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Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the
management of bacterial infections of a wide range of organisms including cultured fish. Their natural
immunogenicity often induces the modulation of a variated collection of immune responses within several types of

immunocytes while promoting specific mechanisms of bacterial clearance.

aguaculture bacteriophages disease management fish immunology lytic enzymes

pathogens

| 1. Phage Biology and Spatial Distribution

Bacteriophages or phages, in short, are an alternative to antimicrobials to fight against bacteria due to their unique
host range that provides them with an excellent specificity. In addition, contrary to the antibiotic’'s negative
physiological effects on the host and the generation of bacterial resistance, the use of phages is eco-friendly and
without major drawbacks 2, Besides, phages produce lytic enzymes with the ability to act directly on the bacterial
cell wall. An important associated advantage is that phages are ubiquitous to all fresh and saltwater environments
representing a virtually unlimited source of virions and lytic enzymes. In seawater, the number and variety of
phages have a direct and crucial impact on the variability of microbial communities which directly modulate the
global biogeochemical cycles in the oceans B4, Quantitative analyses of marine waters using transmission
electron microscopy demonstrated that non-tailed viruses are the most abundant, followed by tailed viruses of the
families Myoviridae and Podoviridae B, This example represents a huge gene reservoir across Earth’s
ecosystems. Despite the great awakening interest in phage therapy and the discovery of a vast reservoir of new
genes available in the phages of aquatic ecosystems, the composition the phage populations in the different fish

species in aquaculture, either from freshwater or saltwater environments are not yet fully understood.

| 2. Phage’s Life Cycle

The phages like any other viruses depend on the metabolism of their bacterial host for reproduction. During the
reproductive process, most phage types completely consume the resources of their host and kill them when
releasing their progeny [, Initially, phages must infect their host bacteria through the binding of specific receptors
that selectively sense specific components of the target bacterial cell wall such as the lipopolysaccharide in Gram-
negative, or peptidoglycan in Gram-positive, capsular polysaccharides, and superficial appendages such as pili

and flagella [BIE Following the classical viral reproductive strategies, once the phage inserts their nucleic acid
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into the bacterium’s cytoplasm, the host cellular machinery is highjacked to induce extensive replication through
the lytic cycle (Figure 1). Alternatively, a phage also has the capacity to insert its genetic information into the
genome of the host bacterium, thus becoming a prophage. The process of prophage incorporation into the host
chromosome is called lysogenization, and the resulting bacterium with the prophage is called a lysogen. Therefore,
the genetic material of the prophage is transferred to each daughter cell through cell division following the
lysogenic cycle (Figure 1). A huge advantage associated with the lysogenic cycle is that daughter cells will not
produce new virus particles until conditions are favorable for the virus or some external stimuli stress the cell and
activate the highjacked genes. An additional less known phage reproductive cycle is the so-called pseudo-
lysogenic. In the pseudo-lysogenic type, the information encoded by the genome of the phage is not translated
immediately, perhaps due to the lack of nutrients and energy for the bacterium. However, it remains inactive inside
the host, waiting until the optimal conditions recover for the bacterium to restart its metabolic processes. Then, the

phage has the capacity to start again performing the lytic or lysogenic life cycles 19,

LYTIC CYCLE
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Figure 1. The lytic and lysogenic cycle of bacteriophages. The lytic cycle comprises a series of events from
attachment of the bacteriophage to the bacterial cell membrane, to the release of daughter phages by the
destruction of its bacterial host. In the lysogenic cycle, phage DNA integrates into the bacterial genome without
major consequences for the bacterial cell, and where the nucleic acid of the virus replicates along with that of its
host.

| 3. Phage Lytic Enzymes and Depolymerases
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Lysins derived from phages degrade bacterial peptidoglycans and are classified into five groups, depending on the
bonds these enzymatic proteins cleave in the bacterial peptidoglycan 1. Although their function is exclusively to
degrade the cell wall of bacteria, the lytic enzymes of phages present a tremendous structural diversity and a

significant number of different mechanisms of action [121[L3][14][15]

