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Myostatin, also known as growth and differentiation factor 8 (GDF-8), was identified in 1997 by McPherron and

Lee.

myostatin muscular dystrophy muscular regeneration ActRIIB TGF-3

| 1. Introduction

Muscular dystrophies consist of a broad array of inherited conditions characterized by muscular wasting and
atrophy. As clinical presentations in patients may vary due to a wide spectrum of phenotype—genotype variants for
a particular gene, a common treatment, not depending on correcting a single molecular defect, has emerged as an
attractive target for development. For the last 20 years, one of the most promising therapeutic subjects in the field
of muscular dystrophies has been myostatin. Identified for the first time in 1997, myostatin knock-out in mice
caused increased muscle mass W and mutations in the myostatin gene (MSTN) gene have subsequently been
identified in the double muscled Belgian Blue and Piedmontese cattle BBl a5 well as whippet racing dogs 2. In
2004, a loss-of-function mutation of MSTN in a German boy with a hypermuscular phenotype demonstrated that
the effect of myostatin is functionally conserved across different mammalian species [E. Since myostatin loss of
function did not appear to have any negative impact on viability and longevity [ interest was raised towards a
novel treatment by harnessing the potential of inhibiting this negative regulator of muscular growth. Numerous
studies in animal models and clinical trials have tried to explore this relationship with promising results in preclinical

studies, which have translated poorly in human clinical studies.

| 2. Molecular Involvement of Myostatin in Mice and Humans

Myostatin, also known as growth and differentiation factor 8 (GDF-8), was identified in 1997 by McPherron and Lee
[, During embryogenesis, myostatin is expressed in the developing epaxial and hypaxial myotomes &9 and
hereafter in muscular tissue postnatally, but has also been found at low expression in adipose tissue, heart and
circulation throughout development 112 As the mstn-gene is highly conserved among different vertebrate
species BIEILSI4IISI16] it js evident that it has an important function in muscle development and physiology, which
has been preserved during the course of evolution. As a member of the TGF-B-superfamily, myostatin shows
homology to other growth and differentiation factors, such as bone morphogenic proteins (BMP) and activins,
which also elicit their biological function as dimers. Prepro-myostatin is synthesized as an N-terminal signal peptide
followed by a propeptide domain and eventually a mature C-terminal domain 3. During proteolytic processing, the

signaling peptide is removed and the propeptide is cleaved from the mature protein. As the mature C-terminal
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domain dimerizes and forms disulfide bridges, it remains inactivated since noncovalent bonds between the mature
dimer and the propeptide hold the mature myostatin in an inactive state LUIZI18IIN T exert its function, the
propeptide must be cleaved from the inactive complex by a family of BMP1/TLD-metalloprotease proteins 191201,
Other than the propeptide itself, regulation of myostatin activity is also known to be mediated by follistatin 721
follistatin-related gene (FLRG) 1, Gasp-1 [22 and the proteoglycan protein decorin 2324 typically by blocking the

binding of myostatin to the receptors (Figure 1).
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Figure 1. An overview of various approaches used in myostatin inhibition. Various factors and approaches in

myostatin inhibition as outlined in Section 2 and Section 5. Treatments applied in clinical trials have been colored

yellow. The Smad2/3 intracellular signaling pathway downstream the ActRIIB leads to altered gene transcription of

muscle regulatory factors.

Once liberated from inhibitory proteins, myostatin, as well as other members of the TGF--family, binds to activin-
receptors and, in the case of myostatin, mainly to the activin-receptor type 1IB (ActRIIB) as well as the type IA
receptor 1. The activin receptors are transmembrane serine/threonine kinases that subsequently recruit and

activate dimers of type I-receptors (ALK4 and ALK5) [231126] Depending on the receptor ligand and the composition
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of the receptor complex, the type I-receptor will phosphorylate and activate intracellular protein Smad2 and 3
downstream to the membrane receptors through the canonical Smad-pathway. Smad2/3 binds to Smad4 and the
complex translocates to the nucleus 24, where muscle regulatory factors MyoD, Myf5 and Myogenin are repressed
(28] preventing myoblast proliferation 22 and differentiation 28, Obstruction of the myostatin pathway inhibits
activation of Smad2/3, making Smad4 available in the BMP signaling pathway which promotes hypertrophy and
counteracts the effects produced by myostatin 29, Other noncanonical pathways activated by myostatin involve
(among others) AMP-activated protein kinase (AMPK) and p38 mitogen-activated protein kinase (MAPK) [31132],

