

Phage Therapy in Aquaculture Management

Subjects: **Agriculture, Dairy & Animal Science**

Contributor: Jorge Galindo-Villegas

Therapeutic bacteriophages, commonly called as phages, are a promising potential alternative to antibiotics in the management of bacterial infections of a wide range of organisms including cultured fish. Their natural immunogenicity often induces the modulation of a variated collection of immune responses within several types of immunocytes while promoting specific mechanisms of bacterial clearance.

aquaculture

bacteriophages

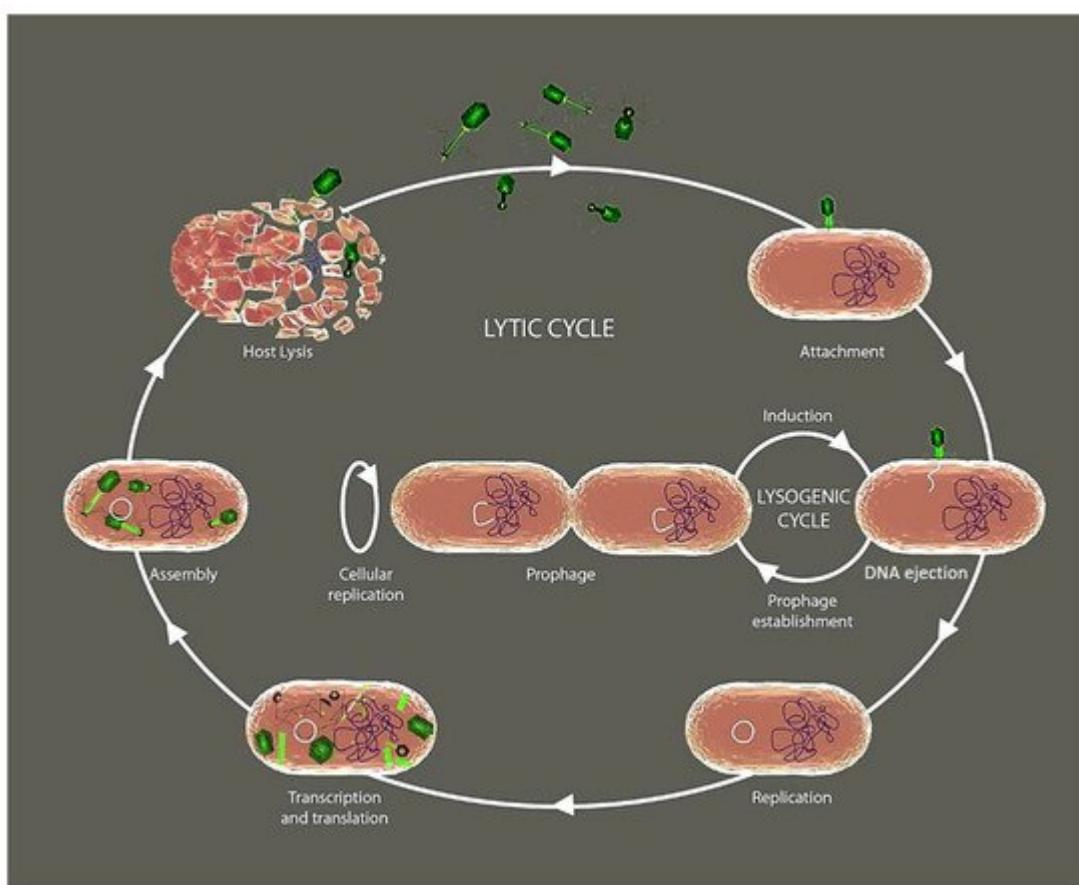
disease management

fish

immunology

lytic enzymes

pathogens


1. Phage Biology and Spatial Distribution

Bacteriophages or phages, in short, are an alternative to antimicrobials to fight against bacteria due to their unique host range that provides them with an excellent specificity. In addition, contrary to the antibiotic's negative physiological effects on the host and the generation of bacterial resistance, the use of phages is eco-friendly and without major drawbacks [1][2]. Besides, phages produce lytic enzymes with the ability to act directly on the bacterial cell wall. An important associated advantage is that phages are ubiquitous to all fresh and saltwater environments representing a virtually unlimited source of virions and lytic enzymes. In seawater, the number and variety of phages have a direct and crucial impact on the variability of microbial communities which directly modulate the global biogeochemical cycles in the oceans [3][4]. Quantitative analyses of marine waters using transmission electron microscopy demonstrated that non-tailed viruses are the most abundant, followed by tailed viruses of the families Myoviridae and Podoviridae [5]. This example represents a huge gene reservoir across Earth's ecosystems. Despite the great awakening interest in phage therapy and the discovery of a vast reservoir of new genes available in the phages of aquatic ecosystems, the composition the phage populations in the different fish species in aquaculture, either from freshwater or saltwater environments are not yet fully understood.

2. Phage's Life Cycle

The phages like any other viruses depend on the metabolism of their bacterial host for reproduction. During the reproductive process, most phage types completely consume the resources of their host and kill them when releasing their progeny [6]. Initially, phages must infect their host bacteria through the binding of specific receptors that selectively sense specific components of the target bacterial cell wall such as the lipopolysaccharide in Gram-negative, or peptidoglycan in Gram-positive, capsular polysaccharides, and superficial appendages such as pili and flagella [7][8][9]. Following the classical viral reproductive strategies, once the phage inserts their nucleic acid

into the bacterium's cytoplasm, the host cellular machinery is highjacked to induce extensive replication through the lytic cycle (**Figure 1**). Alternatively, a phage also has the capacity to insert its genetic information into the genome of the host bacterium, thus becoming a prophage. The process of prophage incorporation into the host chromosome is called lysogenization, and the resulting bacterium with the prophage is called a lysogen. Therefore, the genetic material of the prophage is transferred to each daughter cell through cell division following the lysogenic cycle (**Figure 1**). A huge advantage associated with the lysogenic cycle is that daughter cells will not produce new virus particles until conditions are favorable for the virus or some external stimuli stress the cell and activate the highjacked genes. An additional less known phage reproductive cycle is the so-called pseudo-lysogenic. In the pseudo-lysogenic type, the information encoded by the genome of the phage is not translated immediately, perhaps due to the lack of nutrients and energy for the bacterium. However, it remains inactive inside the host, waiting until the optimal conditions recover for the bacterium to restart its metabolic processes. Then, the phage has the capacity to start again performing the lytic or lysogenic life cycles [10].

Figure 1. The lytic and lysogenic cycle of bacteriophages. The lytic cycle comprises a series of events from attachment of the bacteriophage to the bacterial cell membrane, to the release of daughter phages by the destruction of its bacterial host. In the lysogenic cycle, phage DNA integrates into the bacterial genome without major consequences for the bacterial cell, and where the nucleic acid of the virus replicates along with that of its host.

3. Phage Lytic Enzymes and Depolymerases

Lysins derived from phages degrade bacterial peptidoglycans and are classified into five groups, depending on the bonds these enzymatic proteins cleave in the bacterial peptidoglycan [11]. Although their function is exclusively to degrade the cell wall of bacteria, the lytic enzymes of phages present a tremendous structural diversity and a significant number of different mechanisms of action [12][13][14][15].

In general, lysins are more likely to lyse Gram-positive bacteria because their cell wall peptidoglycan is directly exposed on the cell surface unlike Gram-negative bacteria. However, the study of phages or their lysins has been limited to a few fish pathogens such as *Streptococcus agalactiae*, *Lactococcus garvieae*, *Renibacterium salmoninarum*, *Streptococcus iniae*, and *S. dysgalactiae*, which are highly associated with disease outbreaks in fish farms.

4. Interactions between Phage and the Fish Immune System

4.1. Phage-Mediated Activation of Inflammation

Bacteriophage treatment was associated with opposite shifts in the inflammatory response in several test models, both in vivo and in vitro [16][17][18][19]. However, the results seem to depend not only on the cellular or animal model used but also on the type of phage applied and the panel of cytokines analyzed. Phage therapy in humans can also modify the levels of some cytokines produced by blood cells in treated patients [20]. In fish, some researchers have analyzed the cytokines' response to the presence of bacteriophages alone or the coinfection of phages with their target bacteria. For example, phage therapy reduced the expression of the proinflammatory cytokines tnfα and il1β in the inflammatory response generated by *Pseudomonas aeruginosa* infection in zebrafish embryos [21][22]. Besides, using the adult zebrafish (*Danio rerio*) and the *E. tarda* model of infection, other authors also showed that although a phage treatment induced the expression of cytokine genes at specific time points, a robust proinflammatory response was undetected in the host [23]. Furthermore, a recent study has shown that a phage lysate of *A. hydrophila* induced a more robust immune response in *Cyprinus carpio* when compared to a formalin killed vaccine [24]. As a proof-of-concept, a novel commercial preparation containing three bacterial phages (BAFADOR®) applied on European eel (*Anguilla anguilla*) caused the stimulation of cellular and humoral immune parameters in response to an experimental challenge with *A. hydrophila* and *P. fluorescens* [25].