In general, lysins are more likely to lyse Gram-positive bacteria because their cell wall peptidoglycan is directly
exposed on the cell surface unlike Gram-negative bacteria. However, the study of phages or their lysins has been
limited to a few fish pathogens such as Streptococcus agalactiae, Lactococcus garvieae, Renibacterium
salmoninarum, Streptococcus iniae, and S. dysgalactiae, which are highly associated with disease outbreaks in

fish farms.

| 4. Interactions between Phage and the Fish Inmune System
4.1. Phage-Mediated Activation of Inflammation

Bacteriophage treatment was associated with opposite shifts in the inflammatory response in several test models,
both in vivo and in vitro LEI7ZIL8ILN  However, the results seem to depend not only on the cellular or animal model
used but also on the type of phage applied and the panel of cytokines analyzed. Phage therapy in humans can
also modify the levels of some cytokines produced by blood cells in treated patients 29, In fish, some researchers
have analyzed the cytokines’ response to the presence of bacteriophages alone or the coinfection of phages with
their target bacteria. For example, phage therapy reduced the expression of the proinflammatory cytokines tnfa and
illb in the inflammatory response generated by Pseudomonas aeruginosa infection in zebrafish embryos [21122],
Besides, using the adult zebrafish (Danio rerio) and the E. tarda model of infection, other authors also showed that
although a phage treatment induced the expression of cytokine genes at specific time points, a robust
proinflammatory response was undetected in the host 23, Furthermore, a recent study has shown that a phage
lysate of A. hydrophila induced a more robust immune response in Cyprinus carpio when compared to a formalin
killed vaccine 24, As a proof-of-concept, a novel commercial preparation containing three bacterial phages
(BAFADOR®) applied on European eel (Anguilla anguilla) caused the stimulation of cellular and humoral immune

parameters in response to an experimental challenge with A. hydrophila and P. fluorecense 23,

4.2. Phage-Specific Adaptive Responses

Due to the protein structure of the phage envelope, these proteins are the target of the adaptive immune system,
which response with the production of neutralizing antibodies against them. Early studies with mice and even
amphibians showed that phage exposure of the animals induced primary and secondary antibody responses [26127]
(28] |t is expected that some phage epitopes stimulate an antibody response in experimental models. However,
antibody production depends on the route of phage administration, the application schedule and dose, and
individual features of a phage. Consequently, the results of studies where an antibody response to phages has
been verified are very heterogeneous. Phagocytosis by immune patrolling cells seems to be a significant process

of bacteriophage neutralization within animal bodies [22. Moreover, although blood in humans and animals,
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including fish, is deemed sterile, genomic analysis has shown a rich phage community, which inevitably comes into
continuous contact with immune cells in this rich fluid B9, Despite these mechanisms of phagocytosis, antigen
presentation, and antibody production by the immune cells against phages, the number of antibodies produced

does not affect phage therapy outcomes.

On the other hand, due to the numerous and constant presence of large numbers of phages in our microbiota, it is
not surprising that a low but stable background of antibodies against them is produced. Therefore, in some human
or animal tests, high antibody levels have not been found against the phages used. Phage-derived RNA and
ssDNA could directly contribute to B cell activation and the synthesis of anti-bacteriophage antibodies [3132],
Despite the production of antibodies by animals against phage core or tail proteins, the induction of antibodies
seems irrelevant for treating infections because the antibacterial effects of phages are faster than antibody
formation in acute infections 231, Conversely, the production of antibodies against phages could interfere with the
outcome of the infection in chronic infections B4, However, no robust studies have demonstrated an antibody-

mediated immune response after inoculation or experimental infection with phages in fish.

| 5. Potential of Phage Therapy in Aquaculture Settings

During the fish and shellfish production cycle, these animals are already in daily contact with billions of
bacteriophages, which assures us that they are safe. However, in their use against bacterial infections where

massive phage production is required, we must consider several factors.