3. Myostatin in Healthy Humans and in Relation to Clinical
Manifestations of Cachexia and Muscular Wasting

Compared to healthy young men, there was no reported change in serum myostatin levels in an elderly population
with mild or severe sarcopenia (as defined by muscular contractile force) (23, Burch et al. reported that myostatin
was 57% higher in a healthy cohort >25 years of age compared to a healthy cohort <25 years, with an age-
dependent increase in the younger cohort but not in the older cohort B4l A different study with more than 1100
participating men aged 20-87 years demonstrated that circulating myostatin level was dependent on age and body
mass index 33, Additionally, men had higher levels than women B4l This is in contrast to findings of myostatin
levels declining on ageing in men both measured by ELISA B8 and immunoplexed liquid chromatography with
tandem mass spectrometry BZ. A smaller study of eight young and six elderly women showed higher levels of
myostatin mRNA in muscle biopsies of the older group 28], Various groups have sought to determine the use of

myostatin as a potential biomarker for muscle wasting but the conclusions have been ambiguous B21[40141],

The effect of age on the expression of not only myostatin but also other promyogenic muscle regulatory factors
(MRF) following exercise was examined by Raue et al. They found that at rest, there is a relative upregulation of
both MRF and myostatin prior to exercise in elderly women compared to younger ones, but that the postexercise
downregulation of myostatin is not hampered by age [B8. A study in healthy and sarcopenic elderly men

demonstrated that resistance training or a combination of resistance and endurance training caused a decrease in
myostatin [42]143],

The clinical relevance of myostatin in humans was described for the first time in HIV patients, who had increased
levels of myostatin compared to healthy subjects. Furthermore, the levels were even higher in the patients who met
the definition of AIDS-wasting syndrome 2. The role of myostatin in muscular atrophy and muscle wasting was
also determined in mice that developed cachexia in response to myostatin overexpression 44, Cachexia manifests
as a complex metabolic syndrome due to an underlying illness characterized by muscle wasting in conditions such
as chronic heart failure (HF), cancer, chronic obstructive pulmonary disease (COPD) or chronic kidney disease
(CKD) 43, The use of myostatin inhibitors in such populations with progressive muscle wasting or atrophy
secondary to an underlying condition is attractive, as the preservation of muscle strength for ambulation, personal

care and everyday independence is key in reducing morbidity and improving quality of life.
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In terms of cardiovascular disease, the upregulation of myostatin in the cardiomyocytes surrounding an ischemic
infarction in sheep was shown in 1999 12l and myostatin protein and mRNA in skeletal muscle and myocardium
were increased in a rat-model of volume overload heart failure 8. Lenk and colleagues also found that the protein
expression of myostatin was increased in the skeletal muscle and myocardium of a murine LAD-ligation heart
failure model, which corresponded to later findings in chronic heart failure patients who had elevated levels of
myostatin mMRNA and protein in muscle biopsies compared to healthy controls 4748 The relationship between
myostatin levels in the circulatory system and patients suffering from chronic heart failure has been examined by
various groups. Increased myostatin levels in HF-patients could be expected, since impaired cardiac output
reduces oxygen supply to the vascular bed of muscle tissue and less muscle means less oxygen consumption. As
various studies have detected elevated 4811491501 equal B or lower (2232 |evels of the latent and inactivated
myostatin complex in the circulatory system, methodological differences in the detection of myostatin (e.g.,
Western blotting of promyostatin versus immunoassays of full-length myostatin and Liquid chromatography—mass
spectrometry (LC-MS)) may account for these fluctuating results (4. Furthermore, myostatin levels in
decompensated chronic HF patients dropped upon compensation therapy, suggesting dynamics and variability in

myostatin levels, which are sensitive to therapeutic interventions 521,

Treating cancer-associated cachexia by means of myostatin inhibition has been another field of interest. As
myostatin was elevated in the gastrocnemius muscle of mice inoculated with the Yoshida AH-130 hepatoma (4],
targeting the myostatin pathway seemed promising in preventing cancer cachexia. C26-tumor-bearing mice were
treated with a soluble receptor of the ActRIIB (sActRIIB), which improved survival and muscle mass without
reducing tumor size 33 and by treating the Lewis lung cancer-model with myostatin antibodies, muscular atrophy

