

Platelet Concentrates

Subjects: **Cell Biology**

Contributor: Jithendra Ratnayake

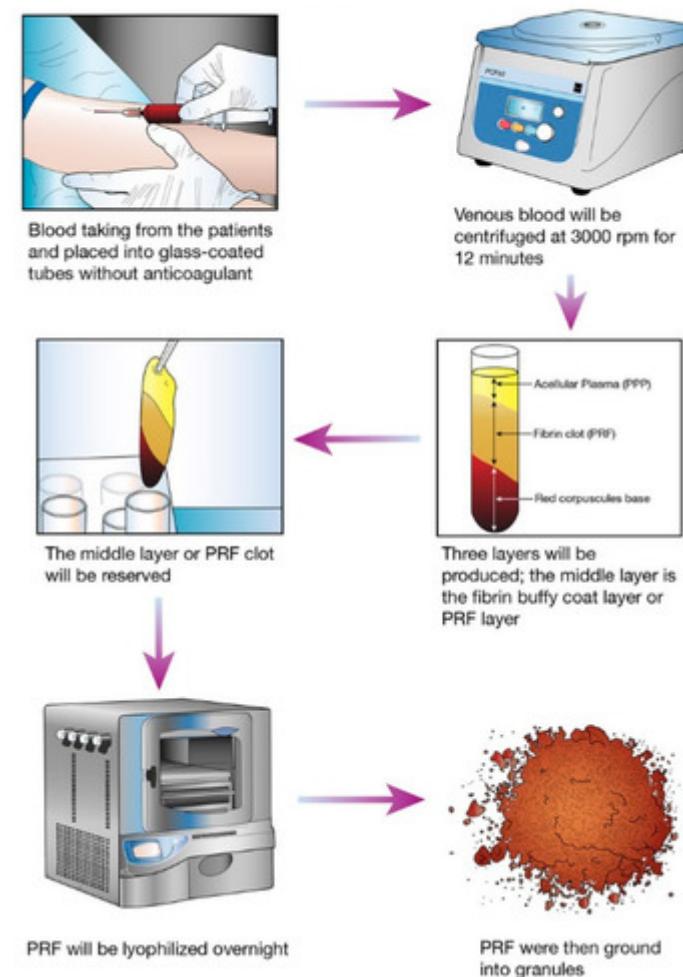
Platelet concentrates (PCs) typically refer to a group of materials produced from autologous blood designed to improve tissue regeneration.