As phage treatments constantly require isolating the bacterium causing the disease, once a helpful phage is
characterized against this bacterial strain, a stable batch of technically challenging preparations must be produced
for field use. Consequently, one of the most critical challenge for microbiologists working directly or indirectly with
aquaculture is the standardization of stocks used to treat infections or combat biofilms in aquaculture facilities.
These stocks require strict quality control for purity, viability, and stability, implying that the correct conservation of
the stocks is necessary for preparations containing single or mixed phages (phage cocktail). Titer, dosage, and
quality of phage preparations are crucial parameters in standardizing experiments in the laboratory and
experimental infections in field trials. Since we know that while some phages can grow exponentially inside a
bacterial population from a low initial concentration, other phages need to maintain a relationship between the
number of bacteria and the number of phage particles to achieve an adequate performance. Therefore, we must
empirically verify this critical parameter. Very recently, a phage cocktail containing seven bacteriophages (three
against A. hydrophila and four against P. fluorescens) has been tested in the European eel (Anguilla anguilla) and
rainbow trout (Oncorhynchus mykiss), reducing the mortality of fish challenged with strains of these two species of
bacteria [22123], Cocktails have also been used successfully in laboratory tests or small field trials in food protection
or veterinary and human medicine [B8IB7I38I39] | these and other studies, many phages (cocktail) are used to
carry out the experiments, but in most cases, only the phage that has presented better results in vitro is
subsequently characterized [#Q41l142l43]  Second, it would be desirable to know phage genetics with sufficient
precision. After all, we must consider that when we intend to use bacteriophages in aquaculture, they may contain

genes for resistance to antibiotics or bacterial virulence genes that can produce noticeable side effects because
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they replicate exponentially in contact with their target bacteria. We must also remember that many antibiotic
residues end up in continental or oceanic waters due to anthropogenic activities. Therefore, we must be aware that
even phages isolated from aquatic environments can carry antibiotic resistance genes or virulence factors 241451 At
present, although each time their number increases, not all phages used in in vitro or in vivo assays against fish or

shellfish bacterial pathogens have been entirely genetically analyzed or characterized (Table 1 and Table 2).

The list of species of fish bacterial pathogens in which lytic phages have been studied is not complete. It may be
essential to conduct these studies in species of greater interest in aquaculture, such as Photobacterium damselae
subsp. piscicida, bacterial anaerobes, mycobacteria, Nocardia, several Aeromonas species, Enterobacterales,
pseudomonads, vibrios, and the Gram-positive bacteria mentioned above. Few studies with fish bacterial
pathogens have characterized or evaluated the presence or evolution of phage-resistant strains. Some works have
investigated this phenomenon in various fish pathogens such as Flavobacterium “€l471148]  versinia ruckeri (42,
Aeromonas salmonicida 4959 and Vibrio anguillarum B, The mechanisms by which bacteria become resistant to
phages is also an area of intensive research, especially since the discovery and application of the clustered

regularly interspaced short palindromic repeats (CRISPR) system.

Most of the studies with fish pathogens have used controlled laboratory conditions to verify the control exerted by
these lytic phages to their pathogenic bacterial host. However, more studies on these interactions under natural
conditions would be desirable. One of the critical parameters is the multiplicity of infection (MOI). The use of high or
low multiplicities of infection seems to be a key parameter for achieving effective lysis of the bacterial population
and the appearance of resistance to the phages used. Therefore, comparative studies are needed to relate MOIs
used in vitro and in aquatic environments, where phages are exposed to environmental conditions and factors such
as dilution or variability of the target bacteria in their natural environment. A better understanding of the biology of
viruses and a greater capacity to standardize the settings related to preclinical or laboratory research can also help
in the advancement of regulatory affairs. As bacteriophage research continues to grow, we believe that
microbiologists and immunologists working in areas related to aquaculture can use phages or their lytic enzymes to
offer many promising advances in the fight against pathogenic bacterial species affecting cultured fish and
shellfish.

Table 1. Phages used against Gram-negative bacterial fish and shellfish pathogens.

Gram-Negative ¢ Characterization Phage Strains Genome

1 H *

Targets Source Enrichment Method Name Family Length References
Aeromonas River water No TEM $2 and ¢5 Myoviridae ~20 kb (52
hydrophila

Fishponds; . N21, W3, G65, Myoviridae; 53]
Polluted rivers Single TEM Y71 and Y81 Podoviridae n.d.

