the Au–Pt bimetallic nanoparticles composed of

plasmonic Au and catalytic Pt have a hybrid property of catalytic ability that can be boosted by light .
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4.1. Catalytic Properties

Many studies have shown that alloy nanoparticles are more active than monometallic nanoparticles made with the same

metal. The catalytic properties of bimetallic nanoparticles depend on the structures that are different between the core–

shell structure and the disordered structure and composition of alloy nanoparticles. Pt–Ni alloy nanoparticles catalyze the

oxygen reduction reaction ten times faster than Pt nanoparticle . Another report showed that Pt–Ru alloy and Pt–Ru

core–shell nanoparticles show differences in catalytic reactions . Further, among core–shell bimetallic nanoparticles,

the catalytic activities are different as indicated in the study by Tsang’s group; they showed that the catalytic action of M–

Pd core–shell nanoparticles (M = Rh, Pt, Ru, Au, Ag) in formic acid decomposition increased linearly with the increasing of

difference in charge density between the core mental and the shell . The thickness of the shell also affects the catalytic

activity .

4.2. Photocatalytic Properties

Photocatalytic characteristics are a great advantage of alloy nanomaterials composed of a plasmonic metal and catalytic

metal, such as Au–Pd, Ag–Pt, and Cu–Pd nanoparticles. Photocatalysis occurs with visible or ultraviolet light, which is

absorbed and subsequently released as energy that facilitates catalysis. Some reports indicate that plasmons support

chemical transformation. Further, thermal assistance is more effective for photocatalysis .

4.3. Optical Properties

Localized surface plasmon resonance (LSPR) is an optical property of nanoparticles. Among metals, Au, Ag, Cu, Pd, and

Pt have attracted much attention due to their optical properties that are largely applicable in photocatalysis, biomedicine,

Surface-enhanced Raman spectroscopy (SERS), and photothermal therapy. Optical properties depend on the size,

shape, and composition of nanoparticles . Some studies have shown that LSPR peak position, intensity, and line width

is influenced by the size of nanoparticles. For example, by decreasing the size of Au nanoparticles, the emission light

position changes from the NIR region to the UV region. Due to a very small size, nanoparticles can lose their LSPR and

become photoluminescent . In addition, LSPR sensitivity is highly dependent on the shape of

nanoparticles. One study reported that the sensitivity of Au nanoparticle increased in the order of spheres, cubes, shells,

rods, rattles, stars, branches and rings .

The optical property of bimetallic nanoparticles is strongly affected by their component metals. LSPR increases in the

case of combining two plasmonic metals being resonant in the visible region (Au–Ag, Au–Cu nanoparticles), whereas it

decreases or quenches if one metal in the combination is resonant in the UV region (Pd, Pt) like Ag–Pd nanoparticles. In

core–shell alloy nanoparticles, LSPR is also affected by the shell metal. With increasing thickness of the shell, the LSPR

peak position moves directly from the peak position of the metal forming the core to the peak position of the shell metal

.

4.4. Magnetic Properties

Compared to monometallic nanoparticles, bimetallic nanoparticles have an extra useful feature of the magnetic property.

According to Bansmann’ s group, a mixture of 3d metals (Fe, Ni, etc.) with big local magnetic moments and 4d or 5d

metals (Pd, Pt, etc.) with strong spin-orbit coupling creates bimetallic nanoparticles with high magnetic moments and large

anisotropy . Further, Pt-based nanoparticles have additional properties such as oxidation resistance and catalysis. In

summary, combination of these metals to produce alloy nanoparticles results in more effective magnetism, better stability,

and additional catalytic characteristics .

5. Application of Alloy Nanoparticles in the Biological Field

Similar to monometallic nanomaterials, bi and trimetallic alloy nanomaterials are used in a large range of biological

applications. Moreover, alloy nanomaterials show interesting synergism in the properties of the metals from which they are

created. This allows alloy materials to be used more effectively. Here, we discuss the bio-application of alloy nanoparticles

in imaging, diagnosis, and therapies.

5.1. Imaging

Researchers always aim towards a better understanding of the structure as well as the function of living organisms. This

requires high-quality bioimaging at various levels ranging from molecules, cell, organs, to the whole body. Microscopy and

many different methods have long been used to capture the images of the cells or whole body of organisms.