lyophilization

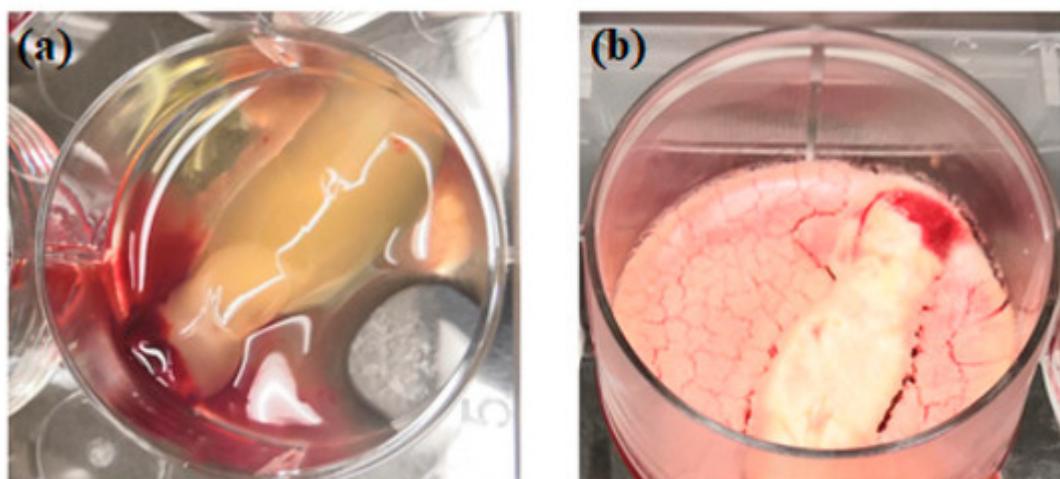
platelet concentrate

platelet-rich fibrin

craniofacial regeneration


tissue engineering

1. Overview of Lyophilization for Platelet Concentrates


Lyophilization, or freeze-drying, has been developed as a method for transforming solutions containing labile substances into more stable solids to enable their distribution as well as preserving bioactivity for different applications. This process is widely used to enhance the stability and long-term storage of proteins in the pharmaceutical, biotechnology and food industries^[16]. Indeed, freeze-drying offers storage and processing benefits over conventional methods, including (1) longer storage times at room temperature; (2) rapid transformation by rehydration, which enables practical application in emergency medicine; and (3) increased stability to enable transport and application at distant sites^{[21][22]}.

The idea of platelet lyophilization was originally proposed by Wolkers^[23], who initially indicated that freeze-dried platelets functioned biologically similarly to endogenous platelets. Indeed, these lyophilized platelets not only exhibit increased storage stability but are also able to rapidly release bioactive growth factors, such as platelet-derived growth factor-BB (PDGF-BB), TGF- β 1, and VEGF at the surgical site^{[24][25][26]}. It does not have a detrimental effect on PCs' ability to facilitate tissue regeneration, suggesting that a range of cytokines and fibrin networks in the PCs are preserved and have the capacity to promote chemotaxis and cell proliferation^[27]. LPCs express their growth factors more slowly than PCs. This was discovered in a study by Zheng^[13] when they attempted to combine nano-hydroxyapatite (nHA), L-lactic acid-co-glycolic acid (PLGA), and the hydrogel (nHA/PLGA/Gel) scaffold with LPCs. The *in vitro* release experiments showed that the composite scaffold allowed for gradual and continuous release of PRF-derived growth factors. They examine the pattern of growth factors released from the composite scaffolds over 12 weeks and illustrated that the concentration of IGF-I, TGF- β 1, and PDGF-AB in the four weeks reached 66%, 67%, and 65%, respectively. It was demonstrated that there was a higher release rate in the first 4 weeks followed by a relatively steady rate over the following weeks. [Figure 1](#) provides a schematic diagram of the method used for producing lyophilized PCs, and [Figure 2](#) provides a physical comparison of PCs and lyophilized PCs.

Fabrication of Lyophilized Platelet-Rich Fibrin (PRF)

Figure 1. Schematic diagram illustrating the processing and development of lyophilized platelet concentrate (LPC) in the form of platelet-rich fibrin (PRF).

Figure 2. Physical comparison of traditionally prepared platelet concentrates (a) versus lyophilized platelet concentrates (b).

The advantages of lyophilized platelet concentrates are further highlighted in a study that recently documented lyophilized PCs exhibiting enhanced osteogenic capability and improved tissue compatibility at the injury site, compared with freshly isolated PCs^[17].

2. Lyophilized Platelet Concentrates in Craniofacial Tissue Regeneration

The use of PCs to deliver growth factors to defective areas to stimulate tissue regeneration in both the medical and dental fields has gained considerable interest over recent years. However, despite the considerable advantages offered by LPCs, only a limited number of studies, summarized below, have been reported. This review reports on the current application and potential of LPCs in craniofacial tissue regeneration. [Table 1](#) provides details of studies reporting the different preparation methods of LPCs for potential use as craniofacial scaffolds for tissue regeneration.

Table 1. Different preparation methods of lyophilized platelet concentrates as craniofacial bioactive scaffolds.

No.	Type	Platelet Concentrate Preparation Protocol	Fabrication of Composite Scaffold with Lyophilized Platelet Concentrates	Scaffold	Cell Type	Animal Model	In Vitro/In Vivo Analysis Method	Main Findings	Author, Year, References
1.	PC	10 mL of plasma centrifuged at 4450 rpm for 10 min.	The PC solutions were frozen for one hour in a -20 °C freezer and then for 2 h in a -80 °C until 24 h freezing. Then, the fabricated FDPC powder was combined with the chitosan mixture and β-GP.	Thermo-sensitive chitosan/β-glycerol phosphate (β-GP) hydrogel.	PDLSCs	NA	In vitro	FDPC-loaded hydrogel groups show two weeks of continuous release of TGF-β1 and PDGF-BB. The growth factor release profiles exhibited a similar pattern.	Ammar 2018 [28]
2.	A-PRF	10 mL of blood	The solutions for collagen	Collagen–chitosan	MSCs	NA	In vitro	A-PRF lowered the	Ansarizadeh 2019 [29]