Stream water Single TEM, dsDNA pAh-1 Myoviridae ~64 kb 54]

Sea water Single TEM, DNA Akh-2 Siphoviridae 114,901 (551
sequencing bp
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Gram-Negative : ¢ Characterization Phage Strains S~ Genome
Targets Source Enrichment Method Name Family Length References
Carp tissues Single TEM AHP-1 Myoviridae n.d. 6l
) TEM, dsDNA, - [57)
Lake water Single DNA sequencing AhyVDH1 Myxoviridae 39,175 bp
River water No TEM, dSDNA.' MJG Podoviridae 45,057 bp (81
DNA sequencing
Sewage water Single TEM AH1 n.d. n.d. (59
Striped catfish . TEM, dsDNA, » [60](61]
pond water Single DNA sequencing PVNO2 Myoviridae 51,668 bp
. pAh1-C . 55 kb 62]
River water TEM, dsDNA DAR6-C Myoviridae 58 kb
Wastewater No TEM, dsDNA, Ahpl Podoviridae ~42 Kb [63)
DNA sequencing
Aeromonas Stream water Single TEM, dsDNA IHQ1 Myoviridae 25-28 kb (641
punctata
173,097
) bp,
R|ver_waters, two _ TEM, DNA SW69-9 N 173,578 5
passing through Single . L9-6 Myoviridae
fish farms sequencing Riv-10 HICh
174,311
bp
River water Single TEM, DNA phiAS5 Myoviridae 225,268 (56l
sequencing bp
Aeromonas Sediment of a
salmonicida Rainbow trout Single TEM, dSDN/_.\’ PAS-1 Myoviridae ~48 kb 671
DNA sequencing
culture farm
e No TEM, DNA AsXd-1 Siphoviridae 39,014 bp (s8]
a seafood market sequencing
Sewage network AS-A
water from a lift Single TEM AS-D Myoviridae n.d. o]
station AS-E
River water No TEM HER 110 Myoviridae n.d. ezl
Gastrointestinal
Aeromonas spp. cqntent 9f No TEM, DNA phiA8-29 Myoviridae 144,974 (2l
variated fish sequencing bp
species
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Gram-Negative
Targets

Citrobacter
freundii

Edwardsiella
ictaluri

Edwardsiella
tarda

Flavobacterium
columnare

Flavobacterium
psychrophilum

Photobacterium
damselae subsp.
damselae

Pseudomonas
plecoglossicida

Source

Sewage water

Water from
catfish ponds

River water

Striped catfish
kidney and liver

Seawater

River water

Wastewater

Fish tissues and
rearing seawater

River water

Fishpond's water
and bottom
sediments

Rainbow trout
farm water

Ayu kidneys and
pondwater
collected from
ayu farms

Raw oysters

Gastrointestinal
tract of lollipop
catshark

Ayu pond water
and diseased fish

t ¢ Characterization

Enrichmen Method
TEM, DNA
No .
sequencing
Single TEM, dsDNA,
9 DNA sequencing
) DNA
Multiple Sequencing
Single TEM, dsDNA
Single TEM, dsDNA
TEM, DNA
No .
sequencing
Single DNA sequencing
TEM, DNA
No .
sequencing
) TEM, DNA
Single :
sequencing
No TEM, dsDNA
Single/double TEM, dsDNA
Multiple TEM, dsDNA
Single TEM, dsDNA
. TEM, DNA
Single .
sequencing
TEM, DNA
No .
sequencing

Phage Strains
Name

IME-JL8

eiAU
eiDWF
eiMSLS

PEi21

MK7
ETP-1
pEt-SU
PETp9

GF-2

FCL-2

FCP1-FCP9

2 (FpV-1 to
FpV-22)

PFpPW-3,
PFpC-Y PFpW-
6, PFpW-7
PFpW-8

Phdal

vB_Pd_PDCC-
1

PPpW-3
PPpW-4

Family *

Siphoviridae

Siphoviridae

Myoviridae

Myoviridae
Podoviridae
Myoviridae
Myoviridae

Myoviridae

Myoviridae

Podoviridae

Podoviridae
Siphoviridae
Myoviridae

Myoviridae;
Podoviridae;
Siphoviridae

Myoviridae

Myoviridae

Myoviridae
Podoviridae

Genome
Length

49,838 bp

42.80 kbp
42.12 kbp
42.69 kbp

43,378 bp

~34 kb

~40 kb

276,734
bp

89,762 bp

43,129 bp

47,142 bp

n.d.