and loss of muscle force were attenuated 28],

COPD has been another target of interest due to the muscle wasting, since 30—40% of all people with COPD
undergo muscle wasting as a secondary complication to impaired pulmonary function B4, The link between
myostatin and chronic hypoxemia was established in rats exposed to chronic hypoxia, which induced myostatin
expression in rat muscle 8! and the increased the expression of myostatin in the vastus lateralis and serum of
COPD-patients compared to healthy controls has also been described B8l59, | ater, serum myostatin was found to
be significantly elevated in COPD-patients compared to controls but skeletal muscle mass only correlated

negatively with serum-myostatin in males 9,

In CKD, myostatin is elevated in the serum and skeletal muscle of the rat model of CKD, (Cy/+), with increased
activation of atrogenic transcription factors in EDL adding insights to the pathophysiology behind muscle wasting in

this condition 611,

| 4. Myostatin in Response to Exercise

The effect of exercise on the expression of myostatin has been demonstrated numerous times. In a clinical study
where subjects had immobilized a limb for two weeks following exercise rehabilitation, the casting-induced atrophy

did not affect myostatin mRNA in muscle biopsies. However, exercise led to downregulated myostatin expression
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by approximately 48% [62. These findings indicate that myostatin works in vivo by inhibiting hypertrophy, rather
than inducing atrophy. Similar findings in exercise studies have been observed up to 24 h after exercise [63I84 and
on protein-level in prediabetic patients performing moderate aerobic exercise for six months 82, Most interestingly,
“the myostatin paradox” was introduced by Kim et al., who in their exercise study discovered a positive correlation
between myostatin mMRNA and muscle mass 623, whereas the relationship would most intuitively be the opposite if
not taking inhibitory factors into consideration. The authors speculate that high levels of myostatin transcripts in

muscle might prime the muscles for additional growth.

5. Preclinical Studies of Myostatin Inhibition in Animal
Models of Neuromuscular Disorders

The potential for the pharmacological regulation of muscular growth had to be explored in animal models of
muscular dystrophy, atrophy and muscular regeneration before ultimately turning towards clinical trials in human
subjects. We present here an overview of the various ways in which myostatin has been targeted in animal models.
As myostatin inhibition has been utilized to examine various physiological processes other than merely muscular
regeneration (including cancer survival, bone- and energy metabolism), the following will focus on the bulk of
scientific work that describes the effect of myostatin on muscular tissue. Table 1 presents information, if available,
on the animal model and genus, the pharmacological compound, muscle morphology, fiber-type specific changes,
absolute and specific force amongst glycolytic and oxidative muscles, muscular stress resistance and
histopathological improvements. This review is focused in particular on treatment-mediated functional
improvements of muscle function, as these are essential for any translation to human clinical trials.
Histopathological recovery, muscular growth and the upregulation of desirable growth factors or genes in vitro may
be of less importance, as primary outcomes are invariably functional in preclinical studies and the degree of
functional improvement ultimately decides whether a treatment will advance in additional preclinical or clinical
investigations. Furthermore, increasing the absolute force is of interest to patients and clinicians who are looking
for improvements in the activities of daily living, while the scientist will be looking for specific force (force per cross

sectional area of a muscle) as an indicator of whether the underlying deficit has been compensated for.

Table 1. Results of previously published data from various means of myostatin inhibition in animal models.

Stress- Histopathological

Fiber-Type  Absolute . Absolute .
. Muscle et Specific Specific Induced Effect of
Species/Model Compound Morphology gﬁae:'f:; GIF 2::;% N ForcelGlycolytic Oii(:ir:tei\ll 3 Force/Oxidative Force Myostatin Reference
9 Y Drop Inhibition
Antibodies Blocking Myostatin
Mouse/wild-type JA16, ATA-842, Fiber CSA Increased Increased [ee67I(6]
(BALB/c, C57BL/6) mMRK35, YN41, increased in 11B fiber grip strength (697071
MUSRK-015P, EDL (88 and CSA, no (6r(9)z0l
GYM-mFc Gas effect on
Increased overall