No.	Type	Fabrication of Platelet Concentrate Preparation Protocol	Fabrication of Scaffold with Lyophilized Platelet Concentrates	Scaffold	Cell Type	Animal Model	In Vitro/In Vivo Analysis Method	Main Findings	Author, Year, References
		centrifuged at 1500 rpm for 14 min.	and chitosan were blended and cross-linking before being agitated for 24 h. At -80 °C, the PC was frozen and dried at -40 °C for 24 h. The lyophilized PC was supplemented to the solution, immediately cast, frozen, and freeze-dried.	membrane with Lyophilized A-PRF.				rate of degradation and Young's modulus of the scaffold. A-PRF induced better cell viability and osteogenic differentiation compared to the control group.	
3.	PRP	Blood centrifuged at 2400 and 3600 rpm for 10 and 15 min.	For 5 min, PCL scaffolds were submerged in PRP at RT and then stored at -80 °C for 30 min. The frozen samples were immediately freeze-dried. Pending use, the FD-PRP-PCL scaffold was stored at 4 °C.	Traditional PRP-PCL scaffolds, bare PCL scaffolds and, the freeze-dried PRP-PCL scaffolds.	DPSCs	Rats	In vitro In vivo	FD-PRP stimulated ALP, RUNX2, OCN and OPN mRNA expression. Scaffolds of the FD-PRP-PCL caused more significant bone formation.	Li 2017 [30]
4.	PRP	NA	A collagen sponge was dipped in PRP. The PRP-absorbed	FD-PRP-coated collagen sponge with a non-FD-PRP	hAPCs	Mice	In vitro In vivo	PRP-coated sponge failed to induce hAPC proliferation. PRP-coated	Horimizu 2013 [14]

No.	Type	Fabrication of Platelet Concentrate	Preparation Protocol	Scaffold with Lyophilized Platelet Concentrates	Scaffold	Cell Type	Animal Model	In Vitro/In Vivo Analysis Method	Main Findings	Author, Year, References
		collagen sponge was frozen for 60 min at -75°C and freeze-dried later. It was then kept at 4°C until used.		coated collagen sponge.					sponge rapidly caused angiogenesis and the invasion of the connective tissue around it.	
5.	PRP	8.5 mL of blood centrifuged at 2400 rpm (103 g) and 3600 rpm (230 g) for 10 and 15 min. ^[29]	^[28] GEL scaffold: PRP was added to chitosan gel and then freeze-dried. SPONGE scaffold: PRP was implanted to freeze-dried chitosan scaffolds using a micropipette. ^[27]	GEL and SPONGE chitosan scaffold.	NA	NA	In vitro	In the GEL group, a continuous release of GFs was achieved, while a rapid burst release was detected in the SPONGE groups. GEL scaffolds had their porous structure preserved. The GEL scaffold is superior to the SPONGE scaffold because of the morphological architecture of the scaffold.	Kutlu 2013 ^[31]	riodontal es, and, riodontal with LPC ly due to e ^[17] . popular Recently, and the nhanced viability, or other ent fibrin ified the 37°C . For

the assessment of general healing at the surgical site, color, swelling, bleeding, and post-operative pain were assessed to determine the effect of the LPCs. No apparent differences were identified compared with the control group, which was composed of freshly isolated PCs^[27]. Consequently, the authors concluded that the LPC constructs promoted bone regeneration and that they also promoted chemotaxis and proliferation of neighboring osteoblast progenitors similarly to the fresh PC isolate control.