(-8 t0 ~90
kb)

n.d.

35.2-39.5
kb

237,509
bp

43,564 bp
41,386 bp

References

(73]

[74][75]

[z61[77]

[82][83][84]

[85][86]

87]

[90][91]
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Gram-Negative : ¢ Characterization Phage Strains S~ Genome
Targets Source Enrichment Method Name Family Length References
Pseudomonas Wastewater No TEM, DNA MBL n.d. 42,519 bp (921
aeruginosa sequencing
SppYZU01
Wastewater (43.567
) TEM, DNA SppYZUO01 to Myoviridae; bp) 193]
Shewanella spp. mafrrlfeT Ie.lace Single sequencing SppYZU10 Siphoviridae. SppYZU5
p (54.319
bp)
224,680
Tenacibaculum 8 TEM, DNA PTml T bp [94]
maritimum Seawater LT sequencing PTm5 il 226,876
bp
AR Single TEM, DNA VEN Podoviridae 44,603 bp (25
water sequencing
i Marine sediment No TEM, DNA ValKK3 Myoviridae 248,088 26l
Vibrio sequencing bp
alginolyticus
250,485
. . St2 » bp [07]
Marine water Single TEM, dsDNA Gmi Myoviridae 248,605
bp
309
Soft tissues from éh'\(/)“ég
clams and No TEM, dsDNA ALME Several shapes ~47-48 kb (98]
mussels CHOD
CHOB
Vibrio VP-2
anguillarum Sewage water Double dsDNA VA1 n.d. n.d. (51
2 -
HlILI?7I’4§4 " Myoviridae ~194-195
Water.samples Multiple TEM, DNA H8, H20 Siphoviridae = 99
from fish farms sequencing S4-18. 2E-1 Podoviridae ~50 kb
e ~45-51 kb
H2
Vibrio campbellii Host strain (V.
- ClfCI) No TEM, DNA HYO01 Siphoviridae 41.772 bp (100
isolated form a sequencing
dead shrimp
Hepatopancreas Single dsDNA, pNA vB_Vc_Srvc9 Autographiviridae ~ ~43.15 kb 101
of Pacific sequencing
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Gram-Negative
Targets Ll

white shrimp
Shrimp farm,

hatcheries and
marine water

Multiple

Vibrio harveyi No

Shrimp pond Single

water

Water and
sediment
samples

Single

Hatchery water
and oyster
tissues

Single

Vibrio harveyi

Commercial clam

Multiple
samples

Oyster, clam,
shrimp, and
seawater
samples

No

shrimp hatchery
and farm water,

oysters from Multiple

Gram-Positive Source

Targets
Lactococcus L.
garvieae garvieae
isolated
from
diseased
yellowtail

No

Yellowtail
(Y)
Water (W)
Sediments

S)

Single

Domestic .
Single
compost
L.
garvieae No
host

Rainbow
trout farm

Single

Enrichmen

Method

TEM, dsDNA

TEM, dsDNA

TEM, dsDNA

TEM, dsDNA

TEM, dsDNA

Genomic
analysis, dsDNA

TEM, DNA
sequencing

TEM, dsDNA

EnrichentCharacterization

Method

TEM, dsDNA

TEM, dsDNA

TEM, DNA
sequencing

TEM, DNA
sequencing

TEM, DNA
sequencing

{ ¢ Characterization Phage Strains

Name

VHML

PwW2

VHM1, VHM2
VHS1

vB_VhaS-a
vB_VhaS-tm

7 vhCCs-01
VhCCS-02
VhCCS-04
VhCCS-06
VhCCS-17
VhCCS-20
VhCCS-19
VhCCS-21

VHP6b

Vihal0
Viha8
Viha9

Phage
Strains
Name

PLgY(16)