weight of Gas,
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Muscle Fiber-Type ~ Absolute Specific ghsolute Specific |ﬁ33§:d HIStoIEpfaf‘;I;?:;)fglcal
Species/Model Compound Morphology (?rll)aer(: 'ﬂecs GIF 2:;% e ForcelGlycolytic O)'zic(.ir:t?\lle ForcelOxidative Force Myostatin Reference
9 Y Drop Inhibition
TA, Quad and composition
TB, plantaris, 68
Sol &7
Sgcd™™: No
improvement in
histopathology of
EDL: TA, EDL, Gas and
Increased diaphragm albeit
Mouse/mdx, weight and EDL: N hydroxyproline
Mouse/Sgcd’/’, JA16 single fiber increased EDL: No effect ° reduced in TA. [z2(z3][74)
/- [72)73] effect . L
Sgcg area : force Fibrosis in
Increase in TA, diaphragm
Quad, Gas [z4 increased (Sgcd”
- M) and
decreased (mdx
[22]
Increase in
hmd“mt.) Diaphragm:
muscle weight y
. Increased fiber
of 5 weeks Diaphragm o
treatment, no Diaphragm: increased No siz€ In young 75
Mouse/madx PF-354 | : animals, 5
effect after 8 No effect (young)/no effect "
decreased fiber
weeks. effect (old) o
size in old
- animals
effect/reduction
in CSA
Gas: reduced
atrophy,
d: preserved fiber
TA, Gas, Ing:i éd diameter.
Quad, EDL, proporliZn o TAEDL Diaphragm
o el e TA SN o
TgCTA1P286C, MRK35/RK35 9 Increase in o ZuEsIr
GI3A increased. N Reduced collagen
Sod1 ,Al7, mMuSRK-015P 11B fiber - [78][791[80]
G93A ) Increased CSA Plantarflexor effect on I, 11l, 1V deposits.
Rat/Sod1 (in SmnA7) . CSA, no
in TA, EDL. freot i group plantarflexor No effect on
Mouse/SmnA7 No effect on N ec. .|n increased group 18 intranuclear
weight or CSA fr.Emalmlng torque 128l inclusion bodies
in soleus 78 ! er@ypes [z6yig0],
Increased number
of tubular
aggregates 7,
Mouse/ REGN1033 Increased No effect on TA: TA: No effect 8]
CB17-SCID, weight in Gas fiber type Increased
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Stress- Histopathological

Fiber-Type Absolute - Absolute -
. Muscle 2 Specific Specific Induced Effect of
Species/Model Compound Morphology gﬁ:ﬁ 'f:;s GIF 2:;% e ForcelGlycolytic O)'zic(.ir:tei\lle ForcelOxidative Force Myostatin Reference
9 Y Drop Inhibition
C57BL/6, and TA. Fiber composition force
(Dexamethasone area increased
atrophy) in Gas
MYO-029, Increased
Monkey/cynomolgus Domagrozu- muscular lzoiizLiez]
mab, GYM-cyfc circumference
Myostatin Propeptide Administration or Overexpression
EDL: weight, .
Recombinant CSA, single e EDL: Increased No Decreas_ed 83
Mouse/mdx Ny N Increased pathological
propeptide-Fc fiber area force effect
force changes
increased
TA, Quad, TA:
AAVS- Gas, ’ . Larger fibers, less [84]
Mouse/mdx MPRO76AFC Diaphragm Increased TA: No effect fibrosis
: force
increased
Increased Soleus:
Mouse/calpatin 3- UTEEE inclfgal_s:ed EDL: No effect D SECTEL
. P rAAV2/1ImSeAP- in calpain-3- - force effect [85)
e S ORI ropmyoD76A null mice, no Lelfe (calpain-3-null (calpain- (calpain-3-null a
Sgca™~ (LGMD2D) propmy S (calpain-3- mice) P pai
effect in Sgca . 3-null mice)
R null mice) .
-mice mice)
Soluble Receptor (sActRIIB-Fc)
Soleus:
Type | and EDL: twitch
II-fiber CSA force
Increased increased increased,
ACE-031, muscle weight. 188], no effect on EDL: no effect o 1BEIIETIIEE]
Wild-type, C57BL/6 SACtRIIB, Fiber CSA Quad; tetanic force [91](92] - (r)eus.d Soleus: no [89][90](91]
C57BL/10 RAP-031 increased in increased 88], Gas: decreased N easg& effect force (&4 1921(921(94]
186] . X 190] force [95]
ACE-2494 EDL andin  size of I, lIA, Gas: no
whole TA &7 11B-fibers. effect on
No fiber- max tetanic
type switch force (29
[89)
Mouse/madx RAP-031, Muscle weight No fiber- EDL: EDL: increased Soleus Soleus No Diaphragm, TA: 21)193](96)
SACtRIIB-Fc increased type increased force (21, decreased decreased effect No effect on 1e7)i98](9e)
Diaphragm conversion force [271(28] No effect 28, force force histopathology,
and triceps le1] EDL, TA hydroxyproline 93]
myofiber decreased force (e

