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Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the

management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity

often induces the modulation of a variated collection of immune responses within several types of immunocytes while

promoting specific mechanisms of bacterial clearance. 
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1. Phage Biology and Spatial Distribution

Bacteriophages or phages, in short, are an alternative to antimicrobials to fight against bacteria due to their unique host

range that provides them with an excellent specificity. In addition, contrary to the antibiotic’s negative physiological effects

on the host and the generation of bacterial resistance, the use of phages is eco-friendly and without major drawbacks .

Besides, phages produce lytic enzymes with the ability to act directly on the bacterial cell wall. An important associated

advantage is that phages are ubiquitous to all fresh and saltwater environments representing a virtually unlimited source

of virions and lytic enzymes. In seawater, the number and variety of phages have a direct and crucial impact on the

variability of microbial communities which directly modulate the global biogeochemical cycles in the oceans .

Quantitative analyses of marine waters using transmission electron microscopy demonstrated that non-tailed viruses are

the most abundant, followed by tailed viruses of the families Myoviridae and Podoviridae . This example represents a

huge gene reservoir across Earth’s ecosystems. Despite the great awakening interest in phage therapy and the discovery

of a vast reservoir of new genes available in the phages of aquatic ecosystems, the composition the phage populations in

the different fish species in aquaculture, either from freshwater or saltwater environments are not yet fully understood.

2. Phage’s Life Cycle

The phages like any other viruses depend on the metabolism of their bacterial host for reproduction. During the

reproductive process, most phage types completely consume the resources of their host and kill them when releasing

their progeny . Initially, phages must infect their host bacteria through the binding of specific receptors that selectively

sense specific components of the target bacterial cell wall such as the lipopolysaccharide in Gram-negative, or

peptidoglycan in Gram-positive, capsular polysaccharides, and superficial appendages such as pili and flagella .

Following the classical viral reproductive strategies, once the phage inserts their nucleic acid into the bacterium’s

cytoplasm, the host cellular machinery is highjacked to induce extensive replication through the lytic cycle (Figure 1).

Alternatively, a phage also has the capacity to insert its genetic information into the genome of the host bacterium, thus

becoming a prophage. The process of prophage incorporation into the host chromosome is called lysogenization, and the

resulting bacterium with the prophage is called a lysogen. Therefore, the genetic material of the prophage is transferred to

each daughter cell through cell division following the lysogenic cycle (Figure 1). A huge advantage associated with the

lysogenic cycle is that daughter cells will not produce new virus particles until conditions are favorable for the virus or

some external stimuli stress the cell and activate the highjacked genes. An additional less known phage reproductive

cycle is the so-called pseudo-lysogenic. In the pseudo-lysogenic type, the information encoded by the genome of the

phage is not translated immediately, perhaps due to the lack of nutrients and energy for the bacterium. However, it

remains inactive inside the host, waiting until the optimal conditions recover for the bacterium to restart its metabolic

processes. Then, the phage has the capacity to start again performing the lytic or lysogenic life cycles .
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Figure 1. The lytic and lysogenic cycle of bacteriophages. The lytic cycle comprises a series of events from attachment of

the bacteriophage to the bacterial cell membrane, to the release of daughter phages by the destruction of its bacterial

host. In the lysogenic cycle, phage DNA integrates into the bacterial genome without major consequences for the bacterial

cell, and where the nucleic acid of the virus replicates along with that of its host.

3. Phage Lytic Enzymes and Depolymerases

Lysins derived from phages degrade bacterial peptidoglycans and are classified into five groups, depending on the bonds

these enzymatic proteins cleave in the bacterial peptidoglycan . Although their function is exclusively to degrade the

cell wall of bacteria, the lytic enzymes of phages present a tremendous structural diversity and a significant number of

different mechanisms of action .

In general, lysins are more likely to lyse Gram-positive bacteria because their cell wall peptidoglycan is directly exposed

on the cell surface unlike Gram-negative bacteria. However, the study of phages or their lysins has been limited to a few

fish pathogens such as Streptococcus agalactiae, Lactococcus garvieae, Renibacterium salmoninarum, Streptococcus

iniae, and S. dysgalactiae, which are highly associated with disease outbreaks in fish farms.

