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Ultrasound-mediated gene delivery, also known as sonoporation or sonodelivery, is a technique that utilizes the ability of

ultrasound to disrupt the cell membrane to allow for the delivery of genes, proteins, and other therapeutics into cells. One

potential application of this technique is sonodelivery of therapeutic genes into skeletal muscle, which allows the muscle

to act as a therapeutic "factory" for long-term gene therapy. There are some complications associated with this application

and with sonoporation in general, but it still appears to be a promising method for gene delivery, particularly in vivo, due to

its advantages.

Keywords: Sonoporation ; Sonodelivery ; Gene Therapy ; Skeletal Muscle ; Gene Delivery ; Ultrasound-Mediated Gene

Transfer

1. introduction

Gene therapy shows increasing promise for the treatment of a wide range of diseases, from cancer to musculoskeletal

and immunological disorders . Although the basic premise of gene therapy is relatively simple on the surface—to

introduce a gene or genes into a patient’s cells/tissue that will allow the body to produce a therapeutic protein or facilitate

a genetic modification—every step of the process holds its own challenges. One of the major challenges associated with

making gene therapy widely (and safely) accessible is that of gene delivery in vivo. There are currently many methods for

delivering DNA in vitro at high efficiencies, including electroporation, lipid-based transfection, and viral delivery. Each of

these methods presents potential challenges for clinical translation, including the cost and time of production, the

invasiveness of the technique, the efficiency of delivery, and/or safety concerns related to an immune response or

unintended genomic integration of the therapeutic gene. The development of a gene delivery technique that is

inexpensive, widely available, reusable, minimally invasive, and safe will catalyze progress in gene therapy. One

promising technique that meets all of these criteria has been under investigation for many years but has not yet reached

widespread use: ultrasound-mediated gene delivery, more frequently referred to as sonoporation or sonodelivery . As

its name suggests, this approach involves using ultrasound to deliver non-viral vectors encoding therapeutic proteins into

skeletal muscle, allowing the body to then produce its own therapeutic. 

2. Previous Work

Sonodelivery typically requires the addition of microbubbles (MBs) - common echo-contrast agents used in medical

procedures in humans that typically consist of an inert gaseous bubble encapsulated by a biocompatible material

. The ultrasound waves cause the MBs to burst, leading to the formation of transient pores in the cell membrane. It

has also been shown that MB-mediated sonoporation leads to disassembly of the cytoskeleton . Sonoporation has been

used to deliver a variety of cargos to a variety of cell types . It has also been used in
vivo to deliver cargo in a site-specific manner to multiple targets, including skeletal muscles, the abdomen, and the inner

ear . In all of these former studies, there was either no or minimal off-target delivery. Due to variations in

sonoporation conditions, ranging from the instrument to the settings to the type of MBs and cargo, the results vary

significantly between projects. Because of this, more work is needed before sonodelivery can become a mainstream

treatment method.

3. Future Directions

The most pressing future direction for sonodelivery is that of standardization. With so many different sonoporators and

sonoporation conditions, even for the same target tissue or cell type, and with such disparity in the results of the gene

delivery, it is difficult to determine a standardized treatment method. Developing a standard unit of measure could help to

expedite this process. Sonoporation conditions are typically reported by duty cycle, frequency, time, and intensity. Many

reports also include probe size and some reports include other conditions, ranging from wave type to power output.
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Unfortunately, with the differences between instruments, the conditions that are typically reported can lead to a variable

power output, meaning that the delivery power is likely not the same, even if the conditions are very similar. Although

more optimization is needed to find the average optimal conditions for delivering DNA into muscle using sonoporation,

establishing a standard method for reporting sonoporation conditions, such as the inclusion of the power output, which

can be calculated for each set of conditions, may help to ameliorate some of the disparities in results.

An interesting future direction for the sonodelivery field would include more work on combining sonoporation with other

approaches that might increase the efficacy of gene delivery. Some work has already been done along this vein, including

polymer-mediated sonodelivery ; adjustments to cell membrane permeability by adding enzymes, such as

hyaluronidase , and by adding drugs such as lidocaine and adjusting temperature ; and electro-sonoporation .

Electro-sonoporation is a particularly interesting procedure in which electroporation and sonoporation are applied

simultaneously to facilitate cell membrane pore formation. In a proof of concept investigation, Longsine-Parker et al. found

that cell viability was 97.3% and membrane pore formation efficiency was 95.6% in mammalian cells after application .

These promising results were further explored with in vitro and in vivo studies that found that electro-sonoporation

performed significantly better in both transfection efficiency and cell viability compared to electroporation alone .

While more work is needed to confirm these results and elaborate on the effectiveness of electro-sonoporation, it appears

to be a highly promising technique. While all these possible adaptations would add more conditions to consider in the

standardization procedure, they could greatly enhance the efficacy of sonodelivery for gene therapy.

Another direction of high importance and interest for intramuscular sonoporation will be the delivery of therapeutic genes,

as opposed to reporter genes (i.e., luciferase). Although sonoporation has been used to deliver therapeutic genes

intratumorally , the majority of the intramuscular sonodelivery completed to date has utilized reporter genes to test

sonoporation conditions and efficiency. It could be argued that testing the delivery of therapeutic genes via sonoporation is

of greater importance than standardization, as having a standardized method will only be clinically relevant when the

conditions are optimized for therapeutic expression. To help mitigate the potential for non-standard conditions to be a

confounding factor of a lack of therapeutic expression, this work could be conducted in tandem with the above-mentioned

standardization work. Of particular interest would be the delivery of therapeutic proteins tagged or fused with a reporter

gene, such as luciferase, which would allow for simultaneous testing of therapeutic expression and optimization of

sonodelivery conditions.

Further improvements for intramuscular sonodelivery and gene therapy might include the incorporation of muscle-specific

refinements of payload, such as microbubbles designed to target skeletal muscle or the extracellular matrix (ECM) or

vectors containing skeletal muscle-specific promoters to increase the efficiency of transgene expression .

In light of all these considerations, it can easily be seen that there is additional optimization needed for these approaches

and there would be great benefit to the scientific community in implementing more extensive testing of therapeutic delivery

to skeletal muscle using sonoporation.
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