4.2. Phage-Specific Adaptive Responses

Due to the protein structure of the phage envelope, these proteins are the target of the adaptive immune system, which responds with the production of neutralizing antibodies against them. Early studies with mice and even amphibians showed that phage exposure of the animals induced primary and secondary antibody responses [26][27][28]. It is expected that some phage epitopes stimulate an antibody response in experimental models. However, antibody production depends on the route of phage administration, the application schedule and dose, and individual features of a phage. Consequently, the results of studies where an antibody response to phages has been verified are very heterogeneous. Phagocytosis by immune patrolling cells seems to be a significant process of bacteriophage neutralization within animal bodies [29]. Moreover, although blood in humans and animals,

including fish, is deemed sterile, genomic analysis has shown a rich phage community, which inevitably comes into continuous contact with immune cells in this rich fluid [30]. Despite these mechanisms of phagocytosis, antigen presentation, and antibody production by the immune cells against phages, the number of antibodies produced does not affect phage therapy outcomes.

On the other hand, due to the numerous and constant presence of large numbers of phages in our microbiota, it is not surprising that a low but stable background of antibodies against them is produced. Therefore, in some human or animal tests, high antibody levels have not been found against the phages used. Phage-derived RNA and ssDNA could directly contribute to B cell activation and the synthesis of anti-bacteriophage antibodies [31][32]. Despite the production of antibodies by animals against phage core or tail proteins, the induction of antibodies seems irrelevant for treating infections because the antibacterial effects of phages are faster than antibody formation in acute infections [33]. Conversely, the production of antibodies against phages could interfere with the outcome of the infection in chronic infections [34]. However, no robust studies have demonstrated an antibody-mediated immune response after inoculation or experimental infection with phages in fish.

5. Potential of Phage Therapy in Aquaculture Settings

During the fish and shellfish production cycle, these animals are already in daily contact with billions of bacteriophages, which assures us that they are safe. However, in their use against bacterial infections where massive phage production is required, we must consider several factors.

As phage treatments constantly require isolating the bacterium causing the disease, once a helpful phage is characterized against this bacterial strain, a stable batch of technically challenging preparations must be produced for field use. Consequently, one of the most critical challenge for microbiologists working directly or indirectly with aquaculture is the standardization of stocks used to treat infections or combat biofilms in aquaculture facilities. These stocks require strict quality control for purity, viability, and stability, implying that the correct conservation of the stocks is necessary for preparations containing single or mixed phages (phage cocktail). Titer, dosage, and quality of phage preparations are crucial parameters in standardizing experiments in the laboratory and experimental infections in field trials. Since we know that while some phages can grow exponentially inside a bacterial population from a low initial concentration, other phages need to maintain a relationship between the number of bacteria and the number of phage particles to achieve an adequate performance. Therefore, we must empirically verify this critical parameter. Very recently, a phage cocktail containing seven bacteriophages (three against *A. hydrophila* and four against *P. fluorescens*) has been tested in the European eel (*Anguilla anguilla*) and rainbow trout (*Oncorhynchus mykiss*), reducing the mortality of fish challenged with strains of these two species of bacteria [25][35]. Cocktails have also been used successfully in laboratory tests or small field trials in food protection or veterinary and human medicine [36][37][38][39]. In these and other studies, many phages (cocktail) are used to carry out the experiments, but in most cases, only the phage that has presented better results in vitro is subsequently characterized [40][41][42][43]. Second, it would be desirable to know phage genetics with sufficient precision. After all, we must consider that when we intend to use bacteriophages in aquaculture, they may contain genes for resistance to antibiotics or bacterial virulence genes that can produce noticeable side effects because

they replicate exponentially in contact with their target bacteria. We must also remember that many antibiotic residues end up in continental or oceanic waters due to anthropogenic activities. Therefore, we must be aware that even phages isolated from aquatic environments can carry antibiotic resistance genes or virulence factors [44][45]. At present, although each time their number increases, not all phages used in in vitro or in vivo assays against fish or shellfish bacterial pathogens have been entirely genetically analyzed or characterized (**Table 1** and **Table 2**).

The list of species of fish bacterial pathogens in which lytic phages have been studied is not complete. It may be essential to conduct these studies in species of greater interest in aquaculture, such as *Photobacterium damsela* subsp. *piscicida*, bacterial anaerobes, mycobacteria, *Nocardia*, several *Aeromonas* species, *Enterobacteriales*, pseudomonads, vibrios, and the Gram-positive bacteria mentioned above. Few studies with fish bacterial pathogens have characterized or evaluated the presence or evolution of phage-resistant strains. Some works have investigated this phenomenon in various fish pathogens such as *Flavobacterium* [46][47][48], *Yersinia ruckeri* [49], *Aeromonas salmonicida* [40][50], and *Vibrio anguillarum* [51]. The mechanisms by which bacteria become resistant to phages is also an area of intensive research, especially since the discovery and application of the clustered regularly interspaced short palindromic repeats (CRISPR) system.

Most of the studies with fish pathogens have used controlled laboratory conditions to verify the control exerted by these lytic phages to their pathogenic bacterial host. However, more studies on these interactions under natural conditions would be desirable. One of the critical parameters is the multiplicity of infection (MOI). The use of high or low multiplicities of infection seems to be a key parameter for achieving effective lysis of the bacterial population and the appearance of resistance to the phages used. Therefore, comparative studies are needed to relate MOIs used in vitro and in aquatic environments, where phages are exposed to environmental conditions and factors such as dilution or variability of the target bacteria in their natural environment. A better understanding of the biology of viruses and a greater capacity to standardize the settings related to preclinical or laboratory research can also help in the advancement of regulatory affairs. As bacteriophage research continues to grow, we believe that microbiologists and immunologists working in areas related to aquaculture can use phages or their lytic enzymes to offer many promising advances in the fight against pathogenic bacterial species affecting cultured fish and shellfish.

Table 1. Phages used against Gram-negative bacterial fish and shellfish pathogens.

Gram-Negative Targets	Source	Enrichment ϕ	Characterization Method	Phage Strains Name	Family *	Genome Length	References
<i>Aeromonas hydrophila</i>	River water	No	TEM	ϕ 2 and ϕ 5	Myoviridae	~20 kb	[52]
	Fishponds; Polluted rivers	Single	TEM	N21, W3, G65, Y71 and Y81	Myoviridae; Podoviridae	n.d.	[53]
	Stream water	Single	TEM, dsDNA	pAh-1	Myoviridae	~64 kb	[54]
	Sea water	Single	TEM, DNA sequencing	Akh-2	Siphoviridae	114,901 bp	[55]

Gram-Negative Targets	Source	Enrichment	Characterization Method	Phage Strains Name	Family *	Genome Length	References
<i>Aeromonas</i> spp.	Carp tissues	Single	TEM	AHP-1	Myoviridae	n.d.	[56]
	Lake water	Single	TEM, dsDNA, DNA sequencing	AhyVDH1	Myxoviridae	39,175 bp	[57]
	River water	No	TEM, dsDNA, DNA sequencing	MJG	Podoviridae	45,057 bp	[58]
	Sewage water	Single	TEM	AH1	n.d.	n.d.	[59]
	Striped catfish pond water	Single	TEM, dsDNA, DNA sequencing	PVN02	Myoviridae	51,668 bp	[60][61]
	River water		TEM, dsDNA	pAh1-C pAh6-C	Myoviridae	55 kb 58 kb	[62]
	Wastewater	No	TEM, dsDNA, DNA sequencing	Ahp1	Podoviridae	~42 kb	[63]
<i>Aeromonas punctata</i>	Stream water	Single	TEM, dsDNA	IHQ1	Myoviridae	25–28 kb	[64]
<i>Aeromonas salmonicida</i>	River waters, two passing through fish farms	Single	TEM, DNA sequencing	SW69-9 L9-6 Riv-10	Myoviridae	173,097 bp, 173,578 bp and 174,311 bp	[65]
	River water	Single	TEM, DNA sequencing	phiAS5	Myoviridae	225,268 bp	[66]
	Sediment of a Rainbow trout culture farm	Single	TEM, dsDNA, DNA sequencing	PAS-1	Myoviridae	~48 kb	[67]
	Wastewater from a seafood market	No	TEM, DNA sequencing	AsXd-1	Siphoviridae	39,014 bp	[68]
<i>Aeromonas</i> spp.	Sewage network water from a lift station	Single	TEM	AS-A AS-D AS-E	Myoviridae	n.d.	[40][41]
	River water	No	TEM	HER 110	Myoviridae	n.d.	[69][70]
	Gastrointestinal content of variated fish species	No	TEM, DNA sequencing	phiA8-29	Myoviridae	144,974 bp	[71][72]