PLgW1-6
PLgY16
PLgY30

PLgY886

PLgS1

GE1

PLgT-1

WP-2

Family *

Siphoviridae

Myovirus-like

Siphoviridae

Myoviridae,
Siphoviridae

Siphoviridae

Siphoviridae,
Myoviridae

Siphoviridae

Siphoviridae

Siphoviridae

Family *

Siphoviridae

Siphoviridae

Siphoviridae

Siphoviridae

Picovirinae

?_i':gt':‘e References
n.d. 1102]
nd. 1203]
~46 kb el
~55 kb,
~66 kb (105]
~69 kb
~82 kb [106]
~59 kb
n.d. [207]
78,081 bp (108]
n.d.
~44-94 kb [109][110]
nom
?_Zn(; theReferences
n.d. ke
>20 [135][136]
kbp 137
24,847 [138]
bp
29,284 390401
18,899 [142]
bp
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Gram-Positive
Targets

Streptococcus
agalactiae

S. iniae

Weissella ceti

Vibrio splendidus

Vibrio
coralliilyticus

Vibrio vulnificus

Vibrio sp.

Yersinia ruckeri

. o Phage
EnrichmentCharacterization g
Source Method Strains
Name
water
Tilapia
P No TEM HN48
pond
vB_SinS-
44
vB_SinS-
S. iniae 45
No TEM, dsDNA .
host vB_SinS-
46
vB_SinS-
48
W. ceti
. No TEM PWc
host strain
s e T B PVS-3
local hatcheries
Sgawater near a Single TEM, DNA VB_VspP_pVas
fish farm cage sequencing
sewage in oyster . i
Reenen Single TEM pVco-14
Seawater sample Single TEM, DNA SSP002
sequencing
Abalone samples No TEM’. VVPool
sequencing
VV1
Initial host strain V2
(V. vulnificus) No TEM VV3
VV4
VspDsh-1
- VpaJT-1
q 9 ValSwa-1
VspSw-1
Wastewater Single TEM NC10
containing

Family *

Caudoviridae

Siphoviridae

Siphoviridae

Siphoviridae
Podoviridae
Siphoviridae
Siphoviridae

Siphoviridae

Tectiviridae

Siphoviridae

Podoviridae

Genome
Length

n.d.

DM/
kb
~28.4
kb
~66.3
kb
~27.5
kb

.....

78,145 bp
n.d.
76,350 bp

76,423 bp

n.d.

46,692 bp
60,177 bp
76,310 bp
79,545 bp
113,778
bp

n.d.

References

143

144

[145]
of

124 ) )
Jlotic
rs; TEM

[125]

126][127

128

control

129

shows
1.

130]

ichia

coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibers. Microbiologyopen 2016, 5,

1003-1015.

8. Dunne, M.; Hupfeld, M.; Klumpp, J.; Loessner, M.J. Molecular Basis of Bacterial Host Interactions
by Gram-Positive Targeting Bacteriophages. Viruses 2018, 10, 397.

9. Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS

Microbiol. Lett. 2016, 363, fnw002.

10. Los, M.; Wegrzyn, G. Pseudolysogeny. Adv. Virus Res. 2012, 82, 339-349.

11. Vazquez, R.; Garcia, E.; Garcia, P. Phage Lysins for Fighting Bacterial Respiratory Infections: A
New Generation of Antimicrobials. Front. Immunol. 2018, 9, 2252.
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Gram-Negative . ¢ Characterization Phage Strains o Genome i
1 Targets Source Enrichment Method Name Family Length ReferencesS I
suspended trout
feces from a
settling pond at a
1 trout farm ), 103,
YerA41 icosahedral
Sewage No TEM (several head, contractile n.d. sl
1 phages) tail » virion-
TEM, DNA 39,
Sewage No sequencing, R1-37 Myoviridae ~270 kb (L32)133]

dsDNA
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¢ PRAB R TERE e nt N9 IR/ C6 . MHtIRIRSr6BCRER NS thntdrfiicebar desramsg 7L 1he authors; TEM

(Transmission Electron Microscopy); dsDNA (Double stranded DNA); n.d. (Not determined); ? Several phage
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