4. Interactions between Phage and the Fish Immune System

4.1. Phage-Mediated Activation of Inflammation

Bacteriophage treatment was associated with opposite shifts in the inflammatory response in several test models, both in

vivo and in vitro . However, the results seem to depend not only on the cellular or animal model used but also

on the type of phage applied and the panel of cytokines analyzed. Phage therapy in humans can also modify the levels of

some cytokines produced by blood cells in treated patients . In fish, some researchers have analyzed the cytokines’

response to the presence of bacteriophages alone or the coinfection of phages with their target bacteria. For example,

phage therapy reduced the expression of the proinflammatory cytokines tnfa and il1b in the inflammatory response

generated by Pseudomonas aeruginosa infection in zebrafish embryos . Besides, using the adult zebrafish (Danio

rerio) and the E. tarda model of infection, other authors also showed that although a phage treatment induced the

expression of cytokine genes at specific time points, a robust proinflammatory response was undetected in the host .

Furthermore, a recent study has shown that a phage lysate of A. hydrophila induced a more robust immune response in

Cyprinus carpio when compared to a formalin killed vaccine . As a proof-of-concept, a novel commercial preparation

containing three bacterial phages (BAFADOR ) applied on European eel (Anguilla anguilla) caused the stimulation of

cellular and humoral immune parameters in response to an experimental challenge with A. hydrophila and P. fluorecense

.

4.2. Phage-Specific Adaptive Responses

Due to the protein structure of the phage envelope, these proteins are the target of the adaptive immune system, which

response with the production of neutralizing antibodies against them. Early studies with mice and even amphibians
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showed that phage exposure of the animals induced primary and secondary antibody responses . It is expected

that some phage epitopes stimulate an antibody response in experimental models. However, antibody production

depends on the route of phage administration, the application schedule and dose, and individual features of a phage.

Consequently, the results of studies where an antibody response to phages has been verified are very heterogeneous.

Phagocytosis by immune patrolling cells seems to be a significant process of bacteriophage neutralization within animal

bodies . Moreover, although blood in humans and animals, including fish, is deemed sterile, genomic analysis has

shown a rich phage community, which inevitably comes into continuous contact with immune cells in this rich fluid .

Despite these mechanisms of phagocytosis, antigen presentation, and antibody production by the immune cells against

phages, the number of antibodies produced does not affect phage therapy outcomes.

On the other hand, due to the numerous and constant presence of large numbers of phages in our microbiota, it is not

surprising that a low but stable background of antibodies against them is produced. Therefore, in some human or animal

tests, high antibody levels have not been found against the phages used. Phage-derived RNA and ssDNA could directly

contribute to B cell activation and the synthesis of anti-bacteriophage antibodies . Despite the production of

antibodies by animals against phage core or tail proteins, the induction of antibodies seems irrelevant for treating

infections because the antibacterial effects of phages are faster than antibody formation in acute infections .

Conversely, the production of antibodies against phages could interfere with the outcome of the infection in chronic

infections . However, no robust studies have demonstrated an antibody-mediated immune response after inoculation or

experimental infection with phages in fish.

5. Potential of Phage Therapy in Aquaculture Settings

During the fish and shellfish production cycle, these animals are already in daily contact with billions of bacteriophages,

which assures us that they are safe. However, in their use against bacterial infections where massive phage production is

required, we must consider several factors.

As phage treatments constantly require isolating the bacterium causing the disease, once a helpful phage is characterized

against this bacterial strain, a stable batch of technically challenging preparations must be produced for field use.

Consequently, one of the most critical challenge for microbiologists working directly or indirectly with aquaculture is the

standardization of stocks used to treat infections or combat biofilms in aquaculture facilities. These stocks require strict

quality control for purity, viability, and stability, implying that the correct conservation of the stocks is necessary for

preparations containing single or mixed phages (phage cocktail). Titer, dosage, and quality of phage preparations are

crucial parameters in standardizing experiments in the laboratory and experimental infections in field trials. Since we know

that while some phages can grow exponentially inside a bacterial population from a low initial concentration, other phages

need to maintain a relationship between the number of bacteria and the number of phage particles to achieve an

adequate performance. Therefore, we must empirically verify this critical parameter. Very recently, a phage cocktail

containing seven bacteriophages (three against A. hydrophila and four against P. fluorescens) has been tested in the

European eel (Anguilla anguilla) and rainbow trout (Oncorhynchus mykiss), reducing the mortality of fish challenged with

strains of these two species of bacteria . Cocktails have also been used successfully in laboratory tests or small field

trials in food protection or veterinary and human medicine . In these and other studies, many phages (cocktail)

are used to carry out the experiments, but in most cases, only the phage that has presented better results in vitro is

subsequently characterized . Second, it would be desirable to know phage genetics with sufficient precision.