Gram-Negative Targets	Source	Enrichment	Characterization Method	Phage Strains Name	Family *	Genome Length	References
<i>Citrobacter freundii</i>	Sewage water	No	TEM, DNA sequencing	IME-JL8	Siphoviridae	49,838 bp	[73]
	Water from catfish ponds	Single	TEM, dsDNA, DNA sequencing	eiAU eiDWF eiMSLS	Siphoviridae	42.80 kbp 42.12 kbp 42.69 kbp	[74][75]
<i>Edwardsiella ictaluri</i>	River water	Multiple	DNA Sequencing	PEi21	Myoviridae	43,378 bp	[76][77]
	Striped catfish kidney and liver	Single	TEM, dsDNA	MK7	Myoviridae	~34 kb	[78]
<i>Edwardsiella tarda</i>	Seawater	Single	TEM, dsDNA	ETP-1	Podoviridae	~40 kb	[23]
	River water	No	TEM, DNA sequencing	pEt-SU	Myoviridae	276,734 bp	[79]
	Wastewater	Single	DNA sequencing	PETp9	Myoviridae	89,762 bp	[80]
	Fish tissues and rearing seawater	No	TEM, DNA sequencing	GF-2	Myoviridae	43,129 bp	[81]
	River water	Single	TEM, DNA sequencing	FCL-2	Myoviridae	47,142 bp	[82][83][84]
<i>Flavobacterium columnare</i>	Fishpond's water and bottom sediments	No	TEM, dsDNA	FCP1-FCP9	Podoviridae	n.d.	[42]
	Rainbow trout farm water	Single/double	TEM, dsDNA	^ø (FpV-1 to FpV-22)	Podoviridae Siphoviridae Myoviridae	(~8 to ~90 kb)	[85][86]
<i>Flavobacterium psychrophilum</i>	Ayu kidneys and pondwater collected from ayu farms	Multiple	TEM, dsDNA	PFpW-3, PFpC-Y PFpW-6, PFpW-7 PFpW-8	Myoviridae; Podoviridae; Siphoviridae	n.d.	[87]
<i>Photobacterium damsela subsp. damsela</i>	Raw oysters	Single	TEM, dsDNA	Phda1	Myoviridae	35.2–39.5 kb	[88]
<i>Pseudomonas plecoglossicida</i>	Gastrointestinal tract of lollipop catshark	Single	TEM, DNA sequencing	vB_Pd_PDCC-1	Myoviridae	237,509 bp	[89]
	Ayu pond water and diseased fish	No	TEM, DNA sequencing	PPpW-3 PPpW-4	Myoviridae Podoviridae	43,564 bp 41,386 bp	[90][91]

Gram-Negative Targets	Source	Enrichment	Characterization Method	Phage Strains Name	Family *	Genome Length	References
<i>Pseudomonas aeruginosa</i>	Wastewater	No	TEM, DNA sequencing	MBL	n.d.	42,519 bp	[92]
<i>Shewanella</i> spp.	Wastewater from a marketplace	Single	TEM, DNA sequencing	SppYZU01 to SppYZU10	Myoviridae; Siphoviridae.	SppYZU01 (43,567 bp) SppYZU5 (54,319 bp)	[93]
<i>Tenacibaculum maritimum</i>	Seawater	Multiple	TEM, DNA sequencing	PTm1 PTm5	Myoviridae	224,680 bp 226,876 bp	[94]
<i>Vibrio alginolyticus</i>	Aquaculture tank water	Single	TEM, DNA sequencing	VEN	Podoviridae	44,603 bp	[95]
	Marine sediment	No	TEM, DNA sequencing	ValKK3	Myoviridae	248,088 bp	[96]
	Marine water	Single	TEM, dsDNA	St2 Grn1	Myoviridae	250,485 bp 248,605 bp	[97]
<i>Vibrio anguillarum</i>	Soft tissues from clams and mussels	No	TEM, dsDNA	309 ALMED CHOED ALME CHOD CHOB	Several shapes	~47–48 kb	[98]
	Sewage water	Double	dsDNA	VP-2 VA-1	n.d.	n.d.	[51]
	Water samples from fish farms	Multiple	TEM, DNA sequencing	^a H1, H7, S4-7, H4, H5 H8, H20 S4-18, 2E-1, H2	Myoviridae Siphoviridae Podoviridae	~194–195 kb ~50 kb ~45–51 kb	[99]
<i>Vibrio campbellii</i>	Host strain (<i>V. campbellii</i>) isolated from a dead shrimp	No	TEM, DNA sequencing	HY01	Siphoviridae	41.772 bp	[100]
	Hepatopancreas of Pacific	Single	dsDNA, DNA sequencing	vB_Vc_SrVc9	Autographiviridae	~43.15 kb	[101]

Gram-Negative Targets	Source	Enrichment ϕ	Characterization Method	Phage Strains Name	Family *	Genome Length	References
<i>Vibrio harveyi</i>	white shrimp						
	Shrimp farm, hatcheries and marine water	Multiple	TEM, dsDNA	A	Siphoviridae	n.d.	[102]
	<i>Vibrio harveyi</i>	No	TEM, dsDNA	VHML	Myovirus-like	n.d.	[103]
	Shrimp pond water	Single	TEM, dsDNA	PW2	Siphoviridae	~46 kb	[104]
	Water and sediment samples	Single	TEM, dsDNA	VHM1, VHM2 VHS1	Myoviridae, Siphoviridae	~55 kb, ~66 kb ~69 kb	[105]
	Hatchery water and oyster tissues	Single	TEM, dsDNA	vB_VhaS-a vB_VhaS-tm	Siphoviridae	~82 kb ~59 kb	[106]
	Commercial clam samples	Multiple	Genomic analysis, dsDNA	^ø VhCCS-01 VhCCS-02 VhCCS-04 VhCCS-06 VhCCS-17 VhCCS-20 VhCCS-19 VhCCS-21	Siphoviridae, Myoviridae	n.d.	[107]
	Oyster, clam, shrimp, and seawater samples	No	TEM, DNA sequencing	VHP6b	Siphoviridae	78,081 bp	[108]
	shrimp hatchery and farm water, oysters from	Multiple	TEM, dsDNA	Viha10 Viha8 Viha9	Siphoviridae - Siphoviridae	n.d. ~44–94 kb ~57 kb	[109][110]
Gram-Positive Targets	Source	Enrichment ϕ	Characterization Method	Phage Strains Name	Family *	Genome Length	References
<i>Lactococcus garvieae</i>	L. garvieae isolated from diseased yellowtail	No	TEM, dsDNA	PLgY(16)	Siphoviridae	n.d.	[134]
	Yellowtail (Y) Water (W) Sediments (S)	Single	TEM, dsDNA	PLgW1-6 PLgY16 PLgY30 PLgY886 PLgS1	Siphoviridae	>20 kbp	[135][136] [137]
	Domestic compost	Single	TEM, DNA sequencing	GE1	Siphoviridae	24,847 bp	[138]
	L. garvieae host	No	TEM, DNA sequencing	PLgT-1	Siphoviridae	29,284 bp	[139][140] [141]
	Rainbow trout farm	Single	TEM, DNA sequencing	WP-2	Picovirinae	18,899 bp	[142]

Gram-Positive Targets	Source	Enrichment Method	Characterization Method	Phage Strains Name	Family *	Genome Length	References
	water						
Streptococcus agalactiae	Tilapia pond	No	TEM	HN48	Caudoviridae	n.d.	[143]
S. iniae	S. iniae host	No	TEM, dsDNA	vB_SinS-44 vB_SinS-45 vB_SinS-46 vB_SinS-48	Siphoviridae	~51.7 kb ~28.4 kb ~66.3 kb ~27.5 kb	[144]
Weissella ceti	W. ceti host strain	No	TEM	PWc	Siphoviridae	38,783 bp	[145]
Vibrio splendidus	local hatcheries	Single	TEM	PVS-3	Siphoviridae	
Vibrio coralliilyticus	Seawater near a fish farm cage	Single	TEM, DNA sequencing	vB_VspP_pVa5	Podoviridae	78,145 bp	[124]
	sewage in oyster hatchery	Single	TEM	pVco-14	Siphoviridae	n.d.	[125]
Vibrio vulnificus	Seawater sample	Single	TEM, DNA sequencing	SSP002	Siphoviridae	76,350 bp	[126][127]
	Abalone samples	No	TEM, sequencing	VVP001	Siphoviridae	76,423 bp	[128]
	Initial host strain (V. vulnificus)	No	TEM	VV1 VV2 VV3 VV4	Tectiviridae	n.d.	[129]
Vibrio sp.	Sewage draining exits	Single	TEM, DNA sequencing	VspDsh-1 VpaJT-1 ValLY-3 ValSw4-1 VspSw-1	Siphoviridae	46,692 bp 60,177 bp 76,310 bp 79,545 bp 113,778 bp	[130]
Yersinia ruckeri	Wastewater containing	Single	TEM	NC10	Podoviridae	n.d.	[49]

coli receptors, LPS and OmpC, and bacteriophage T4 long tail fibers. *Microbiologyopen* 2016, 5, 1003–1015.

