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The role of extracellular matrix in breast cancer progression has recently been realized. Here, the effect of various ECM

properties including fiber structure, stiffness and biochemical composition are reviewed, with a special emphasis on the

extracellular vesicles. 
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1. Introduction

The basic mammary structure consists of luminal epithelial cells lining a central lumen, surrounded by a layer of

myoepithelial cells, the stroma, and the basement membrane that separates the epithelium from the stroma (Figure 1).

The basement membrane and the stroma make up an important part of the ECM in the mammary gland. The basement

membrane is a thin layer of matrix mainly composed of type IV collagen, laminin and entactin . Stromal ECM, which

mainly contains type I collagen, fibronectin, laminins, and glycoproteins, serves as a structural scaffold that maintains

breast tissue integrity and sustainability . However, the role of ECM is way more significant than simply providing

structural support. It plays multiple roles in regulating cell behavior in the breast tissue, such as survival, proliferation,

differentiation , invasion , as well as immune responses . Furthermore, the ECM mediates stromal–epithelial

communication and serves as a guide that regulates breast development .

In recent decades, a growing body of research has revealed an important role of the ECM in breast cancer progression

and metastasis . During tumorigenesis, the structure and composition of the ECM is also significantly altered, further

contributing to cancer progression . In this section, we will discuss the influence of both the biophysical properties and

biochemical composition of ECM on breast cancer progression and metastasis, as well as drug resistance. Moreover, we

will discuss alterations taking place in the ECM during breast cancer development.

Figure 1. Breast tissue undergoing tumorigenesis. The basement membrane is a thin layer of pericellular matrix

separating the epithelium and the stroma. Following tumorigenesis, a microenvironment is created, supporting tumor

progression. Tumor cells surpass the basement membrane, which becomes more permissive in the tumor

microenvironment (TME), invade the stroma, and eventually metastasize to distant sites through vasculature.

2. Role of Mechanical and Biophysical Properties of ECM in Breast Cancer

The ECM provides mechanical support to cells and guides them through mechanical stimuli. The cells adjust their

behavior and remodel their microenvironment as a result of these forces . These mechanical cues, including ECM

density and stiffness, alter mechanotransduction signaling  and thus the protein  and miRNA  expression in cells.

These alterations influence cell behavior including cell morphogenesis , stem cell differentiation , and cancer-

associated fibroblast (CAF) activation , thereby potentiating and stimulating aggressive behaviors in malignant

epithelial cells. For example, in a meta-analysis study, the risk of breast cancer demonstrated a compelling increase of up

to 4–5-fold in women with 75% mammographic density compared to those with less than 10% density .

Stiffness is a well-known regulator of breast cancer cell behavior. ECM stiffness leads to profound changes in cancer cell

growth, metastatic potential, as well as chemotherapeutic responses . Collagen crosslinking also increases the ECM

stiffness, and thus promotes tumor metastasis . The collagen fibril bending stiffness of 3D collagen matrices was

demonstrated to direct the spreading and clustering of breast cancer cells . A previous study by Yue et al.  revealed

that the influence of breast cancer cells on stromal cells was stiffness-dependent; breast cancer cells reduced the degree

of adipogenesis only on stiff substrates. A more recent study showed that scaffold stiffness exerts its impact on breast

tumor cell invasion through EGFR-linked Mena upregulation and matrix remodeling , altering matrix organization.

Additionally, tissue stiffness regulates integrin-linked kinase (ILK) expression to control stem-like breast cancer cells under
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hypoxic conditions . Tissue mechanical properties also modulate miR-18a expression to reduce PTEN and HOXA9

levels, and subsequently regulate cancer invasive progression . In the same vein, stromal miR-200s-regulated ECM

stiffness contributes to breast cancer metastasis through CAF activation .

