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Cell transdifferentiation and reprogramming refers to a group of approaches that allow researchers to halt/reverse
the development of adult cells, or convert them one from one cell type to another. The manipulation of cell fate can
be achieved by enrolling exogenous/artificial controls. The chemical/small molecule and regulatory components of
transcription machinery serve as potential tools to execute cell transdifferentiation and have thereby uncovered
new avenues for disease modeling and drug discovery. At the advanced stage, one can believe these methods can

pave the way to develop efficient and sensitive gene therapy and regenerative medicine approaches.

transdifferentiation cell reprogramming induced pluripotency disease modeling

neuronal diseases cardiac disease regenerative medicine therapeutic strategies

| 1. Introduction

The quenching of cell stemness as cell progressively proliferates and acquires a differentiated state was initially
thought to be an irreversible mechanism 2. The canonical design of a biological process such as cell differentiation
has now largely been disproved in the light of emerging evidence about the cellular reprogramming and
transdifferentiation mechanisms that potentiate conversion of a lineage-specific, differentiated cell into
another/different lineage/cell type [&. In the process of differentiation, a pluripotent stem cell systematically
proliferates and undergoes the intermediate/progenitor and differentiated progenitor/multipotent stages before
losing its plasticity and dividing terminally into the specialized/mature cells which constitute an organ or tissue [,
Mechanistically, when a differentiated cell reverts to its parental lineage or less-differentiated cell to acquire a
proliferative phenotype, the process is generally known as dedifferentiation, while transdifferentiation suggests the
direct conversion of a differentiated cell type to another differentiated cell type without entering a pluripotent state.
Therefore, transdifferentiation is often called direct cell reprogramming B4 Both differentiation and
transdifferentiation events can occur naturally @. In contrast, the process of cell reprogramming or induced
pluripotency, which refers to the process of reverting specialized/differentiated cells to the induced pluripotent stem
cells (iPSCs) state, is largely artificial 2. The fundamental difference between differentiation, dedifferentiation,

cellular reprogramming and transdifferentiation is illustrated in Figurel.
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Figure 1. Schematic diagram showing processes of differentiation, reprogramming, transdifferentiation (direct
conversion), and dedifferentiation in determining the cells fate, while dedifferentiation represents a reverse step in
this process. Model exhibiting the pluripotent stem cells (SCs) differentiation to intermediate progenitor SCs, then
to multipotent SCs/differentiated progenitors, and eventually to mature tissue-specific specialized cells.
Reprogramming indicates reverting back a mature cell into induced pluripotent stem cells (may consist of an
intermediate step/cell population) with the help of specific transcription factors (TFs) and chemicals/small
molecules. Transdifferentiation represents the direct conversion of a specialized mature cell into another cell type

by the help of specific TFs and chemicals/small molecules.

Cell reprogramming can be induced atrtificially by chemicals/small molecules or by expressing certain transcription
factors (TFs), which reprogram a cell to enter an intermediate or pluripotent state [ (Figure 1). Davies and
Weintraub, in the earliest report in 1987, firstly demonstrated the ability of lineage-specific TFs to govern cell fate
[, Murry et al., later in 1996, brilliantly showed that MyoD expression across different cell lines in vitro stimulates
muscle-specific genes’ expression and may further convert these cells into myoblasts [&l. Accumulating evidence in
the last three decades has significantly established cellular reprogramming and transdifferentiation in mammals;

however, events altering cell fate were also seen to occur naturally £,

The pathological side of these processes is known in clinical practice, for instance in Barret's metaplasia, Cdx2
activation transdifferentiates stratified squamous cells into epithelial cells, which potentiates esophagus carcinoma

(191 Earlier reports showed that the transdifferentiation of diverse cell types into myofibroblasts may cause fibrosis
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in the case of injury or chronic damage to the liver B kidney 2 and muscle 23 while a natural
transdifferentiation mechanism can be seen in heart 14 liver [13] and in the lens regeneration process in axolotls
(161 Although such remarkable regeneration abilities produced by endogenous transdifferentiation are largely
restricted to lower vertebrates, mammals exhibit limited features . For instance, after injury, Lgr5+ led
transdifferentiation induces the revival of the hair follicular cells in the inner ear, a rare feature that is exclusive to

the neonatal stages. However, in the adults it fails to repair injury significantly 22,

