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Arteriogenesis supply oxygen and nutrients in tumor microenvironment (TME), which may play an important role in

tumor growth and metastasis. Current anti-angiogenetic targeted treatments have not shown substantial clinical

benefits and they are poorly tolerated, and even lead to more malignant relapse. The heterogeneity of tumor-

associated endothelial cells (TAECs) and tumor vasculature may be important and should be appreciated in

therapeutic targeting the TME. In this regard, the de novo arteriogenesis within the TME may be associated with

tumor progression, stemness of cancer stem-like cells (CSCs) and therapeutic resistance and relapse. Targeting

tumor arteriogenesis may thus be a potential novel therapeutic target. Specifically, targeting the FoxO1-CD36-

Notch pathway could show the clinical potential by acting on arteriolar niche and CSCs at the same time in a

variety of cancers including neuroendocrine cancers, breast cancers, lung cancers and malignant melanoma.
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1. Basic Concept of Angiogenesis

Angiogenesis is considered one of the hallmarks in tumor growth and metastasis  , in which the heterogeneity of

vascular endothelial cells (ECs) and de novo arteriogenesis may play important roles and serve as new therapeutic

targets, especially in highly angiogenic tumors such as neuroendocrine tumors. John Hunter, a British surgeon,

was the first to coin the term angiogenesis by describing blood vessels that grow in reindeer antlers in 1787 . Two

centuries later, Dr. Judah Folkman, a surgeon at Harvard Medical School further developed the concept of

angiogenesis, which was defined as the development of new blood vessels from preexisting vessels via

sprouting  . Mechanistically, angiogenesis is growth and remodeling process of primitive networks into a complex

network  .

Broadly speaking, the growth of new blood vessels includes vasculogenesis, angiogenesis, and arteriogenesis.

Vasculogenesis is defined as the generation of blood vessels from hemangioblasts (endothelial precursors) during

embryonic development of the cardiovascular system  , including the initial formation of blood islands and tubes. 

This is followed by the development of vascular trees with the myriad of blood vessels to nourish all tissues and

organs. Vasculogenesis can also occur during tumor progression, which may lead to the formation of immature and

poorly functioning vascular networks  .
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Angiogenesis is a more generic concept referring to the formation of new microvessels  . This process is also

known as neoangiogenesis under both ischemic and neoplastic conditions  , where new capillaries are formed by

sprouting or longitudinally splitting of preexisting blood vessels  .     The capillary networks are fed by the

arterioles, the terminal components of the arterial system via arteriogenesis.

Arteriogenesis refers to a process in which smooth muscle cells (SMCs) cover ECs during vascular myogenesis,

accompanied by vascular stabilization. A typical change seen in arteriogenesis is the enlargement of preexisting

arterioles . However, an adult arteriogenesis can be a de novo process that occurs by the blood vessels

expansion and capillary arterialization  . Previous studies suggested that de novo arteriogenesis in adult

organisms under ischemic and oncogenic conditions  could be associated with CD36 expression. CD36 is

a key regulator in angiogenesis and fatty acid metabolism  , and is a potential driver in metastatic cancer stem

cells (CSCs)  .

Venogenesis is used to define the formation of new venous vessels  . Similar to the ECs in the arteriogenesis,

the venous ECs may generate different batches or concentrations of similar factors to complete the recruitment

and differentiation of venous SMCs, and formation of new venules during angiogenic processes. The venules is the

first ramifications of the venous system that can drain blood and components in the microcirculation away from the

capillary networks.

As for the tumor vasculature, it is highly heterogeneous with regard to their organization, function and structure. 

Six distinct types of tumor-associated blood vessels have been identified in several types of human cancers and

replicated in an animal model. These vessels develop into neoangiogenesis by three distinct but parallel

interrelated processes: angiogenesis, arteriogenesis and venogenesis  , as well as vasculogenesis by the

formation of capillaries via endothelial progenitor cells or CSCs  .

2. De novo Arteriogenesis, an Emerging Concept of
Formation of New Vascular Networks

Angiogenesis as a hallmark of cancer supplies oxygen and nutrients, and disposes wastes, which is critical for

tumor growth and metastatic spreading  . Tumor angiogenesis originally referred to new capillary growth by

regeneration of a population of capillary ECs within a neoplasm  . Tumor cells cannot grow more than 2-3

millimeters in diameter without angiogenesis  . Tumor angiogenesis is regulated by VEGF prominently via VEGF

receptor 2 (VEGFR-2) signaling in vascular ECs  . This signaling pathway is also required for angiogenic

remodeling  , an important process of vascular maturation and arteriogenesis. The anti-VEGF monoclonal

antibody bevacizumab has shown certain clinical significance in multiple tumor types with limited efficacy, which

probably results from its targeting mainly at the newly formed capillaries but not at matured tumor-associated

vessels and newly formed tumor-associated arterioles   that we call de novo arteriogenesis.