8. Dunne, M.; Hupfeld, M.; Klumpp, J.; Loessner, M.J. Molecular Basis of Bacterial Host Interactions by Gram-Positive Targeting Bacteriophages. *Viruses* 2018, 10, 397.
9. Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. *FEMS Microbiol. Lett.* 2016, 363, fnw002.
10. Los, M.; Wegrzyn, G. Pseudolysogeny. *Adv. Virus Res.* 2012, 82, 339–349.
11. Vázquez, R.; García, E.; García, P. Phage Lysins for Fighting Bacterial Respiratory Infections: A New Generation of Antimicrobials. *Front. Immunol.* 2018, 9, 2252.

Gram-Negative Targets	Source	Enrichment [◊]	Characterization Method	Phage Strains Name	Family *	Genome Length	References in
suspended trout feces from a settling pond at a trout farm	Sewage	No	TEM	YerA41 (several phages)	icosahedral head, contractile tail	n.d.	[131]
	Sewage	No	TEM, DNA sequencing, dsDNA	R1-37	Myoviridae	~270 kb	[132][133]
							virion-39,

15. Ghose, C.; Euler, C.W. Gram-Negative Bacterial Lysins. *Antibiotics* 2020, 9, 74.

16. Dufour, N.; Delattre, R.; Chevallereau, A.; Ricard, J.-D.; Debarbieux, L. Phage Therapy of Pneumonia Is Not Associated with an Overstimulation of the Inflammatory Response Compared [◊] Phage enrichment with “single” or “multiple” bacterial hosts; * Classification determined by the authors; TEM to Antibiotic Treatment in Mice. *Antimicrob. Agents Chemother.* 2019, 63, e00379-19. (Transmission Electron Microscopy); dsDNA (Double stranded DNA); n.d. (Not determined); [◊] Several phage strains were isolated but only selected strains were fully characterized.

17. Khan Mirzaei, M.; Haileselassie, Y.; Navis, M.; Cooper, C.; Sverremark-Ekström, E.; Nilsson, A.S. Morphologically Distinct *Escherichia coli* Bacteriophages Differ in Their Efficacy and Ability to Stimulate Cytokine Release in vitro. *Front. Microbiol.* 2016, 7, 437.

18. Secor, P.R.; Michaels, L.A.; Smigiel, K.S.; Rohani, M.G.; Jennings, L.K.; Hisert, K.B.; Arrigoni, A.; Braun, K.R.; Birkland, T.P.; Lai, Y. Filamentous Bacteriophage Produced by *Pseudomonas aeruginosa* Alters the Inflammatory Response and Promotes Noninvasive Infection in vivo. *Infect. Immun.* 2017, 85, e00648-16.

19. Trend, S.; Chang, B.J.; O’Dea, M.; Stick, S.M.; Kicic, A.; WAERP; AusREC; AREST CF. Use of a Primary Epithelial Cell Screening Tool to Investigate Phage Therapy in Cystic Fibrosis. *Front. Pharmacol.* 2018, 9, 1330.

20. Fattal, B.; Dotan, A.; Tchorsh, Y.; Parpari, L.; Shuval, H. Penetration of *E. coli* and F2 Bacteriophage into Fish Tissues. *Schr. Ver. Wasser- Boden- und Lufthyg.* 1988, 78, 27–38.

21. Cafora, M.; Deflorian, G.; Forti, F.; Ferrari, L.; Binelli, G.; Briani, F.; Ghisotti, D.; Pistocchi, A. Phage Therapy against *Pseudomonas aeruginosa* Infections in a Cystic Fibrosis Zebrafish Model. *Sci. Rep.* 2019, 9, 1–10.

22. Cafora, M.; Forti, F.; Briani, F.; Ghisotti, D.; Pistocchi, A. Phage Therapy Application to Counteract *Pseudomonas aeruginosa* Infection in Cystic Fibrosis Zebrafish Embryos. *JoVE (J. Vis. Exp.)* 2020, e61275.

23. Nikapitiya, C.; Chandrarathna, H.; Dananjaya, S.; De Zoysa, M.; Lee, J. Isolation and Characterization of Phage (ETP-1) Specific to Multidrug Resistant Pathogenic *Edwardsiella tarda* and Its in vivo Biocontrol Efficacy in Zebrafish (*Danio rerio*). *Biologicals* 2020, 63, 14–23.

24. Yun, S.; Jun, J.W.; Giri, S.S.; Kim, H.J.; Chi, C.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J. Immunostimulation of *Cyprinus carpio* Using Phage Lysate of *Aeromonas hydrophila*.

Fish Shellfish. Immunol. 2019, 86, 680–687.

25. Schulz, P.; Robak, S.; Dastych, J.; Siwicki, A.K. Influence of Bacteriophages Cocktail on European Eel (*Anguilla anguilla*) Immunity and Survival after Experimental Challenge. Fish Shellfish. Immunol. 2019, 84, 28–37.

26. Lin, H.; Caywood, B.E.; Rowlands, D., Jr. Primary and Secondary Immune Responses of the Marine Toad (*Bufo marinus*) to Bacteriophage F2. Immunology 1971, 20, 373.

27. Bradley, S.; Kim, Y.; Watson, D. Immune Response by the Mouse to Orally Administered Actinophage. Proc. Soc. Exp. Biol. Med. 1963, 113, 686–688.

28. Young, R.; Ruddle, F.H. Inactivation of T-2 Bacteriophage by Sensitized Leucocytes in vitro. Nature 1965, 208, 1105–1106.

29. Van Belleghem, J.D.; Dąbrowska, K.; Vaneechoutte, M.; Barr, J.J.; Bollyky, P.L. Interactions between Bacteriophage, Bacteria, and the Mammalian Immune System. Viruses 2019, 11, 10.

30. Van Belleghem, J.D.; Clement, F.; Merabishvili, M.; Lavigne, R.; Vaneechoutte, M. Pro-and Anti-Inflammatory Responses of Peripheral Blood Mononuclear Cells Induced by *Staphylococcus aureus* and *Pseudomonas aeruginosa* Phages. Sci. Rep. 2017, 7, 1–13.

31. Bekeredjian-Ding, I.B.; Wagner, M.; Hornung, V.; Giese, T.; Schnurr, M.; Endres, S.; Hartmann, G. Plasmacytoid Dendritic Cells Control TLR7 Sensitivity of Naive B Cells via Type I IFN. J. Immunol. 2005, 174, 4043–4050.

32. Hashiguchi, S.; Yamaguchi, Y.; Takeuchi, O.; Akira, S.; Sugimura, K. Immunological Basis of M13 Phage Vaccine: Regulation under MyD88 and TLR9 Signaling. Biochem. Biophys. Res. Commun. 2010, 402, 19–22.

33. Hodyra-Stefaniak, K.; Miernikiewicz, P.; Drapała, J.; Drab, M.; Jończyk-Matysiak, E.; Lecion, D.; Kaźmierczak, Z.; Beta, W.; Majewska, J.; Harhala, M. Mammalian Host-Versus-Phage Immune Response Determines Phage Fate in vivo. Sci. Rep. 2015, 5, 1–13.

34. Krut, O.; Bekeredjian-Ding, I. Contribution of the Immune Response to Phage Therapy. J. Immunol. 2018, 200, 3037–3044.

35. Schulz, P.; Pajdak-Czaus, J.; Robak, S.; Dastych, J.; Siwicki, A.K. Bacteriophage-based Cocktail Modulates Selected Immunological Parameters and Post-challenge Survival of Rainbow Trout (*Oncorhynchus mykiss*). J. Fish Dis. 2019, 42, 1151–1160.

36. Moye, Z.D.; Woolston, J.; Abbeele, P.v.d.; Duysburgh, C.; Verstrepen, L.; Das, C.R.; Marzorati, M.; Sulakvelidze, A. A Bacteriophage Cocktail Eliminates *Salmonella Typhimurium* from the Human Colonic Microbiome While Preserving Cytokine Signaling and Preventing Attachment to and Invasion of Human Cells by *Salmonella* in vitro. J. Food Prot. 2019, 82, 1336–1349.