Developments in this field have largely been fueled by investigations into these model organisms and their
regenerative abilities, and from the accumulating knowledge on small molecules/chemicals and key cell fate-
regulators. The latter includes key transcription factors that can instigate cellular reprogramming and
transdifferentiation [L811191[2011211[22] '\which is largely seen as a promising therapeutic strategy in disease modeling &
(231[24](25][26] |y the following section, we review the role of diverse factors involved in cellular transdifferentiation

towards regulating the cell fate in disease modeling.

| 2. Cell Transdifferentiation: An Overview

A recent development in transdifferentiation or direct lineage-reprogramming— where a cell converts into another
cell type without crossing the pluripotent state—offered novel applications to produce functional cells/tissues in
disease modeling 18 Although several functional cell types, including cardiomyocytes, neurons, progenitor/stem
cells, hepatic stem cells, hepatocytes, and blood/hematopoietic stem cells have been obtained from
fibroblasts/other somatic cells in vitro using the TFs or chemical-mediated transdifferentiation approach, a greater

focus of translational research on neural and cardiac cells has been evident.

Recently, Qin et al. demonstrated the transdifferentiation of human fibroblast cells into DA-neuron-like cells by
using a combination of protein factors and small molecules 24, Their method exhibited efficient direct conversion,
as 95% of yielded cells were TUJ1-positive, and the process did not include an intermediate neural stem/progenitor
stage. In another recent report, Song et al., by using a doxycycline-inducible TFs system (carrying Ngn2, Ascl1,
and DIx2) in human pluripotent stem cells, performed the successful transdifferentiation of these cells into

excitatory and inhibitory neurons, exhibiting an equivalent phenotype and molecular signature (28!,

Although these studies still do not qualify directly for therapeutic applications or diseases modeling, they do
demonstrate proof-of-principal that neurons with post-mitotic state can be transdifferentiated from different cell
types, or cell-to-cell conversion can be programmed. These reports decisively affirmed that TFs-mediated neural
stem/progenitor cells’ transdifferentiation can critically shape its therapeutic applications, and utility in disease

modeling, more specifically in neurodegenerative and age-related neuronal diseases.

Obtaining human cells and stem cells is a practical impediment. Given the non-invasive source of multiple types of
cells, urine can be obtained from patients of any age. Urine cell-derived competent cells have emerged as a major
tool for research given its therapeutic importance 29, Xu et al. demonstrated direct transdifferentiation of human

urine cells to neurons using a seven small molecule cocktail (CHIR99021, A8301, Y-27632, TTNPB, Forskolin,
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VPA, NaB) B9, The transdifferentiated neurons exhibited a mature neuron-like phenotype and molecular signature
as validated by the expression of neuronal markers. Further, Qin et al. used a combination of small molecules and
protein factors and successfully performed transdifferentiation of human fibroblasts into neuron-like cells without
passing through a neural stem/progenitor intermediate stage 27, Although these reports showed efficient neuronal
transdifferentiation from various cell types, the underlying molecular mechanism of these processes warrants
further investigation.

3. Cellular Reprogramming for Generating Induced
Pluripotent Stem Cells

Cellular reprogramming refers to a group of approaches that allow researchers to halt or reverse the development
of adult cells. The validation of cellular reprogramming in human cells has paved the way for a slew of new stem
cell biology, disease modeling, drug development, and regenerative medicine applications 2. The presence of
pluripotent stem cells in a population that gives rise to all cells is one of the most defining elements of early
mammalian development 1. Due to a shortage of primary cells from the human central nervous system (CNS)
and peripheral nervous system, human-induced pluripotent stem cells (hiPSCs) can also be studied for
neurogenerative disease 32, However, researchers have been able to conduct studies on the recapitulation of
physiological and pathological pathways in patient-derived lines. This has resulted in more realistic disease
modeling platforms 3. These are widely utilized in drug discovery and safety investigations, for instance in the
development of AD drugs with the goal of identifying chemicals that can inhibit or lower amyloid-beta levels 4],
Some of the recent studies where chemical/small molecules or transcription factors have been employed for
inducing cellular reprogramming to study neuronal and cardiac systems have been listed in Table 1 and Table 2,
respectively.

