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Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal

diseases. While the emetic syndrome is caused by the cyclic depsipeptide cereulide, proteinaceous enterotoxins

provoke the diarrheal disease. Here, an overview on the distribution of the main toxin genes/operons ces (encoding

cereulide), hbl (encoding the tripartite hemolysin BL), nhe (encoding the tripartite non-hemolytic enterotoxin), and

cytK (encoding the single protein cytotoxin K) within the B. cereus group is given.

Bacillus cereus  hemolysin BL  non-hemolytic enterotoxin  cytotoxin K  cereulide

pore formation  cytotoxicity  food poisoning

1. Introduction

Bacillus cereus is estimated to be responsible for 1.4%–12% of all food poisoning outbreaks worldwide . In the

European Union, bacterial toxins (Clostridium,  Staphylococcus  and  B. cereus) accounted for 17.7% (2016) and

15.9% (2017) of all registered food- and water-borne outbreaks, which ranked them second behind Salmonella .

With 98 registered outbreaks in the EU in 2018,  B. cereus  toxins ranked in fifth place

behind  Salmonella,  Campylobacter, the norovirus and  Staphylococcus  toxins. Among these was also one large

food poisoning outbreak with more than 100 affected persons. Furthermore, six fatal cases were attributed to

bacterial toxins (Clostridium botulinum, Clostridium perfringens and B. cereus) .

Basically, B. cereus  is responsible for two types of gastrointestinal diseases. The emetic kind of illness is mainly

characterized by nausea and emesis, which appear as soon as half an hour after consumption of the contaminated

food and are clinically indistinguishable from intoxications with  Staphylococcus aureus enterotoxins . In this

classical food intoxication, the emetic toxin cereulide is pre-formed during vegetative growth of  B. cereus in

foodstuffs and the consumption of the bacteria is not necessary . Indeed, there are several reports of outbreaks

where only the cereulide toxin was detected in the food, but no bacteria could be isolated . Nevertheless, it is

generally thought that at least 10 –10  B. cereus per g food are needed to produce cereulide in disease-provoking

concentrations . Cereulide is a cyclic dodecadepsipeptide with a molecular weight of 1.2 kDa. The basic

repeated amino acid sequence [D-O-Leu D-Ala L-O-Val D-Val]  is extremely stable towards heat, acid or digestive

enzymes and, thus, the toxin can hardly be removed or inactivated . Usually, the emetic form of disease is

self-limiting and symptoms disappear after 6–24 h. Nevertheless, some severe and fatal outbreaks mostly related

to liver failure are reported . Due to the ubiquitous nature of the pathogen and its

production of highly resistant spores, B. cereus is frequently found in various kinds of food . Historically,
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starchy foodstuffs such as rice or pasta are connected to food intoxications with emetic  B. cereus, but more

recently evidence is growing that emetic B. cereus are much more volatile than once thought. The comprehensive

analysis of a total of 3654 food samples obtained from suspected food-borne illnesses with a preliminary report of

vomiting, collected over a period of seven years, revealed that emetic B. cereus strains were detected in a broad

diversity of foods, including vegetables, fruit products, sauces, soups, and salads as well as milk and meat

products .

The second, diarrheal form of food poisoning is also associated with a variety of different foodstuffs . This form of

disease manifests mainly in diarrhea and abdominal cramps, similar to food poisoning by Clostridium perfringens

type A . Symptoms occur after approximately 8–16 h. This incubation time is typical for toxico-infections, in which

the toxins are produced by viable bacteria inside the human intestine . Unlike cereulide, enterotoxins pre-

formed in foods most likely do not contribute to the disease, as they are considered sensitive towards heat, acids

or proteases. Thus, vegetative  B. cereus  and, especially, spores must be consumed. The infective dose is

estimated between 10 –10  cfu/g  or 10 –10  cfu/g  vegetative cells or spores. The course of disease is

mainly mild and—after approximately 12–24 h—self-limiting. Fatal outbreaks are only very rarely reported . A

food infection with enteropathogenic B. cereus can be seen as a multifactorial process, as a number of individual

steps have to be considered before the onset of the disease, including prevalence and survival of B. cereus in

different foodstuffs, survival of the stomach passage, germination of spores, active movement towards and

adhesion to the intestinal epithelium, enterotoxin production under intestinal conditions, as well as the influence of

consumed foods and the intestinal microbiota on these processes. 