increased 1281,

in older animals

Fibrosis
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Stress- Histopathological

Fiber-Type Absolute - Absolute -
. Muscle 2 Specific Specific Induced Effect of
Species/Model Compound Morphology gﬁae:: 'ﬂecs GIF 22‘;% e ForcelGlycolytic 05;:;:3", = ForcelOxidative Force Myostatin Reference
9 Y Drop Inhibition
EDL single decreased 28,
fiber CSA No visible effects
increased 127, on H/E pathology.
SDH stains
without effect of
treatment (2%,
eMHC: no effect
@.
Quad:
oxidative
. L Nemaline rod
diameter
. d structures
Mouse/TgActa1H40Y, Inereased. unchanged 109,
R69C Diaphragm: No effect
Mtm17>%, Increased glycolytic 1200] Gross evaluation 89][100]
154 . : : .
Mtm=*°%, RAP-031, muscle weight, myofibers EDL, TA No effect 1001 No[g]ect No effect [100] of diaphragm: [101][102]
R6/2, sActRIIB-Fc increased fiber hypertrophy e unaffected by [103][104]
Dysf -, size [100] force 1021 genotype or
Cav3P1oaL i fibler treatment (89,
Fibrotic changes
hypertrophy, i d
no fiber type improve
switch 82
[101]
Anti-ActRIIB Antibody
Increased
weight of TA,
EDL, Gas. Gas:
Mouse/SCID BYM338 Soleus increased 110511206
increased force 108
weight (in high
dose) 1031
Mouse/C57BL/6 ) TA
(glucocorticoid- BYM338 1L W,e@h[ ) increased L
. CSAincreased
induced atrophy) force
Follistatin Administration or Overexpression
Mouse/ Follistatin Muscle mass F66;Dysf”": F66;Dysf: 103
F66;Dysf'/', overexpression maintained in EDL: Decreased Exacerbation of
F66,mdx F66;mdx, force dystrophic
decreased in features.
F66;Dysf’~ Increased Evans

Blue Dye (EBD)
uptake
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Stress- Histopathological

Muscle Fiber-Type  Absolute Specific Absolute Specific Induced Effect of
Species/Model Compound Morphology gﬁ:ﬁg:; G::/?:L‘i;ii e ForcelGlycolytic O)'zic(.ir:tei\lle Forcel/Oxidative Force Myt.)s.ta_\tin Referenceinct for a
Drop Inhibition
F66;madx: . _
Dystrophic ! adeno
features not
exacerbated, mild 1 |0ngUS,
improvement
hy i.m.;
Young mdx: p y !
increased H
myofiber size. uccinate
Increased Satellite cell
Mouse/madx, AAV-delivered weight of TA, Increased . . [107](108]
Sod1693A follistatin i.m Gas, Quad rip strength UL ERIC
o N ’ orp 9 Old mdx: Fever
triceps e
necrotic fibers
and mononuclear
infiltrat H H
e listration
AAV-delivered Increased fiber Quad: Myofiber 1091 1
Monkey/Cynomolgus S ” Increased Systemlc
follistatin i.m size hypertrophy
force
RUIB; (e
Mouse/C57BL10 Increased LS , ( )
! ACE-083 . increased TA: no effect 11101
max, CSA, weight i ActRII B) ,
FS-EEE-mFc Increased o8y > againSt
RoLse/CoBle and FST288-Fc muscle weight
vorks on
Decreased
Increased . i
ey EDL: necrosis and
Mouse/madx FS-EEE-mFc Qu:d lricg s’ Increased EDL: No effect fibrosis in Quad, 18] yStrOphy
! e force no effect in
TA .
diaphragm
Liver-mediated Overexpression of Dominant-negative Myostatin (dnMSTN), sActRIIB and Myostatin Propeptide
Gas, TA
increased Increased X
Mouse/MF-1 (wild- e ovgr- mass. EDLand  CSA of type EDL: No . . SLlis Soleus: No [112]
ekspression EDL: No effect increased
type) X soleus I, 1A and effect effect
(propeptide) . N force
increased 11B-fibers
csA. viuscular
Mouse/Sma®’® AAV-mediated Increased TA: EDL EDL; Decreased  Soleus: Soleus: No ) @ The
systemic weight in TA, Increased increased force Increased effect
expression Gas, Quad. 1A size vs. SMAC/C force .
(dnMSTN and dnMSTN- EDL: control 1O|Oglca|
SACtRIIB) cohort: Increased
Increased CSA  llAand 1B [131] pared to