After all, we must consider that when we intend to use bacteriophages in aquaculture, they may contain genes for

resistance to antibiotics or bacterial virulence genes that can produce noticeable side effects because they replicate

exponentially in contact with their target bacteria. We must also remember that many antibiotic residues end up in

continental or oceanic waters due to anthropogenic activities. Therefore, we must be aware that even phages isolated

from aquatic environments can carry antibiotic resistance genes or virulence factors . At present, although each time

their number increases, not all phages used in in vitro or in vivo assays against fish or shellfish bacterial pathogens have

been entirely genetically analyzed or characterized (Table 1 and Table 2).

The list of species of fish bacterial pathogens in which lytic phages have been studied is not complete. It may be essential

to conduct these studies in species of greater interest in aquaculture, such as Photobacterium damselae subsp. piscicida,

bacterial anaerobes, mycobacteria, Nocardia, several Aeromonas species, Enterobacterales, pseudomonads, vibrios, and

the Gram-positive bacteria mentioned above. Few studies with fish bacterial pathogens have characterized or evaluated

the presence or evolution of phage-resistant strains. Some works have investigated this phenomenon in various fish

pathogens such as Flavobacterium , Yersinia ruckeri , Aeromonas salmonicida , and Vibrio anguillarum

. The mechanisms by which bacteria become resistant to phages is also an area of intensive research, especially since

the discovery and application of the clustered regularly interspaced short palindromic repeats (CRISPR) system.
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Most of the studies with fish pathogens have used controlled laboratory conditions to verify the control exerted by these

lytic phages to their pathogenic bacterial host. However, more studies on these interactions under natural conditions

would be desirable. One of the critical parameters is the multiplicity of infection (MOI). The use of high or low multiplicities

of infection seems to be a key parameter for achieving effective lysis of the bacterial population and the appearance of

resistance to the phages used. Therefore, comparative studies are needed to relate MOIs used in vitro and in aquatic

environments, where phages are exposed to environmental conditions and factors such as dilution or variability of the

target bacteria in their natural environment. A better understanding of the biology of viruses and a greater capacity to

standardize the settings related to preclinical or laboratory research can also help in the advancement of regulatory

affairs. As bacteriophage research continues to grow, we believe that microbiologists and immunologists working in areas

related to aquaculture can use phages or their lytic enzymes to offer many promising advances in the fight against

pathogenic bacterial species affecting cultured fish and shellfish.

Table 1. Phages used against Gram-negative bacterial fish and shellfish pathogens.

Gram-Negative
Targets Source Enrichment Characterization

Method
Phage Strains
Name Family * Genome

Length References

Aeromonas
hydrophila

River water No TEM ɸ2 and ɸ5 Myoviridae ~20 kb

Fishponds;
Polluted rivers Single TEM N21, W3, G65,

Y71 and Y81
Myoviridae;
Podoviridae n.d.

Stream water Single TEM, dsDNA pAh-1 Myoviridae ~64 kb

Sea water Single TEM, DNA
sequencing Akh-2 Siphoviridae 114,901

bp

Carp tissues Single TEM AHP-1 Myoviridae n.d.

Lake water Single
TEM, dsDNA,

DNA
sequencing

AhyVDH1 Myxoviridae 39,175 bp

River water No
TEM, dsDNA,

DNA
sequencing

MJG Podoviridae 45,057 bp

Sewage water Single TEM AH1 n.d. n.d.