37. Moye, Z.D.; Woolston, J.; Sulakvelidze, A. Bacteriophage Applications for Food Production and Processing. *Viruses* **2018**, *10*, 205.

38. Fischer, S.; Kittler, S.; Klein, G.; Glünder, G. Impact of a Single Phage and a Phage Cocktail Application in Broilers on Reduction of *Campylobacter Jejuni* and Development of Resistance. *PLoS ONE* **2013**, *8*, e78543.

39. Sulakvelidze, A. Using Lytic Bacteriophages to Eliminate or Significantly Reduce Contamination of Food by Foodborne Bacterial Pathogens. *J. Sci. Food Agric.* **2013**, *93*, 3137–3146.

40. Silva, Y.J.; Moreirinha, C.; Pereira, C.; Costa, L.; Rocha, R.J.; Cunha, Â.; Gomes, N.C.; Calado, R.; Almeida, A. Biological Control of *Aeromonas salmonicida* Infection in Juvenile Senegalese Sole (*Solea senegalensis*) with Phage AS-A. *Aquaculture* **2016**, *450*, 225–233.

41. Duarte, J.; Pereira, C.; Costa, P.; Almeida, A. Bacteriophages with Potential to Inactivate *Aeromonas hydrophila* in Cockles: In vitro and in vivo Preliminary Studies. *Antibiotics* **2021**, *10*, 710.

42. Prasad, Y.; Kumar, D.; Sharma, A. Lytic Bacteriophages Specific to *Flavobacterium columnare* Rescue Catfish, *Clarias batrachus* (Linn.) from Columnaris Disease. *J. Environ. Biol.* **2011**, *32*, 161–168.

43. Hsu, C.; Lo, C.; Liu, J.; Lin, C. Control of the Eel (*Anguilla Japonica*) Pathogens, *Aeromonas Hydrophila* and *Edwardsiella tarda*, by Bacteriophages. *J. Fish. Soc. Taiwan* **2000**, *27*, 21–31.

44. Blanco-Picazo, P.; Roscales, G.; Toribio-Avedillo, D.; Gómez-Gómez, C.; Avila, C.; Ballesté, E.; Muniesa, M.; Rodríguez-Rubio, L. Antibiotic Resistance Genes in Phage Particles from Antarctic and Mediterranean Seawater Ecosystems. *Microorganisms* **2020**, *8*, 1293.

45. Castillo, D.; Kauffman, K.; Hussain, F.; Kalatzis, P.; Rørbo, N.; Polz, M.F.; Middelboe, M. Widespread Distribution of Prophage-Encoded Virulence Factors in Marine Vibrio Communities. *Sci. Rep.* **2018**, *8*, 1–9.

46. Christiansen, R.H.; Madsen, L.; Dalsgaard, I.; Castillo, D.; Kalatzis, P.G.; Middelboe, M. Effect of Bacteriophages on the Growth of *Flavobacterium psychrophilum* and Development of Phage-Resistant Strains. *Microb. Ecol.* **2016**, *71*, 845–859.

47. Castillo, D.; Christiansen, R.H.; Dalsgaard, I.; Madsen, L.; Middelboe, M. Bacteriophage Resistance Mechanisms in the Fish Pathogen *Flavobacterium psychrophilum*: Linking Genomic Mutations to Changes in Bacterial Virulence Factors. *Appl. Environ. Microbiol.* **2015**, *81*, 1157–1167.

48. Middelboe, M.; Holmfeldt, K.; Riemann, L.; Nybøe, O.; Haaber, J. Bacteriophages Drive Strain Diversification in a Marine *Flavobacterium*: Implications for Phage Resistance and Physiological Properties. *Environ. Microbiol.* **2009**, *11*, 1971–1982.

49. Welch, T.J. Characterization of a Novel *Yersinia ruckeri* Serotype O1-specific Bacteriophage with Virulence-neutralizing Activity. *J. Fish Dis.* 2020, 43, 285–293.

50. Verner-Jeffreys, D.W.; Algoet, M.; Pond, M.J.; Virdee, H.K.; Bagwell, N.J.; Roberts, E.G. Furunculosis in Atlantic Salmon (*Salmo salar* L.) Is Not Readily Controllable by Bacteriophage Therapy. *Aquaculture* 2007, 270, 475–484.

51. Silva, Y.J.; Costa, L.; Pereira, C.; Mateus, C.; Cunha, A.; Calado, R.; Gomes, N.C.; Pardo, M.A.; Hernandez, I.; Almeida, A. Phage Therapy as an Approach to Prevent *Vibrio anguillarum* Infections in Fish Larvae Production. *PLoS ONE* 2014, 9, e114197.

52. Le, T.S.; Nguyen, T.H.; Vo, H.P.; Doan, V.C.; Nguyen, H.L.; Tran, M.T.; Tran, T.T.; Southgate, P.C.; Kurtböke, D. Protective Effects of Bacteriophages against *Aeromonas hydrophila* Causing Motile *Aeromonas* septicemia (MAS) in Striped Catfish. *Antibiotics* 2018, 7, 16.

53. Liu, J.; Gao, S.; Dong, Y.; Lu, C.; Liu, Y. Isolation and Characterization of Bacteriophages against Virulent *Aeromonas hydrophila*. *BMC Microbiol.* 2020, 20, 1–13.

54. Easwaran, M.; Dananjaya, S.; Park, S.C.; Lee, J.; Shin, H.; De Zoysa, M. Characterization of Bacteriophage PAh-1 and Its Protective Effects on Experimental Infection of *Aeromonas hydrophila* in Zebrafish (*Danio Rerio*). *J. Fish Dis.* 2017, 40, 841–846.

55. Akmal, M.; Rahimi-Midani, A.; Hafeez-ur-Rehman, M.; Hussain, A.; Choi, T.-J. Isolation, Characterization, and Application of a Bacteriophage Infecting the Fish Pathogen *Aeromonas hydrophila*. *Pathogens* 2020, 9, 215.

56. Chandrarathna, H.; Nikapitiya, C.; Dananjaya, S.; De Silva, B.; Heo, G.-J.; De Zoysa, M.; Lee, J. Isolation and Characterization of Phage AHP-1 and Its Combined Effect with Chloramphenicol to Control *Aeromonas hydrophila*. *Braz. J. Microbiol.* 2020, 51, 409–416.

57. Cheng, Y.; Gao, D.; Xia, Y.; Wang, Z.; Bai, M.; Luo, K.; Cui, X.; Wang, Y.; Zhang, S.; Xiao, W. Characterization of Novel Bacteriophage AhyVDH1 and Its Lytic Activity Against *Aeromonas hydrophila*. *Curr. Microbiol.* 2021, 78, 329–337.

58. Cao, Y.; Li, S.; Wang, D.; Zhao, J.; Xu, L.; Liu, H.; Lu, T.; Mou, Z. Genomic Characterization of a Novel Virulent Phage Infecting the *Aeromonas hydrophila* Isolated from Rainbow Trout (*Oncorhynchus mykiss*). *Virus Res.* 2019, 273, 197764.

59. Wu, J.-L.; Lin, H.-M.; Jan, L.; Hsu, Y.-L.; CHANG, L.-H. Biological Control of Fish Bacterial Pathogen, *Aeromonas hydrophila*, by Bacteriophage AH 1. *Fish Pathol.* 1981, 15, 271–276.

60. Tu, V.Q.; Nguyen, T.-T.; Tran, X.T.; Millard, A.D.; Phan, H.T.; Le, N.P.; Dang, O.T.; Hoang, H.A. Complete Genome Sequence of a Novel Lytic Phage Infecting *Aeromonas hydrophila*, an Infectious Agent in Striped Catfish (*Pangasianodon hypophthalmus*). *Arch. Virol.* 2020, 165, 2973–2977.

61. Hoang Hoang, A.; Xuan Tran, T.T.; Nga, L.E.P.; Oanh Dang, T.H. Selection of Phages to Control *Aeromonas hydrophila*—an Infectious Agent in Striped Catfish. *Biocontrol Sci.* 2019, 24, 23–28.

62. Jun, J.W.; Kim, J.H.; Shin, S.P.; Han, J.E.; Chai, J.Y.; Park, S.C. Protective Effects of the *Aeromonas* Phages PAh1-C and PAh6-C against Mass Mortality of the Cyprinid Loach (*Misgurnus anguillicaudatus*) Caused by *Aeromonas hydrophila*. *Aquaculture* 2013, 416, 289–295.

63. Wang, J.-B.; Lin, N.-T.; Tseng, Y.-H.; Weng, S.-F. Genomic Characterization of the Novel *Aeromonas hydrophila* Phage Ahp1 Suggests the Derivation of a New Subgroup from PhiKMV-like Family. *PLoS ONE* 2016, 11, e0162060.

