
Toxin Genes of Bacillus cereus
Subjects: Pharmacology & Pharmacy

Contributor: Nadja Jessberger

Bacillus cereus is a ubiquitous soil bacterium responsible for two types of food-associated gastrointestinal diseases. While

the emetic syndrome is caused by the cyclic depsipeptide cereulide, proteinaceous enterotoxins provoke the diarrheal

disease. Here, an overview on the distribution of the main toxin genes/operons ces (encoding cereulide), hbl (encoding

the tripartite hemolysin BL), nhe (encoding the tripartite non-hemolytic enterotoxin), and cytK (encoding the single protein

cytotoxin K) within the B. cereus group is given.
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1. Introduction

Bacillus cereus is estimated to be responsible for 1.4%–12% of all food poisoning outbreaks worldwide . In the European

Union, bacterial toxins (Clostridium, Staphylococcus and B. cereus) accounted for 17.7% (2016) and 15.9% (2017) of all

registered food- and water-borne outbreaks, which ranked them second behind Salmonella . With 98 registered

outbreaks in the EU in 2018, B. cereus toxins ranked in fifth place behind Salmonella, Campylobacter, the norovirus

and Staphylococcus toxins. Among these was also one large food poisoning outbreak with more than 100 affected

persons. Furthermore, six fatal cases were attributed to bacterial toxins (Clostridium botulinum, Clostridium
perfringens and B. cereus) .

Basically, B. cereus is responsible for two types of gastrointestinal diseases. The emetic kind of illness is mainly

characterized by nausea and emesis, which appear as soon as half an hour after consumption of the contaminated food

and are clinically indistinguishable from intoxications with Staphylococcus aureus enterotoxins . In this classical food

intoxication, the emetic toxin cereulide is pre-formed during vegetative growth of B. cereus in foodstuffs and the

consumption of the bacteria is not necessary . Indeed, there are several reports of outbreaks where only the cereulide

toxin was detected in the food, but no bacteria could be isolated . Nevertheless, it is generally thought that at least 10 –

10  B. cereus per g food are needed to produce cereulide in disease-provoking concentrations . Cereulide is a

cyclic dodecadepsipeptide with a molecular weight of 1.2 kDa. The basic repeated amino acid sequence [D-O-Leu D-Ala

L-O-Val D-Val]  is extremely stable towards heat, acid or digestive enzymes and, thus, the toxin can hardly be removed or

inactivated . Usually, the emetic form of disease is self-limiting and symptoms disappear after 6–24 h.

Nevertheless, some severe and fatal outbreaks mostly related to liver failure are reported 

. Due to the ubiquitous nature of the pathogen and its production of highly resistant spores, B. cereus is frequently

found in various kinds of food . Historically, starchy foodstuffs such as rice or pasta are connected to food

intoxications with emetic B. cereus, but more recently evidence is growing that emetic B. cereus are much more volatile

than once thought. The comprehensive analysis of a total of 3654 food samples obtained from suspected food-borne

illnesses with a preliminary report of vomiting, collected over a period of seven years, revealed that emetic B. cereus
strains were detected in a broad diversity of foods, including vegetables, fruit products, sauces, soups, and salads as well

as milk and meat products .

The second, diarrheal form of food poisoning is also associated with a variety of different foodstuffs . This form of

disease manifests mainly in diarrhea and abdominal cramps, similar to food poisoning by Clostridium perfringens type A .

Symptoms occur after approximately 8–16 h. This incubation time is typical for toxico-infections, in which the toxins are

produced by viable bacteria inside the human intestine . Unlike cereulide, enterotoxins pre-formed in foods most

likely do not contribute to the disease, as they are considered sensitive towards heat, acids or proteases. Thus,

vegetative B. cereus and, especially, spores must be consumed. The infective dose is estimated between 10 –10

cfu/g  or 10 –10  cfu/g  vegetative cells or spores. The course of disease is mainly mild and—after approximately

12–24 h—self-limiting. Fatal outbreaks are only very rarely reported . A food infection with enteropathogenic B.
cereus can be seen as a multifactorial process, as a number of individual steps have to be considered before the onset of
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the disease, including prevalence and survival of B. cereus in different foodstuffs, survival of the stomach passage,

germination of spores, active movement towards and adhesion to the intestinal epithelium, enterotoxin production under

intestinal conditions, as well as the influence of consumed foods and the intestinal microbiota on these processes. 