PC: platelet concentrates; FDPC: freeze-dried platelet concentrate; β -GP: β -glycerol phosphate; PDLSCs: periodontal ligament stem cells; TGF- β 1: transforming growth factor β 1; DCLB: platelet-derived growth factor B β ; PRP: advanced platelet rich plasma; MSCs: mesenchymal stem cells; PRP: platelet rich plasma; LPCs: platelet rich plasma; PRP: freeze-dried platelet rich plasma; PRP-TCL: freeze-dried platelet rich plasma; APC: polyacrylate; PRP: platelet rich plasma^{[33][34]}. The authors reported that the lyophilization approach still enabled comprehensive local release of cytokines^[34]. Xu^[34] conducted a study on hamster bone showed that LPC application

uses capable of inhibiting other PCs. Specifically, periodontal ligament stem cells have shown paracrine, peristomal, and odontogenic factors. Differentiation of human dental stem pulp cells (hDPSCs). Furthermore, LPCs also induced dentine–pulp complex regeneration as well as enabling continued root growth in the immature teeth treated^[34]. Despite its excellent safety and efficacy, PCs suffer from several significant disadvantages that limit their use in dentistry^[33]. Preparation of the PCs drawbacks include the processing required during the membrane freezing and the reduced plasticity of the membrane that does not support suturing. Researchers have already attempted to adapt to these tissues. One recent analysis found that the biological and mechanical properties of fresh, lyophilized, and frozen PC membranes produced by the traditional batched approach are largely identical^[32]. Notably, in general, slightly closer highlights the potential of the LPCs demonstrated that a relatively small number of platelet stem cells could attach and spread more rapidly compared with those that were frozen or lyophilized^[32]. Furthermore, frozen and lyophilized PCs exhibited a more compact structure with an uneven texture compared with fresh PCs, and they may explain the differences observed in the properties of the tensile strength reported^[32].

In 2017, Nakatani^[24] performed a bone engineering study on mice calvarias using an LPC product. The researchers showed preservation of biological properties of LPCs even after exposure to lyophilization, as they observed that the sum of PDGF-BB and TGF-B1 was maintained mesh for use as a wound dressing. One of its drawbacks, however, was the increased host inflammatory response by lyophilization. They concluded that the LPC can increase cranial bone regeneration similar to the that occurred due to the polyglactin degradation. Consequently, the use of a collagen sponge as a carrier for the process observed in traditionally prepared PCs. They postulated that the biological function of LPCs has been explored^[14]. It was found that the LPC coating improved the collagen sponge's ability to attract and growth factor during the bone healing period was preserved.

become infiltrated by fibroblasts, as well as promoting neo-angiogenesis in the surrounding tissue. The data indicated that the LPC-coated collagen sponge exhibited enhanced wound healing and regenerative capacity by stimulation of angiogenesis and infiltration of cells from surrounding tissue without causing a substantial inflammatory response. Furthermore, in the LPC-coated collagen sponge group, they identified considerably thicker capillary blood vessels compared to the noncoated sponge group at 4 weeks and 12 weeks post-implantation. This result is in agreement with Pietramaggiori^[36], who noted that LPCs facilitated wound healing in a chronic wound model developed in diabetic mice. Interestingly, in contrast to the nontreated group, this study revealed a significant ($p < 0.01$) fivefold increase in blood vessel density in the LPC group. Recently, Xu et al. ^[15]suggested that the vascularization process was accelerated in their skin wound study in mice after using a scaffold composed of polyvinyl alcohol (PVA) hydrogel and LPCs as a dressing within 9 days post-surgery. Hence, they believe the neo-angiogenesis could provide oxygen and nutrient to the surgical site, thus promoting protein synthesis.

2.2. Lyophilized Platelet Concentrates as a Craniofacial Bioactive Scaffold

Guided tissue repair approaches are dependent upon growth factor activity. Incorporating PCs into a carrier system, such as a 3D scaffold, can enable controlled release of these molecules as well as enhancing their bioavailability. Kutlu ^[31] demonstrated that a chitosan scaffold loaded with PCs provided an excellent tool for multiple concurrent releases of PC-derived growth factors, and hence recommended its use in tissue repair purposes. Further research has assessed the applicability of LPCs as a scaffold for regeneration of craniofacial