64. Haq, I.U.; Chaudhry, W.N.; Andleeb, S.; Qadri, I. Isolation and Partial Characterization of a Virulent Bacteriophage IHQ1 Specific for *Aeromonas punctata* from Stream Water. *Microb. Ecol.* 2012, 63, 954–963.

65. Vincent, A.T.; Paquet, V.E.; Bernatchez, A.; Tremblay, D.M.; Moineau, S.; Charette, S.J. Characterization and Diversity of Phages Infecting *Aeromonas salmonicida* subsp. *salmonicida*. *Sci. Rep.* 2017, 7, 1–10.

66. Kim, J.H.; Son, J.S.; Choi, Y.J.; Choresca, C.H., Jr.; Shin, S.P.; Han, J.E.; Jun, J.W.; Park, S.C. Complete Genome Sequence and Characterization of a Broad-Host Range T4-like Bacteriophage PhiAS5 Infecting *Aeromonas salmonicida* subsp. *salmonicida*. *Vet. Microbiol.* 2012, 157, 164–171.

67. Kim, J.; Son, J.; Choi, Y.; Choresca, C.; Shin, S.; Han, J.; Jun, J.; Kang, D.; Oh, C.; Heo, S. Isolation and Characterization of a Lytic Myoviridae Bacteriophage PAS-1 with Broad Infectivity in *Aeromonas salmonicida*. *Curr. Microbiol.* 2012, 64, 418–426.

68. Yang, Z.; Yuan, S.; Chen, L.; Liu, Q.; Zhang, H.; Ma, Y.; Wei, T.; Huang, S. Complete Genome Analysis of Bacteriophage AsXd-1, a New Member of the Genus Hk97virus, Family Siphoviridae. *Arch. Virol.* 2018, 163, 3195–3197.

69. Imbeault, S.; Parent, S.; Lagacé, M.; Uhland, C.F.; Blais, J.-F. Using Bacteriophages to Prevent Furunculosis Caused by *Aeromonas salmonicida* in Farmed Brook Trout. *J. Aquat. Anim. Health* 2006, 18, 203–214.

70. Petrov, V.; Karam, J. Diversity of Structure and Function of DNA Polymerase (Gp43) of T4-Related Bacteriophages. *Biochemistry (Moscow)* 2004, 69, 1213–1218.

71. He, Y.; Yang, H. The Gastrointestinal Phage Communities of the Cultivated Freshwater Fishes. *FEMS Microbiol. Lett.* 2015, 362, fnu027.

72. He, Y.; Huang, Z.; Zhang, X.; Zhang, Z.; Gong, M.; Pan, X.; Wei, D.; Yang, H. Characterization of a Novel Lytic Myophage, PhiA8-29, Infecting *Aeromonas* Strains. *Arch. Virol.* 2019, 164, 893–896.

73. Jia, K.; Yang, N.; Zhang, X.; Cai, R.; Zhang, Y.; Tian, J.; Raza, S.H.A.; Kang, Y.; Qian, A.; Li, Y. Genomic, Morphological and Functional Characterization of Virulent Bacteriophage IME-JL8 Targeting *Citrobacter freundii*. *Front. Microbiol.* 2020, 11, 2967.

74. Walakira, J.; Carrias, A.; Hossain, M.; Jones, E.; Terhune, J.; Liles, M. Identification and Characterization of Bacteriophages Specific to the Catfish Pathogen, *Edwardsiella ictaluri*. *J. Appl. Microbiol.* 2008, 105, 2133–2142.

75. Carrias, A.; Welch, T.J.; Waldbieser, G.C.; Mead, D.A.; Terhune, J.S.; Liles, M.R. Comparative Genomic Analysis of Bacteriophages Specific to the Channel Catfish Pathogen *Edwardsiella ictaluri*. *Virol. J.* 2011, 8, 1–12.

76. Yasuike, M.; Kai, W.; Nakamura, Y.; Fujiwara, A.; Kawato, Y.; Hassan, E.S.; Mahmoud, M.M.; Nagai, S.; Kobayashi, T.; Otake, M. Complete Genome Sequence of the *Edwardsiella ictaluri*-Specific Bacteriophage PEi21, Isolated from River Water in Japan. *Genome Announc.* 2014, 2, e00228-14.

77. Hassan, E.S.; Mahmoud, M.M.; Kawato, Y.; Nagai, T.; Kawaguchi, O.; Iida, Y.; Yuasa, K.; Nakai, T. Subclinical *Edwardsiella ictaluri* Infection of Wild Ayu *Plecoglossus altivelis*. *Fish Pathol.* 2012, 47, 64–73.

78. Hoang, H.A.; Yen, M.H.; Ngoan, V.T.; Nga, L.P.; Oanh, D.T. Virulent Bacteriophage of *Edwardsiella ictaluri* Isolated from Kidney and Liver of Striped Catfish *Pangasianodon hypophthalmus* in Vietnam. *Dis. Aquat. Org.* 2018, 132, 49–56.

79. Kim, S.G.; Giri, S.S.; Yun, S.; Kim, H.J.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J.; Jun, J.W.; Oh, W.T. Genomic Characterization of Bacteriophage PEt-SU, a Novel PhiKZ-Related Virus Infecting *Edwardsiella tarda*. *Arch. Virol.* 2020, 165, 219–222.

80. Cui, H.; Zhang, J.; Cong, C.; Wang, L.; Li, X.; Murtaza, B.; Xu, Y. Complete Genome Analysis of the Novel *Edwardsiella tarda* Phage VB_EtaM_ET-ABTNL-9. *Arch. Virol.* 2020, 165, 1241–1244.

81. Yasuike, M.; Nishiki, I.; Iwasaki, Y.; Nakamura, Y.; Fujiwara, A.; Sugaya, E.; Kawato, Y.; Nagai, S.; Kobayashi, T.; Otake, M. Full-Genome Sequence of a Novel Myovirus, GF-2, Infecting *Edwardsiella tarda*: Comparison with Other *Edwardsiella* myoviral Genomes. *Arch. Virol.* 2015, 160, 2129–2133.

82. Almeida, G.M.; Laanto, E.; Ashrafi, R.; Sundberg, L.-R. Bacteriophage Adherence to Mucus Mediates Preventive Protection against Pathogenic Bacteria. *MBio* 2019, 10, e01984-19.

83. Laanto, E.; Bamford, J.K.; Ravantti, J.J.; Sundberg, L.-R. The Use of Phage FCL-2 as an Alternative to Chemotherapy against Columnaris Disease in Aquaculture. *Front. Microbiol.* 2015, 6, 829.

84. Laanto, E.; Sundberg, L.-R.; Bamford, J.K. Phage Specificity of the Freshwater Fish Pathogen *Flavobacterium columnare*. *Appl. Environ. Microbiol.* 2011, 77, 7868–7872.

85. Christiansen, R.H.; Dalsgaard, I.; Middelboe, M.; Lauritsen, A.H.; Madsen, L. Detection and Quantification of *Flavobacterium psychrophilum*-Specific Bacteriophages *in vivo* in Rainbow Trout upon Oral Administration: Implications for Disease Control in Aquaculture. *Appl. Environ. Microbiol.* 2014, 80, 7683–7693.

86. Stenholm, A.R.; Dalsgaard, I.; Middelboe, M. Isolation and Characterization of Bacteriophages Infecting the Fish Pathogen *Flavobacterium psychrophilum*. *Appl. Environ. Microbiol.* 2008, 74, 4070–4078.

87. Kim, J.H.; Gomez, D.K.; Nakai, T.; Park, S.C. Isolation and Identification of Bacteriophages Infecting Ayu *Plecoglossus altivelis* Altivelis Specific *Flavobacterium psychrophilum*. *Vet. Microbiol.* 2010, 140, 109–115.

88. Yamaki, S.; Kawai, Y.; Yamazaki, K. Characterization of a Novel Bacteriophage, Phda1, Infecting the Histamine-producing *Photobacterium damsela* subsp. *damsela*. *J. Appl. Microbiol.* 2015, 118, 1541–1550.

89. Veyrand-Quirós, B.; Gómez-Gil, B.; Lomeli-Ortega, C.O.; Escobedo-Fregoso, C.; Millard, A.D.; Tovar-Ramírez, D.; Balcázar, J.L.; Quiroz-Guzmán, E. Use of Bacteriophage VB_Pd_PDCC-1 as Biological Control Agent of *Photobacterium damsela* Subsp. *Damsela* during Hatching of Longfin Yellowtail (*Seriola rivoliana*) Eggs. *J. Appl. Microbiol.* 2020, 129, 1497–1510.