controls. Meanwhile, m. extensor digitorum longus (EDL) had increased weight, cross-sectional area (CSA) and
absolute force but failed to show improvement on specific force and stretch resistance. Similar results with
increased muscle weight and absolute force but lack of improvement in specific force and resistance were seen in
the Sgcg‘/‘ model of limb-girdle muscular dystrophy (LGMD) 2C in a design of similar age and treatment length to
the previously mentioned study 73] The Sgcd‘/‘ mouse model of LGMD2F also treated with JA16 antibodies was
not able to improve fibrosis in either young or older Sgcd‘/‘ animals (4 and 20 weeks old at treatment start,
respectively) with older animals even showing signs of worsening of fibrosis [74], Interestingly, a 5-week treatment
period of very young (16 days old) mdx-animals showed positive effects on the diaphragm, as specific force
increased while absolute force was unaffected, fiber size increased and connective tissue infiltration of the
diaphragm was reduced [z5] indicating that early initiation of treatment is crucial for a positive effect. Another
monoclonal antibody developed by Pfizer, mRK-35, was also able to increase absolute but not specific force in madx
mice ) and the TgActa1”?®¢ mouse model of nemaline myopathy 2. Treatment of the Sod1®°*A mouse and rat
models of amyotrophic lateral sclerosis (ALS) with RK35 improved grip strength compared to placebo controls but
did not delay disease onset or extend survival of either model (79 | ater, Muramatsu and colleagues introduced the
concept of “sweeping antibody technology” with the GYM329-antibody designed to bind and clear latent myostatin
from the circulatory system, which increased muscle mass in three mice models and cynomolgus monkeys and
also improved grip strength in the mice 9 As opposed to other antimyostatin antibodies, GYM329 did not bind
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Stress- Histopathological

Fiber-Type Absolute - Absolute - eciallv in
. Muscle 2 Specific Specific Induced Effect of Yy
Species/Model Compound Morphology gﬁ:ﬁ 'f:;s GIF 2:;% e ForcelGlycolytic O)'zic(.lr:tei\ll = ForcelOxidative Force Myostatin Reference
9 v Drop Inhibition ‘npeared
inEDLand TA  size and '
but not in total fiber
soleus number. MA) had
Soleus: No
effect vs. y Versus
controls.
I-fibers 132 nuscular
generally
unaffected
mproved
EDL: IA+
1B [6_7]
increased
fiber size.
Increased
proportion of
1B fibers in
EDL and
Soleus.
Increased Soleus: P
weight in TA, Increased Soleus itln In an
AAV-delivered Gas, Quad, size and No effect increased force
liver-specific EDL, Soleus proportion of EDL: (decreased Soleus: sl [114][115] ]Creased
Mouse/madx promoter: EDL: 11A-fibers increased force by 10 increased Soleus no 1161
dnMSTN, increased CSA  Diaphragm: force months of force difference (1141, | but the
sActRIIB Soleus: No IIX fibers treatment) Diaphragm: no
effect in weight proportion effect
[114] increased, (83] . treated
IIA fibers
=I- proportion preSSion
decrease
- [85]
Diaphragm:
No effect in
specific
fiber-type
size 114]
Increased Increased
. weight in size of IIA-
’Tﬁgf:;:;;id Tibialis fibers, no ., that also
Dog/GRMD cranialis, EDL, effectin |-
[P Gas, flexor fibers.
(CEMSTY digitorum No fiber type ”B
superficialis type switch .
1 protein