The organization of the ECM is another factor influencing breast cancer cell behavior. Interestingly, collagen alignment

was reported to promote migration in invasive breast cancer cells more than in non-invasive cells . The stromal

tissue is rich in type I collagen, and the collagen network in the stroma serves as a physical barrier against cancer cell

invasion . On the other hand, normal epithelial cells grown on type I collagen bind to type I collagen and go through

epithelial-to-mesenchymal transition (EMT) . Type I collagen leads to increased secretion of matrix metalloproteinases

(MMPs) which facilitate ECM degradation, and induces invasive behavior . Upon ECM fragmentation by MMPs, ECM

bound growth factors are released  and a path is opened for the cancer cells to migrate through.

3. Role of Biochemical Composition of ECM in Breast Cancer

Aside from the mechanical and biophysical properties, the biochemical composition of the ECM also has a significant

impact on breast tumor progression, metastasis, and response to treatments. Growing evidence indicates that many ECM

proteins serve a major functional role in breast cancer progression, metastatic niche construction, and metastatic growth

promotion. A study from Staren group  proved that ECM proteins, such as vitronectin and fibronectin, can enhance the

metastatic potential of breast cancer cells by regulating cell adhesion and migration with integrin subunits. Many ECM

proteins, including collagen, osteonectin, and hyaluronic acid, are involved in breast cancer development. Type I collagen

poses a versatile role in breast cancer development. Fibronectin expression level in breast cancer cells is significantly

associated with a higher probability of metastasis . Upregulation of fibronectin also promotes formation of the pre-

metastatic niche . Proteoglycans various pathological processes, including cancer progression and metastasis .

Proteoglycan expression is altered in the breast TME during tumor development, and such an alteration affects cancer cell

growth, adhesion, signaling, migration and angiogenesis . A higher expression of proteoglycan in breast cancer cells is

often correlated with increased tumor risk , grade  and size , directing the cells toward metastasis .

Cytokines and growth factors are becoming a significant part of breast-cancer-related studies. Many cytokines are

considered as prognostic markers in breast cancer. These cytokines also impact breast cancer progression. Table 1

summarizes the principal cytokines involved in the prevention or progression of breast cancer. Transforming growth factor

b (TGF-b), one of the most significant and widely studied cytokines in cancer research, is pro-tumorigenic and involved in

breast cancer cell proliferation . Tumor necrosis factor α (TNF-α) enhances the dendritic cell (DC) antitumor effect,

inhibits growth and promotes apoptosis of breast cancer cells . Fibroblast growth factor acidic (acidic FGF) is involved in

the estrogen-independent and antiestrogen-resistant growth of MCF7 breast cancer cells . Many interleukins (IL) are

involved in the cellular immunity and communication of stromal cells with breast cancer cells . IL-1α is known to

promote metastasis , as it contributes to the induction of pro-metastatic genes in breast cancer . IL-6 induces T cell

and B cell differentiation, stimulates cytotoxic T cells and assists in killer cell activation to promote antitumor activity ,

demonstrating its therapeutic potential.

Table 1. Common cytokines involved in breast cancer.

Cytokine Type Role in Breast Cancer Ref.

IL-1 family Promote angiogenesis, tumor proliferation and local tumor invasion

IL-4 Inhibit breast cancer cell growth

IL-6 Promote tumor cell proliferation, induce T- and B-cell activation

IL-8 Promote tumor growth and metastasis

IL-10 Inhibit tumor growth, induce drug resistance

IL-12 Inhibit breast cancer cell proliferation and invasion
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IL-18 Inhibit metastasis

IL-33 Promote breast cancer cell proliferation

Type I Interferon (a,b) Inhibit tumor proliferation and invasion

Interferon g p Promote breast cancer proliferation and invasion

TGF-b Promote breast cancer cell proliferation

gp130 Promote breast cancer cell proliferation and invasion

TNF-a Promote breast cancer metastasis

Vascular endothelial growth

factor (VEGF)
Promote breast cancer metastasis

MMP-2 Stimulate breast cancer metastasis

Acidic FGF Inhibit breast cancer proliferation

Platelet-derived growth factor

(PDGF)-BB
Promote breast cancer cell invasion

Leukemia inhibitory factor (LIF) Promote breast cancer cell proliferation and invasion

Cystatin C Inhibit breast cancer cell proliferation

Resistin
Facilitate breast cancer progression and promote breast cancer

metastasis

Under normal conditions, breast tissue maintains homeostasis. As the ECM starts to change and becomes suitable for

cancer development, disruption of homeostasis follows. While tumor cells create their own microenvironment by

remodeling the ECM, the TME also impacts cancer cell behavior, leading to a more aggressive phenotype. In a

pathological microenvironment, collagen fibers tend to become relatively straight, forming a more organized alignment .