Nanomaterials that have optical properties are widely applied in bioimaging. Until now, there have been many studies
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about using plasmonic nanoparticles like Au nanoparticles and quantum dots in imaging cell components, surface

species, endocytic pathways, cell cycle and apoptosis processes, cell secretion, animal organs, and microorganisms

. Nanoparticles acting as bioimaging probes possess characteristics such as the ability to penetrate into cells,

good analytical signals, solubility and stability in relevant solvents or intracellular environments, ability to attach with

functional groups for site-specific labeling, and low cytotoxicity . Au and Ag-based bimetallic nanoparticles have been

developed for cell imaging. For instance, Ag–Au nanoparticles or porous nanospheres combined with biomolecules exhibit

enhanced optical properties, good dispersion in aqueous solution, high physiological stability, and favorable

biocompatibility and were used as a label probe ; Zn doped Ag nanoclusters with L- cysteine and chicken egg white

showed an increased quantum yield compared with pure Ag nanoclusters; moreover, they showed excellent stability in

their role as a probe in the imaging of fungal cells (Alternaria sp.)  (Figure 5). Cu-doped Au nanoclusters exhibited

fluorescence intensity that decreased linearly with increasing Cu concentration but exhibited higher photostability than

Rhodamine 6G (conventional fluorescent dyes) at 24 h in ex vivo as observed in self-illuminating NIR images of major

organs (tumor, heart, liver, spleen, lungs, and kidneys) from U87MG tumor-bearing mice .

Figure 5. Fluorescence microscopic images of fungal cells (Alternaria sp.) treated with chicken egg white-L-Cysteine-

encapsulated Zn-undoped Ag nanoclusters. Image (a) without chicken egg white-L-Cysteine-encapsulated Zn-doped Ag

nanoclusters and images with chicken egg white-L-Cysteine-encapsulated Zn-undoped Ag nanoclusters upon the laser

excitation at (b) 405  nm (blue), (c) 488  nm (green), and (d) 561 nm (red), respectively. The concentration of chicken egg

white -L-Cys-encapsulated Zn-undoped Ag nanoclusters was 0.5 μg/mL .

5.2. Diagnosis

5.2.1. Biomedical Imaging

Bioimaging is used for the recognition of shapes, structures, and pathways in organisms as well as in disease diagnosis,

especially in cancer and tumor detection. Gold and iron-based nanoparticles and quantum dots are used in many

biomedical imaging techniques such as magnetic resonance imaging (MRI), computed tomography (CT), photoacoustic

(PA) imaging, high-order multiphoton luminescence (HOMPL) microscopy, contrast-enhanced dual-energy mammography

(DEM), and so on for cancer and tumor detection .

To overcome the disadvantages of nanoparticles like brightness, alloy nanoparticles have been demonstrated to possess

superior qualities in biomedical imaging. Iron-based alloy nanoparticles such as Fe–Ni, Fe–Pt are utilized in magnetic

resonance imaging as potential contrast agents that show a high magnetic or superparamagnetic property, along with low

toxicity in living cells .

According to the study by Cormode and group, Au–Ag alloy nanoparticles are applied in dual-energy mammography

(DEM) or computed tomography (CT) as imaging probes for breast cancer screening . The gold in the alloy

nanoparticle reduces the leaching of silver from the particle and increases biocompatibility. In an in vivo experiment, the
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Au–Ag nanoparticle showed a clear contrast in the tumor when analyzed by the DEM and CT techniques. Therefore, Au–

Ag nanoparticles are a prospective contrast agent for breast cancer detection by DEM and CT .

5.2.2. Sensors

The superb plasmonic property of Ag- or Au-based alloy nanoparticles allows their applications as sensors using the

SERS technique or fluorescence with a variety of detected targets like metal ions, chemicals, and biomolecular

targets . For example, using a keratin template, Ag-Au nanoclusters have been fabricated for mercury ion detection.