2. Distribution of Toxin Genes

2.1. Prevalence among Isolates from Environment, Foods and Outbreaks

B. cereus is a ubiquitous soil bacterium and can thus be found worldwide in the ground, in dust, or on different

foods. Early studies pointed to an occurrence of diarrheal or emetic outbreaks according to country-specific dietary

habits, with the emetic form manifesting in Great Britain or Japan, and the diarrheal form rather in Northern Europe

or the USA . Lately, both syndromes have been reported from all over the world. Basically, emetic strains are

found less frequently in foods as well as in the environment than enteropathogenic strains . In a multitude

of studies, new isolates were screened for the presence of the toxin genes  nhe (ABC),  hbl (CDAB),  cytK

(1,2),  entFM, and  ces. In some studies, the presence of  bceT (enterotoxin T) was also assessed; however, its

enterotoxic capacity is disproven . Virulence/enterotoxin gene patterns are compiled for B. cereus which

has been mainly isolated from foods, but also from clinical, soil and environmental samples worldwide. Generally,

those patterns are highly diverse .

Common distribution of the toxin genes is approximately 85%–100% nhe (ABC), approximately 40%–70%  hbl

(CDA), approximately 40%–70% cytK-2, very few ces+, typically no cytK-1+, and—if tested—approximately 60%–

100% entFM, which has been detected in studies from Europe ], South America , North

America , Asia and Africa . Nevertheless, in some studies, a connection was
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established between toxin gene patterns and geographical location of the isolates. Drewnowska et al. found that

strains possessing nheA, hblA and cytK-2 were predominant in regions with arid hot climate, and were comparably

rare in continental cold climates . This is supported by other studies suggesting that geographic origin might have

an impact on the conservation of hblA among B. cereus populations . Zhang et al. also claim a “regional

feature for toxin gene distribution” .

Besides geographical location, toxin gene patterns seem to be also influenced by the kind of foodstuffs analyzed.

For instance, Berthold-Pluta et al. found higher prevalence of nhe+ and hbl+, but lower prevalence of ces+ strains

in food products of animal than of plant origin . Rossi et al. showed that strains from dairy products had

significantly lower cytK-2 and hblCDA prevalence than strains from equipment or raw milk , and Hwang and Park

found  hbl  in >95% of tested ready-to-eat (RTE) foods, but only in 30% of infant formulas. Furthermore, the

prevalence of cytK-2 was comparably low in the latter food .

Studies were also conducted comparing food related and food poisoning related strains. Santos et al. showed that

food poisoning strains had a higher occurrence and higher genetic diversity of  plcR-papR,  nheA,  cytK-2,  plcA,

and gyrB genes than strains isolated from soil or foods . CytK and the combination hbl-nhe-cytK were more often

found among food poisoning related than among food related strains

Generally, all  B. cereus  isolates can be categorized into seven different toxin profiles: A (nhe+,  hbl+,  cytK+), B

(nhe+,  cytK+,  ces+), C (nhe+,  hbl+), D (nhe+,  cytK+), E (nhe+,  ces+), F (nhe+), and G (cytK+) . In fact,

the  hbl  genes alone or a combination of  ces  and  hbl  have only been reported for the very few emetic  Bacillus

weihenstephanensis isolates described so far . There are further studies showing “unusual” results, particularly

low or no prevalence of nhe  or extraordinarily high prevalence of hbl  or ces ,

which must be interpreted cautiously, especially as  nhe is well known for its molecular heterogeneity .

Thus, the choice of detection methods, especially primer pairs for nhe, can have a crucial influence on the results.

However, it has to be mentioned that the presence of enterotoxin genes or a certain toxin gene profile does not

necessarily allow conclusions on the toxic activity of a B. cereus isolate . In our own studies, we chose pairs of

strains with an identical toxin gene profile, but one strain exhibited high and the other low toxic activity both under

routine laboratory and simulated intestinal growth conditions . The reasons for this are so far not completely

understood, but it is believed that highly variable and strain-specific mechanisms in toxin gene transcription,

posttranscriptional and posttranslational modification and protein secretion are involved.