90. Kawato, Y.; Yasuike, M.; Nakamura, Y.; Shigenobu, Y.; Fujiwara, A.; Sano, M.; Nakai, T. Complete Genome Sequence Analysis of Two *Pseudomonas plecoglossicida* Phages, Potential Therapeutic Agents. *Appl. Environ. Microbiol.* 2015, 81, 874–881.

91. Park, S.C.; Shimamura, I.; Fukunaga, M.; Mori, K.-I.; Nakai, T. Isolation of Bacteriophages Specific to a Fish Pathogen, *Pseudomonas plecoglossicida*, as a Candidate for Disease Control. *Appl. Environ. Microbiol.* 2000, 66, 1416–1422.

92. Khairnar, K.; Raut, M.P.; Chandekar, R.H.; Sanmukh, S.G.; Paunikar, W.N. Novel Bacteriophage Therapy for Controlling Metallo-Beta-Lactamase Producing *Pseudomonas aeruginosa* Infection in Catfish. *BMC Vet. Res.* 2013, 9, 1–9.

93. Yang, Z.; Tao, X.; Zhang, H.; Rao, S.; Gao, L.; Pan, Z.; Jiao, X. Isolation and Characterization of Virulent Phages Infecting *Shewanella baltica* and *Shewanella putrefaciens*, and Their Application for Biopreservation of Chilled Channel Catfish (*Ictalurus punctatus*). *Int. J. Food Microbiol.* 2019, 292, 107–117.

94. Kawato, Y.; Istiqomah, I.; Gaafar, A.Y.; Hanaoka, M.; Ishimaru, K.; Yasuike, M.; Nishiki, I.; Nakamura, Y.; Fujiwara, A.; Nakai, T. A Novel Jumbo *Tenacibaculum maritimum* Lytic Phage with Head-Fiber-like Appendages. *Arch. Virol.* 2020, 165, 303–311.

95. Kokkari, C.; Sarropoulou, E.; Bastias, R.; Mandalakis, M.; Katharios, P. Isolation and Characterization of a Novel Bacteriophage Infecting *Vibrio alginolyticus*. *Arch. Microbiol.* 2018,

200, 707–718.

96. Lal, T.M.; Sano, M.; Hatai, K.; Ransangan, J. Complete Genome Sequence of a Giant Vibrio Phage ValKK3 Infecting *Vibrio alginolyticus*. *Genom. Data* **2016**, *8*, 37–38.

97. Kalatzis, P.G.; Bastías, R.; Kokkari, C.; Katharios, P. Isolation and Characterization of Two Lytic Bacteriophages, ϕ St2 and ϕ Grn1; Phage Therapy Application for Biological Control of *Vibrio alginolyticus* in Aquaculture Live Feeds. *PLoS ONE* **2016**, *11*, e0151101.

98. Higuera, G.; Bastías, R.; Tservadze, G.; Romero, J.; Espejo, R.T. Recently Discovered *Vibrio anguillarum* Phages Can Protect against Experimentally Induced Vibriosis in Atlantic Salmon, *Salmo salar*. *Aquaculture* **2013**, *392*, 128–133.

99. Tan, D.; Gram, L.; Middelboe, M. Vibriophages and Their Interactions with the Fish Pathogen *Vibrio anguillarum*. *Appl. Environ. Microbiol.* **2014**, *80*, 3128–3140.

100. Nuidate, T.; Kuaphiriyakul, A.; Surachat, K.; Mittraparp-Arthorn, P. Induction and Genome Analysis of HY01, a Newly Reported Prophage from an Emerging Shrimp Pathogen *Vibrio campbellii*. *Microorganisms* **2021**, *9*, 400.

101. Lomelí-Ortega, C.O.; Martínez-Sández, A.; Barajas-Sandoval, D.R.; Reyes, A.G.; Magallón-Barajas, F.; Veyrand-Quíros, B.; Gannon, L.; Harrison, C.; Michniewski, S.; Millard, A. Isolation and Characterization of Vibriophage VB_Vc_SrVc9: An Effective Agent in Preventing *Vibrio campbellii* Infections in Brine Shrimp Nauplii (*Artemia franciscana*). *J. Appl. Microbiol.* **2021**, *131*, 36–49.

102. Vinod, M.; Shivu, M.; Umesha, K.; Rajeeva, B.; Krohne, G.; Karunasagar, I.; Karunasagar, I. Isolation of *Vibrio harveyi* Bacteriophage with a Potential for Biocontrol of Luminous Vibriosis in Hatchery Environments. *Aquaculture* **2006**, *255*, 117–124.

103. Oakey, H.; Owens, L. A New Bacteriophage, VHML, Isolated from a Toxin-producing Strain of *Vibrio harveyi* in Tropical Australia. *J. Appl. Microbiol.* **2000**, *89*, 702–709.

104. Phumkhachorn, P.; Rattanachaikunsopon, P. Isolation and Partial Characterization of a Bacteriophage Infecting the Shrimp Pathogen *Vibrio harveyi*. *Afr. J. Microbiol. Res* **2010**, *4*, 1794–1800.

105. Stalin, N.; Srinivasan, P. Efficacy of Potential Phage Cocktails against *Vibrio harveyi* and Closely Related *Vibrio* Species Isolated from Shrimp Aquaculture Environment in the South East Coast of India. *Vet. Microbiol.* **2017**, *207*, 83–96.

106. Wang, Y.; Barton, M.; Elliott, L.; Li, X.; Abraham, S.; O'Dea, M.; Munro, J. Bacteriophage Therapy for the Control of *Vibrio harveyi* in Greenlip Abalone (*Haliotis laevigata*). *Aquaculture* **2017**, *473*, 251–258.

107. Crothers-Stomps, C.; Høj, L.; Bourne, D.; Hall, M.; Owens, L. Isolation of Lytic Bacteriophage against *Vibrio harveyi*. *J. Appl. Microbiol.* 2010, 108, 1744–1750.

108. Patil, J.R.; Desai, S.N.; Roy, P.; Durgaiah, M.; Saravanan, R.S.; Vipra, A. Simulated Hatchery System to Assess Bacteriophage Efficacy against *Vibrio harveyi*. *Dis. Aquat. Org.* 2014, 112, 113–119.

109. Karunasagar, I.; Shiju, M.; Girisha, S.; Krohne, G.; Karunasagar, I. Biocontrol of Pathogens in Shrimp Hatcheries Using Bacteriophages. *Aquaculture* 2007, 268, 288–292.

110. Shiju, M.M.; Rajeeva, B.C.; Girisha, S.K.; Karunasagar, I.; Krohne, G.; Karunasagar, I. Molecular Characterization of *Vibrio harveyi* Bacteriophages Isolated from Aquaculture Environments along the Coast of India. *Environ. Microbiol.* 2007, 9, 322–331.

111. Lal, T.M.; Sano, M.; Ransangan, J. Isolation and Characterization of Large Marine Bacteriophage (Myoviridae), VhKM4 Infecting *Vibrio harveyi*. *J. Aquat. Anim. Health* 2017, 29, 26–30.

112. Echeverría-Vega, A.; Morales-Vicencio, P.; Saez-Saavedra, C.; Ceh, J.; Araya, R. The Complete Genome Sequence and Analysis of VB_VorS-PVo5, a Vibrio Phage Infectious to the Pathogenic Bacterium *Vibrio Ordalii* ATCC-33509. *Stand. Genom. Sci.* 2016, 11, 1–8.

113. Peng, Y.; Ding, Y.; Lin, H.; Wang, J. Isolation, Identification and Lysis Properties Analysis of a *Vibrio parahaemolyticus* Phage VPp1. *Mar. Sci.* 2013, 37, 96–101.

114. Matsuzaki, S.; Inoue, T.; Tanaka, S.; Koga, T.; Kuroda, M.; Kimura, S.; Imai, S. Characterization of a Novel *Vibrio parahaemolyticus* Phage, KVP241, and Its Relatives Frequently Isolated from Seawater. *Microbiol. Immunol.* 2000, 44, 953–956.

115. Matsuzaki, S.; Tanaka, S.; Koga, T.; Kawata, T. A Broad-host-range Vibriophage, KVP40, Isolated from Sea Water. *Microbiol. Immunol.* 1992, 36, 93–97.

116. Onarinde, B.A.; Dixon, R.A. Prospects for Biocontrol of *Vibrio parahaemolyticus* Contamination in Blue Mussels (*Mytilus edulis*)—A Year-Long Study. *Front. Microbiol.* 2018, 9, 1043.

117. Kim, J.H.; Jun, J.W.; Choresca, C.H.; Shin, S.P.; Han, J.E.; Park, S.C. Complete Genome Sequence of a Novel Marine Siphovirus, PVp-1, Infecting *Vibrio parahaemolyticus*. *J. Virol.* 2012, 86, 7013–7014.