There is a general belief that arteriogenesis refers to the remodeling process of pre-existing arteries or the increase

in the lumen volume and size of the vessel wall, in which smooth muscle cell (SMC) proliferation may play an
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essential role  .   However, de novo arteriogenesis represents the formation of new arteriolar networks via

capillary arterialization, in which the proliferation and arteriolar differentiation of ECs, particularly MVECs, may be

critical  .

EphrinB2 represents the earliest specific marker for arterial ECs  . In Zebrafish, the gridlock gene, an HLH gene

required for assembly of the aorta, specifies arterial fate    and regulates Notch signaling pathway  .

Inhibition of the Notch pathway in ECs by gridlock determines an arterial fate. While VEGF can upregulate the

expression of ephrinB2 and stimulates the arterial fate of ECs  . Angiopoietins, a multifaceted cytokine that

functions in angiogenesis, also regulates an arterial fate of ECs via modifying VEGF functions . The small

chemical molecule GS4898 can rescue the gridlock function in a Zebrafish model with gridlock mutant

phenotype  . This small chemical molecule promotes arterial differentiation via stimulating MAPK/Erk pathway

during postnatal angiogenesis in a mouse hindlimb ischemia model  . These studies suggest a role of de novo

arteriogenesis during development and under ischemic conditions. The micro-CT imaging actually documented the

occurrence of the newly formed arterioles under ischemic conditions .

Recent studies have shown that lysophosphatidic acid (LPA), a lipid signaling mediator, may facilitate the formation

of functional arterioles in corporation with VEGF in vivo  . This biological effect may be associated with FoxO-1

regulation of VEGF expression and crosstalk between VEGF signaling and CD36 pathway  .   Studies suggest

that MVECs may be converted to arteriolar ECs. This process is likely to be involved in the CD36-mediated priming

of VEGF signaling and capillary arterialization  . In fact, the crosstalk between angiogenic and

antiangiogenic signaling could be critical to the specification of arterial ECs  . 

Venous ECs can be converted to arterial ECs by VEGF both in vitro and in vivo    , further exemplifying the

plasticity of vascular EC phenotypes. This phenomenon is supported by the fact that shear stress in circulation may

determine the phenotypes of ECs  , leading to the formation of either arterioles or venules through differentiation

of two distinct types of ECs.

Vascular ECs are indeed critical for the regulation of arteriogenesis. In response to VEGF and other cytokines, ECs

can be activated to increase the expression of FGF-2, platelet-derived growth factor PDGF-B and TGF-β1, thereby

inducing the regrowth of SMCs and vessel enlargement  .   Moreover, VEGF-mediated arteriogenic gene

expression and Notch signaling may be essential for arterial differentiation and arteriolar remodeling in tumor

microenvironment (TME)  , and may determine arterial fate and stimulate de novo arteriogenesis via

preferential activation of downstream MAPK/Erk rather than PI3Kinase/Akt signaling as shown in animal models

 . We propose that during adult angiogenesis, arteriolar ECs can signal recruitment and appropriate

differentiation of arteriolar SMCs, thus leading to the development of arterioles, particularly under ischemic and

oncological conditions. Furthermore, arteriolar ECs will generate a variety of factors including PDGF-B, TGF-β1,

FGF-2, and thrombospondin 1 (TSP-1) to facilitate the recruitment and proliferation of arteriolar SMCs to form

arterioles. This is accompanied by a corresponding formation of extracellular matrix, leading to the development of

a mature arteriolar network.
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The arterioles that feed into a capillary network in TME   represent a long-term structural adaptation to altered

metabolic demand  , likely occurring via de novo arteriolar remodeling of capillaries into arterioles

 . The significant increase in intratumoral capillaries during tumor progression    reasonably requires

concurrent expansion of upstream arterioles . Analysis of tumor angiogenesis based on TAEC

proliferation and pericyte recruitment demonstrated that there is an active angiogenesis in several types of human

tumors  . The results actually implicate the formation of feeding arterioles or de novo arteriogenesis  

since the staining for the tumor vessels was not confirmed with other specific markers other than α-SMA, a key

marker for SMCs .  Dr. Harold Dvorak group elegantly documented the appearance of arteries and arterioles in

TME  .

Most tumors continue to generate significant amount of VEGF over long periods of time, thus, continually inducing

the formation of new blood vessels  .  In collaboration with LPA and/or FGF-2, the VEGF might concurrently lead

to previously formed vessels to develop into more stable forms of arteriolar vasculature    within TME. In

response to VEGF overexpression capillaries are enlarged and transformed toward an arterial phenotype in a

process that is known as capillary arterialization   or arteriogenesis. Similarly, Dvorak group showed that in TME

VEGF-secreting tumors and Ad-VEGF-A164 stimulates abnormal arteriogenesis and venogenesis via remodeling

of pre-existing arteries and veins to feed and drain the angiogenic vascular bed in animal models  .

