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Inhibitory checkpoint receptors play a critical role in immune homeostasis. In health, the expression of checkpoint
receptors is upregulated following the activation of antigen specific T-cells to temper the pro-inflammatory
response. However, upon prolonged activation with a persisting antigen, such as chronic viral infections or in
cancer, checkpoint expression is maintained, and effector T-cells enter a state of 'exhaustion’. Exhausted T-cells
demonstrate a progressively reduced proliferative capacity and the loss of effector T-cell functions including the
production of inflammatory cytokines and degranulation. Accordingly, there has been a rapid expansion in

therapeutic targeting of these checkpoint receptors to reinvigorate the effector functions of exhausted T-cells.

immune checkpoint blockade PD-1 LAG-3 Hodgkin lymphoma non-Hodgkin lymphoma

follicular lymphoma diffuse large B cell lymphoma

| 1. Introduction

Therapeutic immune checkpoint blockade (ICB) of Programmed Death-1 (PD-1) receptor has shown remarkable
efficacy in restoring effector T-cell function in malignancy and consequent clinical trials have shown unprecedented
therapeutic gains in many solid tumors including melanoma, non-small cell lung cancers (NSCLC), and renal cell
carcinoma WIEl Unfortunately, trials of PD-1 blockade in lymphoma have been less successful and clinical
responses have been limited to a proportion of patients with Hodgkin lymphoma and rare Non-Hodgkin Lymphoma
(NHL) subtypes. The reasons for the sub-optimal efficacy of these agents in lymphoma remain unclear and are an

area of active research.

Nevertheless, the promising anti-tumor activity of these agents in a narrow range of lymphoma subsets has
prompted continued interest in the development of newer checkpoint inhibitors and the employment of rational

combinations of ICB agents to overcome T-cell exhaustion in lymphoproliferative diseases (LPDs).

| 2. Checkpoint Molecules in Non-Hodgkin Lymphoma
2.1. Immune Checkpoint Molecules in Primary Mediastinal B-Cell Lymphoma

PMBCL is distinct from other B-NHL subtypes demonstrating clinical, morphological, and molecular features shared
with cHL 4. The genetic hallmarks of PMBCL are copy number alterations or translocations of the PDCDLG1 and
PDCDLG2 genes (encoding PD-L1 and PD-L2, respectively) at locus 9p24.1 which are present in 60—-70% of

cases Bl6l. These genomic alterations occur at significantly higher frequency in PMBCL than other B-NHL
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subtypes. Accordingly, this correlates with increased PD-1 ligand expression on tumor cells BIE, Translocations
of the 9p locus are highly specific for PMBCL often involving PDCDLG2 (gene encoding PD-L2) and lead to
expression of PD-L2 at higher levels than PD-L1, a phenomenon not seen in other B-LPDs, including cHL L9SI(8]
(L1 MHC class Il transactivator (CIITA), is a recurrent gene fusion partner for 9p.24 translocations in PMBCL which
further reduced tumor immunogenicity through decreased antigen presentation and these translocations are
associated with poorer outcomes <.

PMBCL has recently been described to have high expression of LAG-3 within the TME at similar levels to that
found in cHL. However, in this study, the authors found the vast majority of T-cells in PMBCL with LAG-3
expression were on CD8" TILs 12 in contrast to cHL where CD4* TILs appeared to be the predominant LAG-3
expressing T-cell 13, Data regarding the functional status of these TILs remain sparse and further description of

the co-expression of other inhibitory molecules in this NHL subtype are needed.

2.2. Immune Checkpoint Molecules in Primary Central Nervous System and Testicular
Lymphoma

Primary CNS (PCNSL) and primary testicular lymphoma (PTL) present in areas of ‘immune privilege’. Like PMBCL,
more than half of PCSNL/PTL cases have genomic alterations of 9p24.1 that result in constitutive PD-1 ligand
expression on tumoral cells 141, Additional molecular drivers of the pathogenesis of PCNSL/PTL include gain-of-
function MYD88 mutations (65% of cases) and loss of MHC | and Il molecules (50% of PCNSL and 80% of PTL),
both of which are independent of PD-1/PD-1 ligand expression [141123],