The alloy material shows approximately five-fold higher fluorescence than that with Au nanoclusters with keratin. This

proved that Ag addition supports the fluorescence intensity and makes the alloy cluster more stable. Thereby, mercury

ions were detected in a wide range with low detection limits ; AuM (M can be Pd, Pt, Rh) nanoparticles show

remarkably enhanced hydrogen peroxide (H O ) detection when compared with Au, Pt, Rh, Pd monometallic

nanoparticles , and Au–Ag, Ag–Pd, Ag–Pt bimetallic nanoparticles are utilized in detection of biomolecules such as

glutathione, cysteine, endonuclease, L-cysteine, and adenine with ultra-bright fluorescence or SERS intensity

.

Immunofluorescence technology using quantum dots as beneficial reporters exhibit properties such as sensitivity, high

specificity, and fast results due to the characteristics of quantum dots including higher photoluminescence and quantum

yields, higher optical and chemical stability, and broader emitting range. Especially, alloy quantum dots have improved

photoluminescence intensity and stability compared to standard quantum dots. Therefore, they have been widely used in

clinical diagnosis, clinical analysis, and cancer detection . For instance, ZnSe/CdS/ZnS core–shell quantum

dots have been used in the detection of C-reactive protein, an early indicator of infection and autoimmune disorders ;

bovine serum albumin-doped CdS quantum dots have been used in detecting human IgG1, a low-abundance protein ;

Cu:ZnInS/ZnS quantum dots have been used in tetanus antibody detection ; CdTe quantum dots are used for detecting

α-fetoprotein, a tumor marker ; and S- and N–Co-doped carbon quantum dots have been used in detecting clenbuterol,

a feed additive for livestock and poultry .

5.2.3. Catalyst

Nanoparticle-based catalysts are structured with catalytically efficient metals such as Pd, Ni, and Pt. Similar to other alloy

nanomaterials, catalysts like Pd–Ru and Pd–Co, made of bimetallic nanomaterials have excellent hybrid catalytic

characteristics and exhibit photocatalysis when combined with metals with optical properties like Pt–Au . Bimetallic

catalysts thus show higher catalytic activity and longer stability than monometallic catalysts.

For example, between Pd-Ru nanoparticles and Ru nanoparticles produced by Bacillus benzeovorans, Pd-Ru

nanoparticles show better catalytic activity than Ru nanoparticles in converting 5-hydroxymethyl furfural (5-HMF) to the

fuel precursor 2,5-dimethyl furan (2,5-DMF) . In methanol and ethanol electrooxidation, Pd-Co nanoparticles supported

on graphene show a slight decrease in catalysis but show strong stability, long term use, and magnetic property that

allows easy separation from a mixture compared with Pd nanoparticles supported on graphene. Further, Pd–Fe, Pd–Zn,

Ni–Fe, Pt–Fe, and Ag-Pd nanoparticles exhibited more effective catalysis of chlorinated organic solvents and chlorinated

aromatic compounds . The photocatalytic activity of CuAu-ZnO-Graphene nanocomposite and Au–Pt-TPAD

(triphenylamine derivative, 2,2′-(4-(4-(diphenylamino) styryl) benzylazanediyl) diacetic acid (TPAD)) (Figure 6) was higher

than the catalytic activity of the respective monometallic nanomaterial .

Trimetallic nanomaterials show superior catalytic activity compared to bimetallic or monometallic nanoparticles. Various

studies have reported that Ag–Au–Pt and Au-Pd-Pt trimetallic nanoparticles possessed superb catalytic activity in

methanol oxidation that are not seen with Pd–Pt, Au–Pt, and Pt–C bimetallic nanoparticles or with Pt and Au monometallic

nanoparticles .
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Figure 6. Schematic representation of electron transfer from a triphenylamine derivative, 2,2′-(4-(4-(diphenylamino) styryl)

benzylazanediyl) diacetic acid (TPAD) sensitizer into an Au core–Pt shell nanoparticle and photoinduced hydrogen

evolution under light irradiation .

5.3. Therapy

5.3.1. Drug Delivery and Cancer Therapy

In therapy, the aims of drug delivery include precise targeting (target infected cells but not healthy cells), therapeutic

efficacy, and low cytotoxicity, whereas conventional drug delivery systems pose challenges such as poor specificity, low

therapeutic activity, and toxicity. Modern drug carriers exhibit satisfactory characteristics of specific targeting, controlled

drug release, and less toxicity, and are called smart carriers . Drug carriers are fabricated using organic

materials (polymeric micelles, solid lipid, liposome, and dendrimer) or inorganic materials (silica nanoparticles, Au

nanoparticles, magnetic nanoparticles, quantum dots, carbon nanotubes, and nanographene)  and are discussed

in detail in this review.