RNA Interference and Anti-oligonucleotides against Myostatin or ActRIIB

ay systemic

clearance. Applying this approach, Pistilli and colleagues demonstrated an increase in both absolute and specific

force of EDL in mdx mice B4, a functional outcome, which unfortunately has been difficult to replicate in both wild-

type [BEIB2] mqx [91[93I98] and nemaline myopathy mouse models 229, The treatment of mice with muscular

atrophy due to spinal cord injury with RAP-031 did not alleviate the atrophy 1331, A hypoxia model in wild-type mice

showed improved resistance to eccentric lengthening but no other studies using the soluble receptor have shown

improvements to stretch resistance 34, The specific hypertrophy of fibers with a 1IB fiber-type composition was

observed in two models of myotubularin-deficient mice B2 pyt also in other fibers of wild-type animals B,

5.4. Administration of Antibodies Directed against ActRIIB

Blocking the ActRIIB itself by antibodies has not been widely used as another means of myostatin inhibition.

Novartis developed BYM338 (bimagrumab, which would progress into clinical trials as mentioned below) and

described the receptor-specificity in cell cultures and myoblasts while also showing the effects on body and muscle

mass in both SCID-mice and a glucocorticoid atrophy model (03],

5.5. Follistatin Administration or Overexpression
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Stress- Histopathological

Fiber-Type Absolute - Absolute - TGF-B-
. Muscle 2 Specific Specific Induced Effect of r
Species/Model Compound Morphology gﬁ:ﬁ 'f:;s GIF (‘):rocel_ ForcelGlycolytic O)'zic(.ir:tei\lle ForcelOxidative Force Myostatin Reference
9 yeolgt§[135 Drop Inhibition showed
. Diaphragm: .
No effect in 17 Diaphragm and :
Antimyostatin eioftet diﬁergﬂce in adncichicction 1yOStatIn
Mouse/madx PK/IO diaphragm, -, fiber diameter and 18] )
EDL, Gas, conter:/tp(l collagen IV itOIOglcaI
Soleus, TA ! content
136 1A, 11X, 1IB) .
[136] inopathy
- TA: No effect y
AAV-delivers on CSA, fiber TA: No =/= ifi
~ : wa 2 specific
Mouse/mdx (female) ShRNA. i.m. number effect TA: No effect p
increased [103] sermore
L
/ AAV-Cas9-mediated Myostatin Gene Editing i
e kinase
Increased
fiber area H H
Mouse/C57/BL10 rAAV-SaCas9 and number 8 fO”lStatln
of fibers per ..
area deficient
103 Myostatin Knock-out/Crossbreeding ']ding on
EDL fiber-
comtyc?seition' Decreased
p . hydroxyproline
Increased IIA and 11X EDL: content in EDL
muscle weight incidence EDL: Force no effect in soleljs [120]121]
vs. wild-type. decreased, Increased EDL: Soleus: Soleus: No deficit [120] [122][123] ed CSA,
Mouse/Mstn™~ Increased fiber 1B 120)/ng ) : . Soleus: - [124][125]
. . [121] Decreased Increased effect Cytoplasmic
number and increased in effect No inclusions of [126] e model
CSAOfEDL  EDLand TA. 1122] force wbul
and soleus 129 Soleus CSA[llO] deficit aggrl:egl;?ers in
IS older mice (122
only in lIA-
fibers 1211
ce Increased EDL: No EDL: Decreased e Nallenge.
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5.6. Liver-Mediated Overexpression of Dominant-Negative Myostatin (dnMSTN),
sActRIIB and Myostatin Propeptide

Using the same approach as mentioned earlier with adeno-associated virus 8 (AAV8)-delivered myostatin
inhibitors, Morine and colleagues treated the mdx with AAV-vectors, which brought liver-mediated transcripts of
sActRIIB 1141 or dnMSTN 113 into circulation. The sActRIIB treatment did increase the muscle mass, fiber size and
absolute force of the EDL, while CK decreased. However, there were no positive effects in soleus or specific force
(114] The dnMSTN paper showed that the treatment in mdx-mice was predominantly observed in the fast fibers
(1A, X and 1IB) of both the EDL and soleus, while soleus increased both absolute and specific force and CK

decreased 113, A similar study in the D2.mdx only reported beneficial effects on absolute force in EDL [216],

Similar to the treatment regimes in the mdx, Liu and colleagues treated the C/C mouse model of spinal muscle
atrophy (SMA) with AAV8-vectors containing transcripts for dnMSTN and sActRIIB, respectively 113l Both
treatments increased the size of type IIA and 1IB-fibers, leaving type I-fibers unaffected (IIX was not measured).
While specific force was unaffected by treatment, absolute force increased in EDL (both treatments) and soleus
(only sActRIIB).
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months, which increased body mass, grip strength, muscle mass and fiber radius 4, The absolute twitch and

tetanic force production improved but specific force did not.