tissue and compared their biological effects with fresh PCs^[17]. Dental follicle cells, periodontal progenitor cells, and alveolar bone cells were used in comparisons of their cellular activity in response to fresh and lyophilized PCs. The data indicated that LPCs exhibited superior effects compared with fresh PCs as a scaffolding material in terms of induction of proliferation, osteogenic differentiation, and tissue integration^[17]. The authors concluded that the LPC preparations not only increased the capacity of cells to migrate and proliferate within the scaffold due to an increased pore size, but the construct also enabled a gradual release of growth factors, such as TGF- β 1, PDGF, and VEGF from the biomaterial surface. Similarly, Liu^[37] more recently reported that the lyophilization process enhanced the fibrin and platelet structures, enabling improved bioactivity.

As LPCs reportedly continuously release bone regenerating growth factors^[13], Li and colleagues^[30] compared the utility of 3D-printed polycaprolactone (PCL) scaffolds containing fresh PCs and LPCs for bone repair. The LPC–PCL scaffold exhibited superior stimulation of bone growth as compared with the conventional PC–PCL scaffold. Furthermore, their results indicated that *in vivo*, mineralization and osteogenesis could be promoted by coating 3D-printed PCL scaffolds with LPCs. The authors postulated that this outcome could be directly linked to the sustained release of PC-derived growth factors, including VEGF, PDGF, basic fibroblast growth factor (bFGF), TGF- β 1, EGF, and IGF-1^[30]. [Table 2](#) summarizes the *in vitro*, *in vivo* and one randomized clinical trial application of LPCs to enhance tissue regeneration. [Table 3](#) summarises the strengths and limitations of LPC.

Table 2. Summary findings of *in-vitro*, *in-vivo* and clinical trial studies using lyophilized platelet concentrates (LPCs).

No.	Type	Platelet Concentrate Preparation Protocol	Lyophilization Method	Comparison Group	Cell Type	Animal Model	Type of Study	Main Finding	Author, Year, References
1.	PRF	8 mL blood centrifuged at 1700 rcf for 5 min.	The PRF membrane was frozen for 30 min at -80 °C and freeze-dried overnight (-54 °C, 12 Pa).	Fresh PRF and frozen PRF	MSCs, HGFs	NA	In vitro	In FD-PRF, the proliferation of MSCs was greater. Frozen PRF and FD-PRF were more compact and had a rough texture. Frozen PRF had lower activity in plasmin.	Kardos 2018 [32]
2.	PRF	10mL blood centrifuged at 2100 rpm (400 g) for 12 min.	The frozen PRF membranes were kept at -80 °C. The frozen PRF was then freeze-dried at -51 °C overnight.	Fresh PRF	DFs, Abs, PDLS	Rats	In vitro In vivo	L-PRF caused the proliferation and migration of the PDL cells. In AB cells, L-PRF stimulated RUNX2. L-PRF protected 97% of bone defects compared to 84% in	Li 2014 [17]

2. Possible risk of contamination;

dimethyl

3. Demands standardization protocol for lyophilization technique.

The dynamic biology of PCs and their role in tissue regeneration and inflammation have provided the basis for PC and LPC therapies for a wide variety of medical and dental treatments. However, scientific advancements remain hindered by the lack of standardization of PC and LPC products, doses, and fabrication protocols^[38]. The situation continues to be ambiguous as the different approaches and materials used do not seem to produce the same material as original PCs. Moreover, heterogeneous processing methods, unstandardized nomenclature, and vague classifications complicate comparisons among studies; thus, we recommend a comprehensive, detailed and step-by-step explanation of the preparation procedure for the LPC to allow for comparison between studies, ensuring reproducibility to prevent misunderstanding and misleading assumptions in the literature ([Table 3](#))^{[38][39][40][41]}.