Given the TME and PD-1 axis have a significant role in dictating treatment outcome in PCNSL/PTL they are
promising prognostic biomarker candidates. As described above, PD-L1 is over-expressed in the ‘immune
privileged’ TME by several distinct mechanisms. While the total PD-L1 and tumor cells-restricted PD-L1 expression
appears to have no association with clinical outcome, a favorable outcome is observed in patients with high PD-L1
expression on TAMs in both PTL and PCSNL treated with conventional therapy R84 |n PTL, high PD-1
expression on TILs (CD4* and CD8™) correlates strongly with intra-tumoral PD-L1" TAMs and is also associated
with improved outcomes L7118 By contrast, high PD-1* TILs in PCSNL conveys a poor prognosis, potentially
reflecting high levels of T-cell exhaustion, which is particularly enriched in the rare EBVPCS subset occurring in
immunocompromised patients 19120121122 Gene expression and multiplex IHC studies of PCNSL have found that
co-expression of other immune checkpoint molecules (i.e., LAG-3 and TIM-3) in the TME is more strongly
associated with poor outcome than PD-1 alone 18l23] This implies that multiple markers to define states of T-cell

exhaustion may be more valuable as a prognostic biomarker than PD-1 alone.

As seen in some cases of cHL, EBV is involved in lymphomagenesis through activation of the JAK/STAT pathway
and transcription factor AP-1 24, EBVPOS PCNSL represents a rare but distinct subset of patients typified by
unique immunobiology and poorer clinical outcomes 23, Unlike the EBVNEC counterparts, EBVPOS PCNSL seldom
demonstrate increased rates of genomic alterations of 9p24.1 that could increase constitutional expression of PD-1
ligands 28], Despite this, PD-L1 gene expression is several fold higher in EBVPOS cases which are also enriched
for expression of LAG-3 and CD163 W78 These findings are consistent with other EBV-infected LPDs
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including EBVPOS cHL 229 post-transplant lymphoproliferative disease, and plasmablastic lymphoma [B9[28],
Further IHC studies have demonstrated that the majority of PD-L1/PD-L2 expression in EBVPOS PCSNL appears to
be on microenvironmental cells, most notably TAMs, which co-expressed high PD-L1 and PD-L2 [13JI6I[17][25][31]
This is associated with significant T-cell exhaustion of intra-tumoral T-cells that co-express PD-1 along with other
checkpoint molecules, LAG-3 and TIM-3 22, As such, EBVP°S lymphoma represent an attractive entity for trials of

dual-checkpoint blockade to reinvigorate the intra-tumoral immune response.

Together, these findings indicate that ‘immune privilege’ is conferred through a variety of mechanisms in PCSNL
and PTL. EBVNEG tumors are dependent on genetically mediated immune evasion including 9p24.1 gains or
translocations and loss of HLA-I/Il loci whereas immune evasion in EBVPOS PCSNL is orchestrated by up-

regulation of PD-L1* M2 monocyte/macrophages along with LAG-3 upregulation and subsequent T-cell exhaustion.

| 3. Future Directions

Both PD-1 and LAG-3 represent emerging mechanisms of immune escape in LPD and are promising targets for
therapeutic intervention. Pre-clinical studies suggest the synergistic role of dual blockade of these pathways may
be more efficacious than either strategy alone due to improved re-activation of exhausted effector TILs as
evidenced in DLBCL or by targeting separate populations in the TME as evidenced in cHL. Additionally,
combinations of single or dual ICB therapy with sensitizing agents that promote immunogenic cell death (i.e.,
radiotherapy, immune vaccines, and oncolytic viruses) are hypothesized to improve tumor immunogenicity may

broaden the cohort of patients that are responsive to immunotherapy as suggested by recent developments in FL.

As well as opportunities to enhance immunogenicity, manipulation of the PD-1 and LAG3 axis also show promise
as a strategy to improve responses to adoptive T-cell therapies such as chimeric antigen receptor T-cells (CAR-T).
Studies using CRISPR-Cas9 mediated gene editing demonstrate that the knockout of PD-1 and LAG3 in CAR-T
cells overcome the immunosuppressive nature of the tumor environment, a key factor limiting CAR-T efficacy 22133
(3411331 As such, the outcomes of current clinical studies of dual checkpoint blockade and associated translational

studies in lymphoproliferative disease are eagerly awaited.
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