Table 1. Chemicals/small molecules-induced cellular reprogramming and their molecular activity/function(s) in

neuronal and cardiac model systems.

Chemicals/Small Molecular Activity/induced Cellular Reprogramming
. - References
Molecules Mechanism(s) Function(s)
RepSox (E- : L . . . [35][36][37]
616452) TGF-BRI (ALKS5) inhibitor CIiNPC, CiN, CiCM
TTNPB RAR ligand CiCM, CiN [28][27]
Forskolin Adenylyl cyclase activator CiN, CiCM [39[36][37]
N CiNPC, CiNSLCe, CiNf, (39126282 7][40]
CHIR99021 GSKa3 inhibitor CiCM [41]
VPA HDAC inhibitor g:zfﬂ%a' Gl Ee (el e [35][36][381(37]
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Chemicals/Small Molecular Activity/induced Cellular Reprogramming References

Molecules Mechanism(s) Function(s)
LiCl and Li2CO3 GSK3 inhibitor CIiNPC [35]
SB431542 TGF-BRI inhibitor ;'E:d%P%NPC' CiN, [35is8]
NaB HDAC inhibitor CiNPC [35]
Tranilast Inhibit TGF-B1 secretion CiNPC [35]
I\;S’A (Trichostatin =5 AC inhibitor CiNPC [35]
RG108 DNA methyltransferase inhibitor CINSLC [42]
A-83-01 TGF-BRI (ALK4/5/7) inhibitor CiNSLC, CiCM [42][40]
Hh-Ag 1.5 Smoothened agonist CiNSLC [42]
SMER28 Autophagy modulator CiNSLC [42]
Retinoic acid RAR ligand CiNSLC [42]
LDN193189 ilil:]/lil;ttgfe | receptor (ALK2/3) CINSLC [42]
G06983 PKC inhibitor CiN [36]
ISX9 neurogenesis inducer CiN [39]
Dorsomorphin AMPK and BMP | receptor inhibitor ~ CiN [36]
I-BET151 BET inhibitor CiN [39]
SP600125 JNK inhibitor CiN [36]
SAG Smoothened agonist CiN [38]
Y-27632 ROCK inhibitor CiN, CiCM [36][40]
Purmorphamine Smoothened agonist CiN [38]
DAPT Gamma-secretase inhibitor CiN [38]
SC1 ERK1 and RasGAP inhibitor CiCM [40]
Thiazovivin ROCK inhibitor CiN (38]
OAC2 Epigenetic modulation CiCM [401
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Chemicals/Small

Molecular Activity/induced

Cellular Reprogramming References

Molecules Mechanism(s) Function(s)
AS8351 Epigenetic modulator CiCM [49]
SU16F PDGFR-B inhibitor CiCM [40]
JNJ10198409 PDGFR-a and PDGFR- inhibitor CiCM [49]
Bix01294 Histone methyl transferase inhibitor ~ CiCM [49]
CiN: chemical-induced neuron; CIiNPC: chemical-induced neuroprogenitor cell; CiCM: chemical-induced

cardiomyocyte; CINSLC: chemical-induced neural stem cell-like cell.

Table 2. TFs-induced cellular reprogramming and functional outcomes in neuronal and cardiac model systems.

ReprogrammingSpecies/Model/CellObtained Cell

Results/Functional

Factors (TFs) Type Types Ef-f'c'em:yOutcome GGl
Neuronal iN (mostly .
Brn2, Myt1/, GABAergic %ijg'tfon
Zic1, Olig2, and and ~50% ) ’ [41]
. functional
Ascll . glutamatergic .
Mouse embryonic electrophysiology
neurons)
and postnatal
fibroblast cells :
iN (mostly Synaptlt_:
Ascl1, Brn2 and excitatory 19.50% maturatlon, [41][43]
Myt1l functional
neurons) .
electrophysiology
Forskolin, 1SX9, . .
CHIR99021 and ('\:Ae‘?lise fibroblast iN >90% Z;Zf:;onhalsiolo 139
SB431542 pny ay
Ascl1, Brn2 . Functional
’ ’ 0 [44]
Myt] Mouse hepatocytes iN >90% electrophysiology
iN (mostly
Mashl, Nurrl dopaminergic  High - [45]
and Lmxla
Mouse and human neurons)
cells/fibroblast cells
Ascll, Brn2 and neurons 20% Functional [46]
Myt1l
Pericyte-derived gcbtz:?: (tjhltle\labilit
Sox2 and cells of the adult GABAergic qui Y [47]
~50% of action potential
Mash1 human cerebral neurons