References

1. Anitua, E.; Sánchez, M.; Orive, G.; Andía, I. The potential impact of the preparation rich in growth factors (PRGF) in different medical fields. *Biomaterials* 2007, 28, 4551–4560.
2. Dohan, D.M.; Choukroun, J.; Diss, A.; Dohan, S.L.; Dohan, A.J.; Mouhyi, J.; Gogly, B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 2006, 101, e45–e50.
3. Zhang, L.; Ai, H. Concentrated growth factor promotes proliferation, osteogenic differentiation, and angiogenic potential of rabbit periosteum-derived cells in vitro. *J. Orthop. Surg. Res.* 2019, 14, 1–10.
4. Foster, T.E.; Puskas, B.L.; Mandelbaum, B.R.; Gerhardt, M.B.; Rodeo, S.A. Platelet-rich plasma: From basic science to clinical applications. *Am. J. Sports Med.* 2009, 37, 2259–2272.
5. Marx, R.E.; Carlson, E.R.; Eichstaedt, R.M.; Schimmele, S.R.; Strauss, J.E.; Georgeff, K.R. Platelet-rich plasma: Growth factor enhancement for bone grafts. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 1998, 85, 638–646.
6. Choukroun, J.; Diss, A.; Simonpieri, A.; Girard, M.-O.; Schoeffler, C.; Dohan, S.L.; Dohan, A.J.; Mouhyi, J.; Dohan, D.M. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part IV: Clinical effects on tissue healing. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 2006, 101, e56–e60.
7. Huber, S.C.; Cunha, J.L.; Montalvao, S.A.L.; da Silva, L.Q.; Paffaro, A.U.; da Silva, F.A.R.; Rodrigues, B.L.; Santos Duarte Lana, J.F.; Annichino-Bizzacchi, J.M. In vitro study of the role of thrombin in platelet rich plasma (PRP) preparation: Utility for gel formation and impact in growth factors release. *J. Stem Cells Regen. Med.* 2016, 12, 2–9.
8. Miron, R.J.; Choukroun, J. *Platelet Rich Fibrin in Regenerative Dentistry*; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017.

9. Choukroun, J.; Diss, A.; Simonpieri, A.; Girard, M.-O.; Schoeffler, C.; Dohan, S.L.; Dohan, A.J.; Mouhyi, J.; Dohan, D.M. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part V: Histologic evaluations of PRF effects on bone allograft maturation in sinus lift. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 2006, 101, 299–303.

10. Jeon, Y.R.; Kim, M.J.; Kim, Y.O.; Roh, T.S.; Lee, W.J.; Kang, E.H.; Yun, I.S. Scaffold Free Bone Regeneration Using Platelet-Rich Fibrin in Calvarial Defect Model. *J. Craniofac. Surg.* 2018, 29, 251–254.

11. Dohan Ehrenfest, D.M.; Diss, A.; Odin, G.; Doglioli, P.; Hippolyte, M.-P.; Charrier, J.-B. In vitro effects of Choukroun's PRF (platelet-rich fibrin) on human gingival fibroblasts, dermal prekeratinocytes, preadipocytes, and maxillofacial osteoblasts in primary cultures. *Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod.* 2009, 108, 341–352.

12. Yung, Y.-L.; Fu, S.-C.; Cheuk, Y.-C.; Qin, L.; Ong, M.T.-Y.; Chan, K.-M.; Yung, P.S. Optimisation of platelet concentrates therapy: Composition, localisation, and duration of action. *Asia Pac. J. Sports Med. Arthrosc. Rehabil. Technol.* 2017, 7, 27–36.

13. Zheng, L.; Wang, L.; Qin, J.; Sun, X.; Yang, T.; Ni, Y.; Zhou, Y. New Biodegradable Implant Material Containing Hydrogel with Growth Factors of Lyophilized PRF in Combination with an nHA/PLGA Scaffold. *J. Hard Tissue Biol.* 2015, 24, 54–60.

14. Horimizu, M.; Kawase, T.; Nakajima, Y.; Okuda, K.; Nagata, M.; Wolff, L.F.; Yoshie, H. An improved freeze-dried PRP-coated biodegradable material suitable for connective tissue regenerative therapy. *Cryobiology* 2013, 66, 223–232.

15. Xu, F.; Zou, D.; Dai, T.; Xu, H.; An, R.; Liu, Y.; Liu, B. Effects of incorporation of granule-lyophilised platelet-rich fibrin into polyvinyl alcohol hydrogel on wound healing. *Sci. Rep.* 2018, 8, 14042.