2. Distribution of Toxin Genes

2.1. Prevalence among Isolates from Environment, Foods and Outbreaks

B. cereus is a ubiquitous soil bacterium and can thus be found worldwide in the ground, in dust, or on different foods.

Early studies pointed to an occurrence of diarrheal or emetic outbreaks according to country-specific dietary habits, with

the emetic form manifesting in Great Britain or Japan, and the diarrheal form rather in Northern Europe or the USA .

Lately, both syndromes have been reported from all over the world. Basically, emetic strains are found less frequently in

foods as well as in the environment than enteropathogenic strains . In a multitude of studies, new isolates were

screened for the presence of the toxin genes nhe (ABC), hbl (CDAB), cytK (1,2), entFM, and ces. In some studies, the

presence of bceT (enterotoxin T) was also assessed; however, its enterotoxic capacity is disproven .

Virulence/enterotoxin gene patterns are compiled for B. cereus which has been mainly isolated from foods, but also from

clinical, soil and environmental samples worldwide. Generally, those patterns are highly diverse .

Common distribution of the toxin genes is approximately 85%–100% nhe (ABC), approximately 40%–70% hbl (CDA),
approximately 40%–70% cytK-2, very few ces+, typically no cytK-1+, and—if tested—approximately 60%–100% entFM,

which has been detected in studies from Europe ], South America , North America ,

Asia and Africa . Nevertheless, in some studies, a connection was established between

toxin gene patterns and geographical location of the isolates. Drewnowska et al. found that strains

possessing nheA, hblA and cytK-2 were predominant in regions with arid hot climate, and were comparably rare in

continental cold climates . This is supported by other studies suggesting that geographic origin might have an impact on

the conservation of hblA among B. cereus populations . Zhang et al. also claim a “regional feature for toxin gene

distribution” .

Besides geographical location, toxin gene patterns seem to be also influenced by the kind of foodstuffs analyzed. For

instance, Berthold-Pluta et al. found higher prevalence of nhe+ and hbl+, but lower prevalence of ces+ strains in food

products of animal than of plant origin . Rossi et al. showed that strains from dairy products had significantly lower cytK-
2 and hblCDA prevalence than strains from equipment or raw milk , and Hwang and Park found hbl in >95% of tested

ready-to-eat (RTE) foods, but only in 30% of infant formulas. Furthermore, the prevalence of cytK-2 was comparably low

in the latter food .

Studies were also conducted comparing food related and food poisoning related strains. Santos et al. showed that food

poisoning strains had a higher occurrence and higher genetic diversity of plcR-papR, nheA, cytK-2, plcA, and gyrB genes

than strains isolated from soil or foods . CytK and the combination hbl-nhe-cytK were more often found among food

poisoning related than among food related strains

Generally, all B. cereus isolates can be categorized into seven different toxin profiles: A (nhe+, hbl+, cytK+), B

(nhe+, cytK+, ces+), C (nhe+, hbl+), D (nhe+, cytK+), E (nhe+, ces+), F (nhe+), and G (cytK+) . In fact, the hbl genes

alone or a combination of ces and hbl have only been reported for the very few emetic Bacillus weihenstephanensis
isolates described so far . There are further studies showing “unusual” results, particularly low or no prevalence

of nhe  or extraordinarily high prevalence of hbl  or ces , which must be interpreted

cautiously, especially as nhe is well known for its molecular heterogeneity . Thus, the choice of detection methods,

especially primer pairs for nhe, can have a crucial influence on the results.

However, it has to be mentioned that the presence of enterotoxin genes or a certain toxin gene profile does not

necessarily allow conclusions on the toxic activity of a B. cereus isolate . In our own studies, we chose pairs of

strains with an identical toxin gene profile, but one strain exhibited high and the other low toxic activity both under routine

laboratory and simulated intestinal growth conditions . The reasons for this are so far not completely understood, but

it is believed that highly variable and strain-specific mechanisms in toxin gene transcription, posttranscriptional and

posttranslational modification and protein secretion are involved.