cortex

firing, synaptic

targets for neurons
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ReprogrammingSpecies/Model/CellObtained Cell Results/Functional

Factors (TFs) Type Types Ei.-f'c'encyOutcome Gl
LD e Functional
SB431542, HeUrons
TTNPB, Tzv,
, ’ i 0 i [38]
CHIR99021, Human astrocytes (rlrL?;r:]quater . >90% Functional
VPA, DAPT, geurons) ’
SAG, Purmo
ASCL1, NGN2, iN (mostly Functional
SOX2, NURR1 dopaminergic ~ ~80% . (48]
and PITX3 neurons) phy 9y
NeuroD1, Ascl1 . .
’ ’ ~609 [43]
Brn2, and Mytl1 iN 60% Functional neurons
Human-fbroblast
cells Showed
spontaneous
serotonergic electrophysiological
Ascll, Lmxla . . .
: : ~9250 (49]
FoxA2, and FEV (i5HT) 25% act|V|ty_, Active
neurons synaptic
transmission
observed
Cardiac Mouse ) Spontaneous
GATA4, MEF2C, iCMs from  ~70- por e .
beating, Ca:
TBX5, HAND2 MEFs 80% .
transients
GATA4, MYOD- fm'vtl)? f;?]?; Spontaneous
MEF2C, TBXS5, y 10-20%  beating, Ca2* (54
HAND2 head transient
fibroblasts ransients
Caletisiee Spontaneous
TBX5, HAND2, iCMs from i o =
NKX2.5, MEFs 0 o g’t
SB431542 ransients
Action potentials,
MEF2C, GATA4, iCMs from ~10% spoqtaneous 53]
TBX5 CFs beating, Ca®*
transients
GATA4, MEF2C, Action potentials
Y03 a1 iCMs from s ontarF:eous '
miR-1, miR-133, Ere 60% b‘e’aﬂn oot (541
A83-01, Y- : _ g,t
27632 ransients
GATA4, MEF2C, iCMs from 22% Spontaneous (55]
TBX5, (HAND2), CFs beating, Ca?*
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ReprogrammingSpecies/Model/CellObtained Cell _... . Results/Functional
Factors (TFs) Type Types Ei.-f'c'er"::yOutcome Gl
Bmil shRNA transients
GATA4, MEF2C, Spontaneous
TBXS5, iCMs from _30% beating, Ca2* [56]
SB431542, CFs ’ 2
XAV939 transients
GATA4, MEF2C, S — Ca?* transients,
TBX5, HAND2, VERs ~38% spontaneous 7]
DAPT beating
GATA4, MEF2C, . 24 .
TBX5 MESPI iCMs from 5.90% Ca. tran5|ethS, (58]
MYO&:D ' HCFs action potentials
GATA4, MEF2C, .
! ’ iCMs from
ATJEIBZ_);EJF’);ESRGG’ hESC- e Ca?* transients, [59]
MYOCb Human d_erived action potentials
ZEPM?2 fibroblasts
GATA4, MEF2C,
TBX5 (+ .
MESP1, Eg':‘sfrom 27.80%  Ca®" transients (601
MYOCD) with
miR-133
GATA4, MEF2C, No spontaneous
TBX5, (HAND2, . iCMs from e S [61]
MYOCD or miR- Human, rat, porcine adult HCFs 40% ibce'\a/lltsl'ng in human
590)

Importantly, iPSCs and ESCs have a high degree of similarity, providing new promise for the use of pluripotent
stem cells for regenerative therapies with fewer ethical problems and potentially improved patient specificity [62]
The development of innovative stem cell-based models to investigate the underlying processes of lineage
differentiation and embryonic morphogenesis has been aided by the availability of embryo-derived stem cells that

capture the lineage propensity [63],

Reprogramming the adult somatic cells into induced pluripotent stem cells (iPSCs) is another effective model that
has a bright future as regenerative medicine. Therefore, disease models are critical for revealing the molecular
basis of a variety of diseases, enabling the development of new treatments.