16. Nireesha, G.; Divya, L.; Sowmya, C.; Venkateshan, N.; Babu, M.; Lavakumar, V. Lyophilization/Freeze Drying—A Review. *Int. J. Nov. Trends Pharm. Sci.* 2013, 3, 87–98.

17. Li, Q.; Reed, D.A.; Min, L.; Gopinathan, G.; Li, S.; Dangaria, S.J.; Li, L.; Geng, Y.; Galang-Boquiren, M.T.; Gajendrareddy, P.; et al. Lyophilized Platelet-Rich Fibrin (PRF) Promotes Craniofacial Bone Regeneration through Runx. *Int. J. Mol. Sci.* 2014, 15, 8509–8525.

18. Pan, L.; Yong, Z.; Yuk, K.S.; Hoon, K.Y.; Yuedong, S.; Xu, J. Growth Factor Release from Lyophilized Porcine Platelet-Rich Plasma: Quantitative Analysis and Implications for Clinical Applications. *Aesthetic Plast. Surg.* 2015, 40, 157–163.

19. Valeri, C.R.; Feingold, H.; Marchionni, L.D. A Simple Method for Freezing Human Platelets Using 6% Dimethylsulfoxide and Storage at -80°C . *Blood* 1974, 43, 131–136.

20. Read, M.S.; Reddick, R.L.; Bode, A.P.; Bellinger, D.A.; Nichols, T.C.; Taylor, K.; Smith, S.V.; McMahon, D.K.; Griggs, T.R.; Brinkhous, K.M. Preservation of hemostatic and structural

properties of rehydrated lyophilized platelets: Potential for long-term storage of dried platelets for transfusion. *Proc. Natl. Acad. Sci. USA* 1995, 92, 397–401.

21. Fan, J.-L.; Xu, X.-G.; Zhang, S.-Z.; Zhu, F.-M.; Chen, G.-M.; Yan, L.-X. Experimental study on rehydration conditions of freeze-dried platelets. *J. Zhejiang Univ. Sci. A* 2009, 10, 697–703.

22. Muraglia, A.; Ottonello, C.; Spanò, R.; Dozin, B.; Strada, P.; Grandizio, M.; Cancedda, R.; Mastrogiacomo, M. Biological activity of a standardized freeze-dried platelet derivative to be used as cell culture medium supplement. *Platelets* 2014, 25, 211–220.

23. Wolkers, W.F.; Walker, N.J.; Tablin, F.; Crowe, J.H. Human Platelets Loaded with Trehalose Survive Freeze-Drying. *Cryobiology* 2001, 42, 79–87.

24. Nakatani, Y.; Agata, H.; Sumita, Y.; Koga, T.; Asahina, I. Efficacy of freeze-dried platelet-rich plasma in bone engineering. *Arch. Oral Biol.* 2017, 73, 172–178.

25. Sum, R.; Hager, S.; Pietramaggiori, G.; Orgill, D.P.; Dee, J.; Rudolph, A.; Orser, C.; Fitzpatrick, G.M.; Ho, D. Wound-healing properties of trehalose-stabilized freeze-dried outdated platelets. *Transfusion* 2007, 47, 672–679.

26. Vocetkova, K.; Buzgo, M.; Sovkova, V.; Rampichová, M.; Staffa, A.; Filova, E.; Lukasova, V.; Doupnik, M.; Fiori, F.; Amler, E. A comparison of high throughput core–shell 2D electrospinning and 3D centrifugal spinning techniques to produce platelet lyophilisate-loaded fibrous scaffolds and their effects on skin cells. *RSC Adv.* 2017, 7, 53706–53719.

27. Zhang, J.; Qi, X.; Luo, X.; Li, D.; Wang, H.; Li, T. Clinical and immunohistochemical performance of lyophilized platelet-rich fibrin (Ly-PRF) on tissue regeneration. *Clin. Implant. Dent. Relat. Res.* 2017, 19, 466–477.

28. Ammar, M.M.; Waly, G.H.; Saniour, S.H.; Moussa, T.A. Growth factor release and enhanced encapsulated periodontal stem cells viability by freeze-dried platelet concentrate loaded thermo-sensitive hydrogel for periodontal regeneration. *Saudi Dent. J.* 2018, 30, 355–364.