ECM protein components could be degraded or modified by cancer-associated enzymes. MMPs are an important

category of enzymes involved in ECM degradation and remodeling, and play a role in tumor cell invasiveness. MMP1, 2,

7–11, 13, 14, and 16 are constitutively expressed in tumor cell lines but not in normal breast epithelial cells . MMP

expression alters the rigidity, porosity, and many other characteristics of the ECM, facilitating cell migration and invasion.

Breast cancer cells can activate the surrounding stromal cells to create CAFs or cancer-associated adipocytes (CAAs),

which remodel the ECM and promote tumor invasiveness . Breast cancer cells also modify the dynamics of stromal

fibronectin and collagen interactions, with the help of MMPs . The sequestered pro-angiogenic factors are released as

the ECM remodels, further facilitating downstream breast cancer invasion.

Nucleic acid cargo is another influential component of ECM. Lots of effort has been put into identifying the nucleic acid

profiles of the breast TME. MicroRNAs (miRNAs) are a family of small-size, non-coding RNA molecules that function as

post-transcriptional gene regulators, playing roles in cancer proliferation and invasion . In breast tissue, miRNAs

regulate the expression of cytokines and growth factors  that can affect ECM composition and pave the way for

pathogenesis. miRNAs are often dysregulated in breast cancer . Researchers found out that a single-nucleotide

polymorphism (SNP) with miR-196a2 is associated with a decreased risk of cancer , while an SNP in miR-146a has

been reported to be linked to earlier onset of breast cancer . In a study with more than 1000 patients, the upregulation

of miR-103/107 was shown to be associated with metastasis and poor outcome of breast cancer patients . The
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downregulation of miR-210 was reported to be inversely correlated with cancer aggressiveness and metastatic

capability . In a study by Song group  with 32 patients, miR-21 was shown to target MMP3 expression to regulate

breast cancer invasion. Stromal miR-200s might also regulate CAF activation and ECM remodeling to promote breast

cancer cell invasion .

4. The ECM as a Physical Barrier for Breast Cancer Treatment

The biophysical and biochemical properties of the breast significantly impact the treatment outcome of the patient. ECM

components affect the penetration of immune cells, antibodies and drugs into tumor sites . The dense and stiff collagen

network may also serve as a physical barrier against drug penetration . Hence, collagenase treatment can significantly

enhance drug penetration for collagen-rich tumors . Glycoseaminoglycans, such as hyaluronic acid and chondroitin

sulfate, may also limit drug penetration to the tumor site.

In the meanwhile, interactions between cancer cells and the ECM can drastically affect the sensitivity of cells to apoptosis

and their response to chemotherapeutic drugs. ECM proteins mediate drug resistance in breast cancer in multiple

therapies. Stromal-derived MMPs are involved in tamoxifen resistance. Loss of function experiments showed that MMPs

facilitated the release of heparin-bound EGF, which further regulated cell behavior, resulting in the paracrine induction of

4-OH-tamoxifen resistance through EGFR and PI3K/AKT pathways . In HER2-positive breast cancer, ECM/integrin

signaling promoted drug resistance to combination therapy aiming at HER2 and PI3K inhibition . Doxorubicin was

shown to be more effective against MDA-MB-231 cells when ECM-cell signaling was disrupted by inhibiting β1-integrin .

miRNAs are also involved in the modulation of chemotherapy responses. The dysregulation of miRNAs also affects the

success of therapeutic interventions. miR-19, miR-21 and miR-203 expression in the breast results in resistance to

chemotherapy . Moreover, the expression of miR-34 and miR-155 suppresses radiotherapy sensitivity . miRNA-34a

has been reported to be associated with docetaxel resistance in human breast cancer cells .
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