Inorganic carriers are typical core–shell structures (Figure 7). Their core part can be made of gold, quantum dots, or silica,

whereas the shell part contains organic polymers, ligands that provide biocompatibility, and protection that help carriers to

easily infiltrate the biological environment of the human body. The properties of carriers are tuned by composition, shape,

size, and surface modifications. In addition, they have the novel property of controllable delivery and release in response

to a variety of stimuli such as light, pH, temperature, magnetic force, enzyme reaction, among others. They can carry

many kinds of therapeutic molecules including anticancer drugs (doxorubicin, paclitaxel) RNA, DNA, proteins, and

antibodies .

Figure 7. Example of the most employed inorganic nanocarriers: (a) carbon nanotubes, (b) quantum dots, (c) gold

nanoparticles, and (d) mesoporous silica nanoparticles  .

Besides being a drug carrier, these inorganic carriers can also act as therapeutic agents, especially in cancer therapies

such as radiotherapy, magnetic hyperthermia therapy, photodynamic therapy, and photothermal therapy .

Gold-based nanoparticles are a good candidate for cancer therapy due to their brilliant properties. Gold nanoparticles are

nontoxic for some human cells, which is beneficial for intracellular treatment. The negative charge helps gold

nanoparticles acquire bio-functionality in conjugation with various functional molecules such as DNA, protein, and

antibodies. Further, gold is a radiosensitizer that can convert light to heat that can be used in cancer treatment .

One report said that the irradiation of gold nanoparticles induces transient changes locally of cell membrane permeability

in biological environment that can support the design of new drug delivery systems . Another report also showed that

Ag–Au alloy nanoparticles exhibited hepatoprotective activity against diethylnitrosamine (DEN)-induced liver cancer in a

Sprague Dawley rat model . Gazouli et al. demonstrated that Ag–Au (ratio 3:1) alloy nanoparticles synthesized by a

chemical reduction method could prevent excessive tryptophan-induced apoptosis in cancer cell lines, HCT116 (colon

cancer cells), 4T1 (highly metastatic breast cancer cells), and HUH7 (hepatocyte-derived carcinoma cell line) via p53,

CASPASE-3, and BAX/BCL-2 pathways . Another study about the inhibitory effect of the ordered topology of Ag–Au

alloy nanoparticles on mouse Lewis lung carcinoma indicated that Ag core–Au shell type particles with a 1:1 ratio

possessed the best antitumor activity and lowest toxicity among other types of alloy nanoparticles including, Ag core–Au

shell and Au core–Ag shell particles with different ratios .

Quantum dots are semiconductors with fluorescence properties that allow them to be used for real time drug delivery and

as photosensitizers. With surface modification using tumor recognized molecules and drugs, quantum dots can move to

target tumors and act as a supporting energetic agent in photodynamic therapy, a method that combines light and

photosensitizers to generate oxygen species and promote tumor suppression . Quantum dots are

frequently used in a complex like with graphene and photosensitizer such as chlorin e6 . Martinenko et al. reported

that the complex ZnSe/ZnS quantum dots with chlorin e6 showed two-fold enhancement of photodynamic destruction in

Ehrlich ascites carcinoma cells compared to that with free chlorin e6 molecules, and approximately 50% fluorescence

resonance energy transfer from QDs to the chlorin e6 molecules .
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Hyperthermia therapy is based on heat. The temperature in tumor cells is increased to 40–45 °C for inducing certain

pathways including apoptosis. Magnetic nanoparticles can be heated under the magnetic field leading to direct killing of

cancer cells, or by releasing the carried drug to kill the cancer cells . Many kinds of magnetic nanoparticles

(superparamagnetic iron-oxide, Fe O or Fe O , Mn–Zn, and Fe–Au nanoparticles) are created and surface-modified

using aminosilane, antibodies, PEG-phospholipids, or cyclic tripeptide of arginine-glycine-aspartic acid for the treatment of

glioblastoma multiforme tumors ; or in the activation of reactive oxygen species via the p53 pathway in

killing HepG2 human hepatocellular carcinoma and A549 human lung adenocarcinoma cells .