29. Ansarizadeh, M.; Mashayekhan, S.; Saadatmand, M. Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane. *Int. J. Biol. Macromol.* 2019, 125, 383–391.

30. Li, J.; Chen, M.; Wei, X.; Hao, Y.; Wang, J. Evaluation of 3D-Printed Polycaprolactone Scaffolds Coated with Freeze-Dried Platelet-Rich Plasma for Bone Regeneration. *Materials* 2017, 10, 831.

31. Kutlu, B.; Aydin, R.S.T.; Akman, A.C.; Gümüşderelioğlu, M.; Nohutcu, R.M. Platelet-rich plasma-loaded chitosan scaffolds: Preparation and growth factor release kinetics. *J. Biomed. Mater. Res. Part B Appl. Biomater.* 2012, 101, 28–35.

32. Kardos, D.; Hornyák, I.; Simon, M.; Hinsenkamp, A.; Marschall, B.; Várdai, R.; Menyhárd, A.; Pinke, B.; Mészáros, L.; Kuten, O.; et al. Biological and Mechanical Properties of Platelet-Rich

Fibrin Membranes after Thermal Manipulation and Preparation in a Single-Syringe Closed System. *Int. J. Mol. Sci.* 2018, **19**, 3433.

33. Hong, S.; Chen, W.; Jiang, B. A Comparative Evaluation of Concentrated Growth Factor and Platelet-rich Fibrin on the Proliferation, Migration, and Differentiation of Human Stem Cells of the Apical Papilla. *J. Endod.* 2018, **44**, 977–983.

34. Xu, F.; Qiao, L.; Zhao, Y.; Chen, W.; Hong, S.; Pan, J.; Jiang, B. The potential application of concentrated growth factor in pulp re-generation: An in vitro and in vivo study. *Stem Cell Res. Ther.* 2019, **10**, 134.

35. Nakajima, Y.; Kawase, T.; Kobayashi, M.; Okuda, K.; Wolff, L.F.; Yoshie, H. Bioactivity of freeze-dried platelet-rich plasma in an adsorbed form on a biodegradable polymer material. *Platelets* 2012, **23**, 594–603.

36. Pietramaggiori, G.; Kaipainen, A.; Czeczuga, J.M.; Christopher, T.W.; Orgill, D.P. Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds. *Wound Repair Regen.* 2006, **14**, 573–580.

37. Liu, Z.; Jin, H.; Xie, Q.; Jiang, Z.; Guo, S.; Li, Y.; Zhang, B. Controlled Release Strategies for the Combination of Fresh and Lyophilized Platelet-Rich Fibrin on Bone Tissue Regeneration. *BioMed Res. Int.* 2019, **2019**, 4923767.

38. Andia, I.; Perez-Valle, A.; Del Amo, C.; Maffulli, N. Freeze-Drying of Platelet-Rich Plasma: The Quest for Standardization. *Int. J. Mol. Sci.* 2020, **21**, 6904.

39. Dohan Ehrenfest, D.M.; Pinto, N.R.; Pereda, A.; Jiménez, P.; Corso, M.D.; Kang, B.-S.; Nally, M.; Lanata, N.; Wang, H.-L.; Quirynen, M. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. *Platelets* 2017, **29**, 171–184.

40. Miron, R.J.; Pinto, N.R.; Quirynen, M.; Ghanaati, S. Standardization of relative centrifugal forces in studies related to plate-let-rich fibrin. *J. Periodontol.* 2019, **90**, 817–820.

41. Chahla, J.; Cinque, M.E.; Piuzzi, N.S.; Mannava, S.; Geeslin, A.G.; Murray, I.R.; Dornan, G.J.; Muschler, G.F.; LaPrade, R.F. A Call for Standardization in Platelet-Rich Plasma Preparation Protocols and Composition Reporting: A Systematic Review of the Clinical Orthopaedic Literature. *J. Bone Jt. Surg. Am.* 2017, **99**, 1769–1979.

Retrieved from <https://encyclopedia.pub/entry/history/show/17310>