Striped catfish
pond water Single

TEM, dsDNA,
DNA

sequencing
PVN02 Myoviridae 51,668 bp

River water   TEM, dsDNA pAh1-C
pAh6-C Myoviridae 55 kb

58 kb

Wastewater No
TEM, dsDNA,

DNA
sequencing

Ahp1 Podoviridae ~42 kb

Aeromonas
punctata Stream water Single TEM, dsDNA IHQ1 Myoviridae 25–28 kb

Aeromonas
salmonicida

River waters, two
passing through

fish farms
Single TEM, DNA

sequencing

SW69-9
L9-6

Riv-10
Myoviridae

173,097
bp,

173,578
bp and
174,311

bp

River water Single TEM, DNA
sequencing phiAS5 Myoviridae 225,268

bp

Sediment of a
Rainbow trout
culture farm

Single
TEM, dsDNA,

DNA
sequencing

PAS-1 Myoviridae ~48 kb

Wastewater from
a seafood market No TEM, DNA

sequencing AsXd-1 Siphoviridae 39,014 bp

Sewage network
water from a lift

station
Single TEM

AS-A
AS-D
AS-E

Myoviridae n.d.

River water No TEM HER 110 Myoviridae n.d.
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Gram-Negative
Targets Source Enrichment Characterization

Method
Phage Strains
Name Family * Genome

Length References

Aeromonas spp.

Gastrointestinal
content of

variated fish
species

No TEM, DNA
sequencing phiA8-29 Myoviridae 144,974

bp

Citrobacter
freundii Sewage water No TEM, DNA

sequencing IME-JL8 Siphoviridae 49,838 bp

Edwardsiella
ictaluri

Water from
catfish ponds Single

TEM, dsDNA,
DNA

sequencing

eiAU
eiDWF
eiMSLS

Siphoviridae
42.80 kbp
42.12 kbp
42.69 kbp

River water Multiple DNA
Sequencing PEi21 Myoviridae 43,378 bp

Striped catfish
kidney and liver Single TEM, dsDNA MK7 Myoviridae ~34 kb

Edwardsiella
tarda

Seawater Single TEM, dsDNA ETP-1 Podoviridae ~40 kb

River water No TEM, DNA
sequencing pEt-SU Myoviridae 276,734

bp

Wastewater Single DNA
sequencing PETp9 Myoviridae 89,762 bp

Fish tissues and
rearing seawater No TEM, DNA

sequencing GF-2 Myoviridae 43,129 bp

Flavobacterium
columnare

River water Single TEM, DNA
sequencing FCL-2 Myoviridae 47,142 bp

Fishpond’s water
and bottom
sediments

No TEM, dsDNA FCP1-FCP9 Podoviridae n.d.

Flavobacterium
psychrophilum

Rainbow trout
farm water Single/double TEM, dsDNA

 (FpV-1 to
FpV-22)

Podoviridae
Siphoviridae
Myoviridae

(~8 to ~90
kb)

Ayu kidneys and
pondwater

collected from
ayu farms

Multiple TEM, dsDNA

PFpW-3, PFpC-
Y PFpW-6,

PFpW-7
PFpW-8

Myoviridae;
Podoviridae;
Siphoviridae

n.d.

Photobacterium
damselae subsp.

damselae

Raw oysters Single TEM, dsDNA Phda1 Myoviridae 35.2–39.5
kb

Gastrointestinal
tract of lollipop

catshark
Single TEM, DNA

sequencing
vB_Pd_PDCC-

1 Myoviridae 237,509
bp

Pseudomonas
plecoglossicida

Ayu pond water
and diseased fish No TEM, DNA

sequencing
PPpW-3
PPpW-4

Myoviridae
Podoviridae

43,564 bp
41,386 bp

Pseudomonas
aeruginosa Wastewater No TEM, DNA

sequencing MBL n.d. 42,519 bp

Shewanella spp.
Wastewater

from a
marketplace

Single TEM, DNA
sequencing

SppYZU01 to
SppYZU10

Myoviridae;
Siphoviridae.

SppYZU01
(43.567

bp)
SppYZU5
(54.319

bp)

Tenacibaculum
maritimum Seawater Multiple TEM, DNA

sequencing
PTm1
PTm5 Myoviridae

224,680
bp

226,876
bp
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Gram-Negative
Targets Source Enrichment Characterization

Method
Phage Strains
Name Family * Genome

Length References

Vibrio
alginolyticus

Aquaculture tank
water Single TEM, DNA

sequencing VEN Podoviridae 44,603 bp

Marine sediment No TEM, DNA
sequencing ValKK3 Myoviridae 248,088

bp

Marine water Single TEM, dsDNA St2
Grn1 Myoviridae

250,485
bp

248,605
bp

Vibrio
anguillarum

Soft tissues from
clams and
mussels

No TEM, dsDNA

309
ALMED
CHOED
ALME
CHOD
CHOB

Several shapes ~47–48 kb

Sewage water Double dsDNA VP-2
VA-1 n.d. n.d.