2.2. Presence within the B. cereus Group

In many of the studies mentioned in Section 2.1, often only B. cereus sensu lato (s. l.) strains are investigated, meaning

there is no differentiation between the members of the B. cereus group. In routine microbiological diagnostics, only

“presumptive” B. cereus are detected on selective culture media according to international standards (ISO 7932:2005-03)
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. The B. cereus group comprises at least eight species: B. anthracis, B. cereus sensu stricto (s. s.), B.
thuringiensis, B. mycoides, B. pseudomycoides, B. weihenstephanensis, B. cytotoxicus and B. toyonensis .

Additionally, more and more species such as B. wiedmannii, B. bingmayongensis, B. gaemokensis, B. manliponensis, and

others are described . Generally, they exhibit high genetic similarities and, thus, it has been suggested that

they be considered as one species  or to completely change the taxonomic nomenclature of the B. cereus
group . Species definition is historically based on phenotypes or clinical and economical relevance. While the unique

characteristics of B. anthracis, emetic B. cereus and B. thuringiensis are located on plasmids , the enterotoxins are

chromosome-coded and can thus be present throughout the B. cereus group. This is particularly problematic for the

assessment of B. thuringiensis, which is frequently used as biopesticide worldwide . B. thuringiensis has been

isolated from a variety of foodstuffs and the presence of the enterotoxin genes nhe, hbl and cytK-2 has been shown, with

similar percentages as for B. cereus , while

ces genes have not been found . Enterotoxin production and cytotoxic activity have also been shown 

, and B. thuringiensis could therefore be involved in food poisoning outbreaks .

Consequently, it was debated whether the B. thuringiensis-associated biopesticides represent a risk for public health. To

clarify this question, there is a demand for simple methods enabling a clear discrimination between B. cereus and B.
thuringiensis in routine food and clinical diagnostics as well as for unequivocal identification of the strains used as

biopesticides .

Next to B. cereus and B. thuringiensis, further species of the B. cereus group were isolated from foods and the presence

of enterotoxin genes was proven, such as B. anthracis , B. mycoides , B. pseudomycoides
, B. toyonensis [135], and B. weihenstephanensis . It has also been shown that Bacillus spp. outside

the B. cereus group can harbor one or more enterotoxin genes . For instance, Mäntynen and Lindström

found hblA+ B. pasteurii DSM 33, B. smithii DSM 459, and Bacillus sp. DSM 466 . Nhe and/or hbl genes were also

detected in B. amyloliquefaciens, B. circulans, B. lentimorbis, and B. pasteurii . On the other hand, From et al. found

no enterotoxin genes outside the B. cereus group in the strains analyzed .

According to MLST (multi-locus sequence typing), AFLP (amplified fragment length polymorphism) and whole genome

sequencing, the B. cereus group was first assigned to three phylogenetic groups (clades) , then seven (panC types)

, and later nine , which do not correlate with species definition . Prevalence of enterotoxin genes and their

profiles were also compared to phylogenetic groups. B. cereus isolates from dairy products in Brazil with approximately

50% cytK-2 and hbl, and approximately 85% nhe were mostly assigned to phylogenetic group III. Group IV and V showed

significantly higher prevalence of hblCDA and group IV showed additionally higher prevalence of cytK-2 . In another

study on dairy isolates, strains of clade IIIc had no hblCDA operon, while strains of clade IV carried it and produced the

Hbl toxin, whereas strains of clade VI carried the gene but did not produce the toxin . Furthermore, a broad distribution

of enterotoxin genes among seven phylogenetic clades, in which dairy-associated isolates were divided, was shown .

Okutani et al. investigated the genomes of 44 B. cereus group isolates from soil, animal and food poisoning cases in

Japan. Strains were assigned to four different panC types and five different clades. The nhe operon was found in all

strains tested, while ces was detected only in the food poisoning strains. When the presence or absence of virulence-

associated genes was statistically analyzed, the majority of soil and animal isolates was part of overlapping clusters, while

three of the four food poisoning isolates formed a distinct cluster . Furthermore, the hbl and the ces genes were

significantly correlated with the phylogenetic group . Several further studies suggested that the toxic potential of B.
cereus s. l. strains depends rather on the phylogenetic group than on the species .
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