5.7. RNA Interference and Antioligonucleotides against Myostatin or ActRIIB

Myostatin has also been sought downregulated by means of RNA interference. Dumonceaux et al. combined short
hairpin RNA (shRNA) interference of ActRIIB mRNA with AAV mediated exon-skipping of dystrophin. The number
of fibers increased in TA, but force production was unchanged in mice that received myostatin interference solely
compared to untreated max 1191,

In contrast to AAV-mediated gene therapy, antisense oligomers (AOs) hold no risk of uncontrolled genome insertion
and levels of exon skipping can be regulated or aborted over time. Antisense phosphorodiamidate morpholine
oligomers (PMOs) causing exon-skipping of myostatin increased TA weight and CSA locally in mdx-mice 238l A
follow up study combining systemic treatment with two different PMOs that restored dystrophin and inhibited
myostatin, respectively, was promising but the mdx mice receiving the myostatin-inhibiting PMO did not benefit
from this treatment alone 118 A similar study demonstrated similar increases in muscle mass in PMO-skipped
myostatin, but also demonstrated that skipping varied among muscles, with the highest level of skipping in the
soleus. These studies emphasize the importance of the design of the PMO, as well as the variable results obtained

in healthy and mdx animals, suggesting that histopathology plays a role in efficiency of the treatment [L18][138]

5.8. AAV-Cas9-Mediated Myostatin Gene Knock-Down

Recently, it was demonstrated that myostatin knock-out by the means of AAV-Sa-Cas9 gene editing delivered by
intramuscular injections increased fiber area and number of fibers per area in aged wild-type mice 8. However,

functional outcomes were not described.

5.9. Crosshreeding Transgenic Myostatin Knock-Out Animals

The murine hypermuscular myostatin knockout (Mstn™", also denominated ‘the myostatin-null’) described in 1997,
has subsequently been further examined and crossed with various mouse models of neuromuscular diseases. The
myostatin-null itself has been described numerous times [1I122]1126] \ith increased muscle and body mass. Force
measurements have shown both positive and no effect on absolute force in the myostatin knock-outs but
decreased specific force has generally been reported 129121122 ' An increased proportion of fast fiber-types has
been the common observation [122111231[124][125][126] i |ine with the findings in studies of pharmacological myostatin
inhibition (see above). Another model of myostatin malfunction includes the Compact-mouse (also known as the

Berlin High Line BEHC/C), which contains a 12-bp deletion in the propeptide domain of promyostatin (MstnCmPt
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dilAbey hyt leaves the biologically active growth-factor domain of myostatin unaffected 139, Kocsis and colleagues
later found that the Compact genetic background itself, in addition to the promyostatin genetic deletion, determines
the phenotype 227! and the use of this model has been rather limited.

A third mouse model is the lean myostatin mouse (Mstn"™"), which has an induced loss-of-function mutation
leading to a peptide without the ligand, thus a complete lack of myostatin. This model has similarly increased
muscularity but has had most of its use in the field of metabolic research 149,

Crossing myostatin-null with other models of muscular dystrophy has occasionally been the preceding study to
pharmacological interventions. Crossing myostatin-null with mdx 12811291 or caveolin-3-deficient mice with
transgenic mice overexpressing the myostatin prodomain (“MSTNPro”) 124 did ameliorate the pathological
features by increasing body weight, fiber numbers and improving grip strength. However, the crossing of myostatin-
null mice with the dyW/dy"W laminin-deficient mouse model of congenital muscular dystrophy failed to improve the
dystrophic phenotype and postnatal lethality was even increased 139,

In addition, a recent study crossing a follistatin overexpressing mouse strain with the calpain 3 knock-out mouse
model for LGMD2A led to increased glycolytic muscle mass, but caused the loss of AMP-activated protein kinase
signaling, important for contraction-induced glycolysis and poor exercise tolerance 2411,
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