Water samples
from fish farms Multiple TEM, DNA

sequencing

 H1, H7, S4-7,
H4, H5

H8, H20
S4-18, 2E-1, H2

Myoviridae
Siphoviridae
Podoviridae

~194–195
kb

~50 kb
~45–51 kb

Vibrio campbellii

Host strain (V.
campbellii)

isolated form a
dead shrimp

No TEM, DNA
sequencing HY01 Siphoviridae 41.772 bp

Hepatopancreas
of Pacific

white shrimp
Single dsDNA, DNA

sequencing vB_Vc_SrVc9 Autographiviridae ~43.15 kb

Vibrio harveyi

Shrimp farm,
hatcheries and
marine water

Multiple TEM, dsDNA A Siphoviridae n.d.

Vibrio harveyi No TEM, dsDNA VHML Myovirus-like n.d.

Shrimp pond
water Single TEM, dsDNA PW2 Siphoviridae ~46 kb

Water and
sediment
samples

Single TEM, dsDNA VHM1, VHM2
VHS1

Myoviridae,
Siphoviridae

~55 kb,
~66 kb
~69 kb

Hatchery water
and oyster

tissues
Single TEM, dsDNA vB_VhaS-a

vB_VhaS-tm Siphoviridae ~82 kb
~59 kb

Commercial clam
samples Multiple Genomic

analysis, dsDNA

 VhCCS-01
VhCCS-02
VhCCS-04
VhCCS-06
VhCCS-17
VhCCS-20
VhCCS-19
VhCCS-21

Siphoviridae,
Myoviridae n.d.

Oyster, clam,
shrimp, and

seawater
samples

No TEM, DNA
sequencing VHP6b Siphoviridae 78,081 bp

shrimp hatchery
and farm water,

oysters from
estuaries, coastal

sea water

Multiple TEM, dsDNA

Viha10
Viha8
Viha9

Viha11
Viha1 to Viha7

Siphoviridae
-

Siphoviridae
Myoviridae

(Viha4)

n.d.
~44–94 kb

~85 kb
(Viha4)

Seawater sample Single TEM VhKM4 Myoviridae n.d.

Vibrio ordalii
Macerated

specimens of
mussels

No TEM, DNA
sequencing B_VorS-PVo5 Siphoviridae 80,578 bp
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 Phage enrichment with “single” or “multiple” bacterial hosts; * Classification determined by the authors; TEM

(Transmission Electron Microscopy); dsDNA (Double stranded DNA); n.d. (Not determined);  Several phage strains were

isolated but only selected strains were fully characterized.

Table 2. Phages used against Gram-positive bacterial fish and shellfish pathogens.

Gram-Positive
Targets Source Enrichment Characterization

Method

Phage
Strains
Name

Family * Genome
Length References

Lactococcus
garvieae

L. garvieae
isolated from

diseased
yellowtail

No TEM, dsDNA PLgY(16) Siphoviridae n.d.

Yellowtail (Y)
Water (W)
Sediments

(S)

Single TEM, dsDNA

PLgW1-6
PLgY16
PLgY30

PLgY886
PLgS1

Siphoviridae >20 kbp

Domestic
compost Single TEM, DNA

sequencing GE1 Siphoviridae 24,847
bp

L. garvieae
host No TEM, DNA

sequencing PLgT-1 Siphoviridae 29,284
bp

Rainbow
trout farm

water
Single TEM, DNA

sequencing WP-2 Picovirinae 18,899
bp

Streptococcus
agalactiae Tilapia pond No TEM HN48 Caudoviridae n.d.

S. iniae S. iniae host No TEM, dsDNA

vB_SinS-44
vB_SinS-45
vB_SinS-46
vB_SinS-48

Siphoviridae

~51.7 kb
~28.4 kb
~66.3 kb
~27.5 kb

Weissella ceti W. ceti host
strain No TEM PWc Siphoviridae 38,783

bp

 Phage enrichment with “single” or “multiple” bacterial hosts; * Classification determined by the authors; TEM

(Transmission Electron Microscopy); dsDNA (Double stranded DNA); n.d. (Not determined).
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