In fact, extensive studies show that arteriogenesis may likely occur within TME in animal models and in patients

with cancer  , possibly within TME of pNETs. NETs including pNETs classically are most

easily apparent on the early arterial phase of a computed tomography (CT) scan. For decades, it has been

clinically appreciated that many primary gastrointestinal NETs and metastatic sites have a pattern of early arterial

enhancement on cross-sectional imaging.   Consequently, contrasted multiphase CT or magnetic resonance

imaging is an important component in the evaluation of a patient with a suspected primary or recurrent NETs

.     Compared with normal pancreatic islets, pNETs have increased expression of nestin, probably contributing to

vascular remodeling within TME of pNETs  .  Though the vessels in grade 3 NETs display the highest EC

angiogenic activity, they have regained pericyte coverage  . These studies suggest an increase in the formation

of matured blood vessels and possibly development into arterioles within the TME of pNETs. The development of

arteriogenesis is supported by studies showing the high levels of pro-arteriogenic factors VEGF, VEGF receptors

and FGF-2 in NETs, but not in normal islet cells. Moreover, recent studies suggest that MVEC transdifferentiation

into arteriolar ECs is likely an approach to facilitating the formation of arterioles under physiological or pathological

conditions  . Intriguingly, during development different types of blood vessels may be generated from different

origins. Pulmonary capillaries are developed by angiogenesis while pulmonary arteries are developed by

vasculogenesis  , which further supports the concept that de novo arteriogenesis exists under physiological and

pathological conditions  .

Maturation of the endothelial networks within TME involves remodeling and ‘pruning’ capillary-like vessels with

uniform size, and irregular organization into a structured network of branching vessels. Blood flow in tumor vessels

is often chaotic, slow, and not efficient in meeting metabolic demands in some tumors  . However, blood vessels

in tumor beds should be functional enough to allow oxygen and nutrients to be supplied and metabolic wastes to
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be removed. De novo arteriogenesis may be the case in highly angiogenic tumors such as in pancreatic

neuroendocrine tumors, in which the antiangiogenic drug sunitinib is partially effective as a targeted therapy

against tumor vessels  . 

3. Tumor Arteriogenesis: Potential Target in Cancers

Tumor angiogenesis has been extensively studied since Folkman coined this concept more than three decades

ago  whereas the role of de novo arteriogenesis within TME is important but under- appreciated, and the

mechanisms remain largely unknown. The arterioles to supply the vascular beds of tumors  might be generated

by de novo arteriogenesis. The arteriolar differentiation of TAECs (a key component of the CSC niche  ) and

arteriolar remodeling within the TME might serve as a unique vascular niche for CSC maintenance and self-

renewal in malignant progression of pNETs and other types of cancers including breast and lung cancers, and

malignant melanoma.

Actually, not only do ECs serve as gatekeepers of organ homeostasis , but they are also essential to maintain

the function of arterioles in providing nutrients to cancer cells    including CSCs. EC differentiation likely

plays a key role in tumor arteriogenesis   in that arteriolar ECs may recruit SMCs to form arterioles

and promote tumor progression by serving as an arteriolar niche for CSC maintenance and self-renewal. Prior

studies have shown that the LPA/PKD-1-CD36 signaling axis switches MVECs to an “arteriolar phenotype” 

. We postulated that TAECs also possess plasticity and may be reprogrammed for arteriolar differentiation

toward arteriolar remodeling in response to microenvironmental factors within TME for the progression of cancers.

Future potential therapeutic strategies may include combinations of antiangiogenic therapy with anti-CSC strategy

by targeting both FoxO-1-CD36 signaling axis and Notch pathways. This combination might significantly limit the

growth of cancers including neuroendocrine tumors and breast cancers and inhibit their metastasis by targeting

both arteriolar niche and CSCs despite the caveats that CSC plasticity evokes toward the design of anti-CSC

therapies. Additionally, venous components could be involved in regulation of CSC behavior via venogenesis, the

functional role of which needs to be further investigated in a variety of cancers.     It will also be worthy of better

understanding of the mechanisms by which vascular niche within TME specify the CSC state and plasticity in the

setting of malignant tumors. Moreover, developing clinically relevant cancer models with robust angiogenesis,

matured vasculature, and arteriogenesis in animals should facilitate the understanding of mechanisms and early

diagnosis.

The transdifferentiation of TAECs and CSCs may be explored and targeted since TAEC heterogeneity may

respond to anti-angiogenic drugs differently and CSC plasticity concept represents the capacity of CSCs

undergoing both differentiation and transdifferentiation.   Because targeting vascular niche may reactivate and

sensitize quiescent CSCs to anti-cancer therapy, an approach to targeting both vascular niche and CSC

compartment may present an attractive strategy via the identification of key regulators of arteriolar differentiation

and CSC metabolism and differentiation in cancers. In this regard, the PKD-1/CD36-FoxO1 signaling axis is likely

to be a promising and potential candidate target. Dissecting this pathway will facilitate the identification of key and
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targetable regulators because of its close association with both tumor neoangiogenesis (de novo arteriogenesis)

and stemness and plasticity of CSCs.
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