2.2. Presence within the B. cereus Group

In many of the studies mentioned in Section 2.1, often only B. cereus sensu lato (s. l.)  strains are investigated,

meaning there is no differentiation between the members of the  B. cereus  group. In routine microbiological

diagnostics, only “presumptive”  B. cereus are detected on selective culture media according to international

standards (ISO 7932:2005-03) . The B. cereus group comprises at least eight species: B. anthracis, B. cereus

sensu stricto (s. s.),  B. thuringiensis,  B. mycoides,  B. pseudomycoides,  B. weihenstephanensis,  B.
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cytotoxicus  and  B. toyonensis . Additionally, more and more species such as  B. wiedmannii,  B.

bingmayongensis, B. gaemokensis, B. manliponensis, and others are described . Generally, they

exhibit high genetic similarities and, thus, it has been suggested that they be considered as one species

  or to completely change the taxonomic nomenclature of the  B. cereus group . Species definition is

historically based on phenotypes or clinical and economical relevance. While the unique characteristics of  B.

anthracis, emetic B. cereus and B. thuringiensis are located on plasmids , the enterotoxins are chromosome-

coded and can thus be present throughout the B. cereus group. This is particularly problematic for the assessment

of  B. thuringiensis, which is frequently used as biopesticide worldwide .  B. thuringiensis  has been

isolated from a variety of foodstuffs and the presence of the enterotoxin genes  nhe,  hbl  and  cytK-2  has been

shown, with similar percentages as for  B. cereus

, while ces genes have not been found . Enterotoxin production and cytotoxic activity have also been

shown , and B. thuringiensis could therefore be involved in food poisoning

outbreaks . Consequently, it was debated whether the B. thuringiensis-associated biopesticides represent a risk

for public health. To clarify this question, there is a demand for simple methods enabling a clear discrimination

between  B. cereus  and  B. thuringiensis in routine food and clinical diagnostics as well as for unequivocal

identification of the strains used as biopesticides .

Next to B. cereus and B. thuringiensis, further species of the B. cereus group were isolated from foods and the

presence of enterotoxin genes was proven, such as  B. anthracis ,  B. mycoides ,  B.

pseudomycoides , B. toyonensis [135], and B. weihenstephanensis . It has also been shown

that Bacillus spp. outside the B. cereus group can harbor one or more enterotoxin genes . For instance,

Mäntynen and Lindström found  hblA+  B. pasteurii  DSM 33,  B. smithii  DSM 459, and  Bacillus sp. DSM 466

. Nhe and/or hbl genes were also detected in B. amyloliquefaciens, B. circulans, B. lentimorbis, and B. pasteurii

. On the other hand, From et al. found no enterotoxin genes outside the B. cereus group in the strains analyzed

.

According to MLST (multi-locus sequence typing), AFLP (amplified fragment length polymorphism) and whole

genome sequencing, the B. cereus group was first assigned to three phylogenetic groups (clades) , then seven

(panC  types) , and later nine , which do not correlate with species definition . Prevalence of enterotoxin

genes and their profiles were also compared to phylogenetic groups.  B. cereus  isolates from dairy products in

Brazil with approximately 50% cytK-2 and hbl, and approximately 85% nhe were mostly assigned to phylogenetic

group III. Group IV and V showed significantly higher prevalence of  hblCDA  and group IV showed additionally

higher prevalence of cytK-2 . In another study on dairy isolates, strains of clade IIIc had no hblCDA operon,

while strains of clade IV carried it and produced the Hbl toxin, whereas strains of clade VI carried the gene but did

not produce the toxin . Furthermore, a broad distribution of enterotoxin genes among seven phylogenetic

clades, in which dairy-associated isolates were divided, was shown . Okutani et al. investigated the genomes of

44 B. cereus group isolates from soil, animal and food poisoning cases in Japan. Strains were assigned to four

different  panC  types and five different clades. The  nhe  operon was found in all strains tested, while  ces was

detected only in the food poisoning strains. When the presence or absence of virulence-associated genes was

statistically analyzed, the majority of soil and animal isolates was part of overlapping clusters, while three of the
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four food poisoning isolates formed a distinct cluster . Furthermore, the hbl and the ces genes were significantly

correlated with the phylogenetic group . Several further studies suggested that the toxic potential of  B.

cereus s. l. strains depends rather on the phylogenetic group than on the species .
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