5.3.2. Antibacterial Activity

Since their discovery, antibiotics have been used in the treatment of diseases caused by bacteria. Unfortunately, due to

the broad use of various antibiotics, drug-resistant bacteria develop and quickly become a challenge for human health.

Therefore, novel methods for bacterial treatment need to be identified. Recently many studies have shown that metallic

nanomaterials possess antibacterial activity . For instance, gold, silver, copper titanium, and iron nanoparticles exhibit

physicochemical properties and antibacterial effects that depend on their size, structure, shape, and surface modification.

Au nanoparticles show antibacterial properties at 2 nm size and Ag nanoparticles offer higher antibacterial properties with

triangle-shaped nanoplates compared to other shapes. The underlying mechanisms of bactericidal effects of nanoparticles

are diverse; metal nanoparticles are proposed to hinder bacterial growth by affecting the bacterial cell surface, entering

into bacterial cells and inducing reactive oxygen species (ROS), damaging DNA, proteins, or inhibiting enzyme

activities .

Among the metals mentioned above, silver plays a dominant role due to its antibacterial effects. Further, alloy

nanoparticles combining silver with other metals exhibit better antibacterial properties; for instance, Cu–Ag alloy

nanoparticles show more effective antibacterial properties than pure Ag or Cu nanoparticles in a resistant Escherichia coli
strain (DH5a) and Staphylococcus aureus strain (BB255) . In an experiment showing the benefit of combining Ag,

Pt and Au, with the support of an Au core, the strong NIR SPR response could be transferred to the Ag–Pt alloy shell, and

the alloy material endowed extra light-enhanced effects in its properties including overcoming bacterial resistance .

Further, Ag was added to a Co–Cr alloy material in an implant to improve the antibacterial characteristics of the

material . In addition to Ag-based alloy nanomaterials, other metal alloy nanomaterials such as Cu–Pt overcame

bacterial resistance based on their peroxidase-like activity that can catalyze H O  and generate hydroxyl radicals, and

inhibit bacterial growth .

5.3.3. Potential Vaccine Adjuvant

In vaccination, adjuvants accelerate antigen-specific immune responses. Adjuvants are necessary for the development of

robust immune responses. Novel adjuvants are expected to have characteristics like induction of immunization against

weak antigens, production of broadening immune response against pathogens with antigenic drift, and nontoxicity .

Recently, nanoparticles have also shown their potential as novel vaccine adjuvants. While being a vaccine carrier,

nanoparticles enhance immune responses induced by vaccines as well. The immune activation effect of metallic

nanoparticles is influenced by their size, shape, structure, crystallinity, surface modification, and ligands . For

example, aluminum hydroxide nanoparticles (112 nm) show stronger vaccine adjuvant activity than microparticles (9 µm)

. In an in vivo experiment performed in mice, gold nanoparticles coated with West Nile virus envelop protein induced a

stronger antibody response with the 40 nm sphere shape than with the 20 nm sphere, cube, or rod-shaped

nanoparticles .

Until now, only monometallic nanoparticles based on aluminum, gold mesoporous silica, iron, and nickel have been

utilized as vaccine adjuvants. The use of bimetallic alloy nanoparticles in medical applications remains to be explored in

future studies.

 6. Conclusion and Future Perspective

The above discussions provide compelling evidence that bimetallic or trimetallic alloy nanoparticles are more

advantageous than monometallic nanoparticles in many fields because of their enhanced properties. The synergistic

effect which arises from the combination of two or three metals contributes to these properties. This special characteristic

creates multifunctional alloy nanoparticles that can be applied in various fields. Alloy nanoparticles also show other

potential abilities. Using nanoparticles with antibacterial activity to inhibit antibiotic-resistant bacteria is a topic for

prospective studies. The role of nanoparticles as vaccine adjuvants is still in the early stages of research. Thus, an

improvement in their existing properties promises superior advantages of using alloy nanoparticles in the future
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