118. Jun, J.W.; Kim, H.J.; Yun, S.K.; Chai, J.Y.; Park, S.C. Eating Oysters without Risk of Vibriosis: Application of a Bacteriophage against *Vibrio parahaemolyticus* in Oysters. *Int. J. Food Microbiol.* 2014, 188, 31–35.

119. Yang, M.; Liang, Y.; Huang, S.; Zhang, J.; Wang, J.; Chen, H.; Ye, Y.; Gao, X.; Wu, Q.; Tan, Z. Isolation and Characterization of the Novel Phages VB_VpS_BA3 and VB_VpS_CA8 for Lysing *Vibrio parahaemolyticus*. *Front. Microbiol.* 2020, 11, 259.

120. Matamp, N.; Bhat, S.G. Genome Characterization of Novel Lytic Myoviridae Bacteriophage Φ VP-1 Enhances Its Applicability against MDR-Biofilm-Forming *Vibrio parahaemolyticus*. *Arch. Virol.* 2020, 165, 387–396.

121. Lal, T.M.; Sano, M.; Ransangan, J. Genome Characterization of a Novel Vibriophage VpKK5 (Siphoviridae) Specific to Fish Pathogenic Strain of *Vibrio parahaemolyticus*. *J. Basic Microbiol.* 2016, 56, 872–888.

122. Lal, T.M.; Ransangan, J. Complete Genome Sequence of VpKK5, a Novel *Vibrio parahaemolyticus* Lytic Siphophage. *Genome Announc.* 2015, 3, e01381-14.

123. Li, Z.; Li, X.; Zhang, J.; Wang, X.; Wang, L.; Cao, Z.; Xu, Y. Use of Phages to Control *Vibrio splendidus* Infection in the Juvenile Sea Cucumber *Apostichopus japonicus*. *Fish Shellfish Immunol.* 2016, 54, 302–311.

124. Katharios, P.; Kalatzis, P.G.; Kokkari, C.; Sarropoulou, E.; Middelboe, M. Isolation and Characterization of a N4-like Lytic Bacteriophage Infecting *Vibrio splendidus*, a Pathogen of Fish and Bivalves. *PLoS ONE* 2017, 12, e0190083.

125. Kim, H.J.; Jun, J.W.; Giri, S.S.; Chi, C.; Yun, S.; Kim, S.G.; Kim, S.W.; Kang, J.W.; Han, S.J.; Kwon, J. Application of the Bacteriophage PVco-14 to Prevent *Vibrio coralliilyticus* Infection in Pacific Oyster (*Crassostrea gigas*) Larvae. *J. Invertebr. Pathol.* 2019, 167, 107244.

126. Lee, H.S.; Choi, S.; Choi, S.H. Complete Genome Sequence of *Vibrio vulnificus* Bacteriophage SSP002. *J. Virol.* 2012, 86, 7711.

127. Lee, H.S.; Choi, S.; Shin, H.; Lee, J.-H.; Choi, S.H. *Vibrio vulnificus* Bacteriophage SSP002 as a Possible Biocontrol Agent. *Appl. Environ. Microbiol.* 2014, 80, 515–524.

128. Kim, H.-J.; Kim, Y.-T.; Kim, H.B.; Choi, S.H.; Lee, J.-H. Characterization of Bacteriophage VVP001 and Its Application for the Inhibition of *Vibrio Vulnificus* Causing Seafood-Borne Diseases. *Food Microbiol.* 2021, 94, 103630.

129. Srinivasan, P.; Ramasamy, P. Morphological Characterization and Biocontrol Effects of *Vibrio vulnificus* Phages against Vibriosis in the Shrimp Aquaculture Environment. *Microb. Pathog.* 2017, 111, 472–480.

130. Chen, L.; Fan, J.; Yan, T.; Liu, Q.; Yuan, S.; Zhang, H.; Yang, J.; Deng, D.; Huang, S.; Ma, Y. Isolation and Characterization of Specific Phages to Prepare a Cocktail Preventing *Vibrio* Sp. Va-F3 Infections in Shrimp (*Litopenaeus vannamei*). *Front. Microbiol.* 2019, 10, 2337.

131. Stevenson, R.; Airdrie, D. Isolation of *Yersinia ruckeri* Bacteriophages. *Appl. Environ. Microbiol.* 1984, 47, 1201–1205.

132. Kiljunen, S.; Hakala, K.; Pinta, E.; Huttunen, S.; Pluta, P.; Gador, A.; Lönnberg, H.; Skurnik, M. Yersiniophage Φ R1-37 Is a Tailed Bacteriophage Having a 270 Kb DNA Genome with Thymidine

Replaced by Deoxyuridine. *Microbiology* 2005, 151, 4093–4102.

133. Leskinen, K.; Pajunen, M.I.; Vilanova, M.V.G.-R.; Kiljunen, S.; Nelson, A.; Smith, D.; Skurnik, M. YerA41, a *Yersinia ruckeri* Bacteriophage: Determination of a Non-Sequencable DNA Bacteriophage Genome via RNA-Sequencing. *Viruses* 2020, 12, 620.

134. Park, K.; Matsuoka, S.; Nakai, T.; Muroga, K. A Virulent Bacteriophage of *Lactococcus garvieae* (Formerly *Enterococcus Seriolicida*) Isolated from Yellowtail *Seriola quinqueradiata*. *Dis. Aquat. Org.* 1997, 29, 145–149.

135. Park, K.H.; Kato, H.; Nakai, T.; Muroga, K. Phage Typing of *Lactococcus garvieae* (Formerly *Enterococcus Seriolicida*) a Pathogen of Cultured Yellowtail. *Fish. Sci.* 1998, 64, 62–64.

136. Nakai, T.; Sugimoto, R.; Park, K.-H.; Matsuoka, S.; Mori, K.; Nishioka, T.; Maruyama, K. Protective Effects of Bacteriophage on Experimental *Lactococcus garvieae* Infection in Yellowtail. *Dis. Aquat. Org.* 1999, 37, 33–41.

137. Ooyama, T.; Hirokawa, Y.; Minami, T.; Yasuda, H.; Nakai, T.; Endo, M.; Ruangpan, L.; Yoshida, T. Cell-Surface Properties of *Lactococcus Garvieae* Strains and Their Immunogenicity in the Yellowtail *Seriola quinqueradiata*. *Dis. Aquat. Org.* 2002, 51, 169–177.

138. Eraclio, G.; Tremblay, D.M.; Lacelle-Côté, A.; Labrie, S.J.; Fortina, M.G.; Moineau, S. A Virulent Phage Infecting *Lactococcus garvieae*, with Homology to *Lactococcus lactis* Phages. *Appl. Environ. Microbiol.* 2015, 81, 8358–8365.

139. Hoai, T.D.; Nishiki, I.; Yoshida, T. Properties and Genomic Analysis of *Lactococcus garvieae* Lysogenic Bacteriophage PLgT-1, a New Member of Siphoviridae, with Homology to *Lactococcus lactis* Phages. *Virus Res.* 2016, 222, 13–23.

140. Hoai, T.; Yoshida, T. Induction and Characterization of a Lysogenic Bacteriophage of *Lactococcus garvieae* Isolated from Marine Fish Species. *J. Fish Dis.* 2016, 39, 799–808.

141. Hoai, T.D.; Nishiki, I.; Fujiwara, A.; Yoshida, T.; Nakai, T. Comparative Genomic Analysis of Three Lytic *Lactococcus garvieae* Phages, Novel Phages with Genome Architecture Linking the 936 Phage Species of *Lactococcus lactis*. *Mar. Genom.* 2019, 48, 100696.

142. Ghasemi, S.M.; Bouzari, M.; Yoon, B.H.; Chang, H.-I. Comparative Genomic Analysis of *Lactococcus garvieae* Phage WP-2, a New Member of Picovirinae Subfamily of Podoviridae. *Gene* 2014, 551, 222–229.

143. Luo, X.; Liao, G.; Liu, C.; Jiang, X.; Lin, M.; Zhao, C.; Tao, J.; Huang, Z. Characterization of Bacteriophage HN 48 and Its Protective Effects in Nile Tilapia *Oreochromis niloticus* against *Streptococcus agalactiae* Infections. *J. Fish Dis.* 2018, 41, 1477–1484.

144. Wright, E.; Elliman, J.; Owens, L. Induction and Characterization of Lysogenic Bacteriophages from *Streptococcus iniae*. *J. Appl. Microbiol.* 2013, 114, 1616–1624.

145. Hoai, T.D.; Mitomi, K.; Nishiki, I.; Yoshida, T. A Lytic Bacteriophage of the Newly Emerging Rainbow Trout Pathogen *Weissella Ceti*. *Virus Res.* 2018, 247, 34–39.

Retrieved from <https://encyclopedia.pub/entry/history/show/36414>