Pluripotent stem cells (PSCs), which include embryonic stem cells (ESCs) and induced pluripotent stem cells
(iPSCs), have a limitless ability to self-renew and proliferate. This feature allows them to generate a therapeutically
relevant number of cells for regenerative therapy 4. This would help the researchers to better understand the

mechanisms driving a variety of human genetic, malignant, and non-malignant disorders. Genome editing
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techniques have also been utilized to fix disease-specific iPSC mutations, resulting in gene-corrected iPSCs that
can be employed for autologous cell-based treatment 4. The number and kind of cells, their efficiency, footprint,
and long-term translational goal influences all its reprogramming approaches. However, fibroblasts and peripheral
blood mononuclear cells remain the gold standard, despite the usage of diverse cell types. When compared to
iPSCs produced from other parental tissues, blood cells were less likely to develop aberrant DNA methylation, and
these cells exhibited stronger hematopoietic differentiation ability 62681, Therefore, the generation of patient-

specific iPSCs provides a safer alternative for clinical applications.

4. Therapeutic Applications of Transdifferentiation and
Cellular Reprogramming

Cellular reprogramming and transdifferentiation have diverse therapeutic applications that include gene

therapy/correction, cellular therapy, tissue engineering, and disease modeling (Figure 2).
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Figure 2. Schematic diagram showing diverse therapeutic applications of transdifferentiation and cellular

reprogramming in gene therapy/correction, cellular therapy, tissue engineering, and disease modeling.

A disease model represents the abnormal state of cells that occur in a specific disease. Therefore, it allows
researchers to investigate and understand the intricate mechanisms that lead to the onset and further progression

of the disease. These models can further be explored for developing and testing therapeutics. Cellular
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reprogramming of stem cells to create disease-in-a-dish models has gained a lot of attention over the past few
years. These disease models are capable of self-renewal and also differentiate into desired cellular types to
capture the disease pathogenesis 4. Using iPSCs, one of the earliest disease models developed was to study
spinal muscular atrophy. The motor neurons produced by diseased iPSCs carried the histological markers of the
disease and degenerated at a rate faster than the wildtype control neurons [€8l. On similar lines, disease models for
many other neurological and cardiac disorders have been developed to date that include Down syndrome,
Parkinson's disease, Alzheimer's disease, long QT syndrome, catecholaminergic polymorphic ventricular
tachycardia, arrhythmogenic right ventricular cardiomyopathy/dysplasia, dilated cardiomyopathy, left ventricular
non-compaction, hypertrophic cardiomyopathy, Barth syndrome, fatty acid oxidation disorders and Pompe diseases

to name a few.

The concept of regenerative medicine involves the switching of stem cells or dedifferentiating somatic cells into
stem cell-like multipotent cells. These cells can proliferate and then re-differentiate into the desired lineage to
repopulate the damaged or degenerated tissue with functional cells. The reprogramming of the cells can be
conducted in vitro, in vivo, or ex vivo to regain their regenerative properties. The use of a single transcription factor,
such as FOXN1, has been shown to regenerate the thymus in aged mice. Though a lot of efforts are being made to
explore and understand mammalian stem cell biology, the knowledge regarding the regenerative capacity of the
mammalian system is still limited. However, it is known that the cellular environment, including the modulators

present in the extracellular matrix, cytokines, and growth factors, plays a crucial role in this process 69,

An alternative to the natural regenerative potential of mammalian stem cells is to induce transdifferentiation in
somatic cells. Differentiated cells, such as neurons derived from iPSCs, have been observed to represent an
embryo-like stage. The epigenetic changes that a cell undergoes as it ages or becomes diseased are therefore not
reflected by the matured cells. This results in the importance of the transdifferentiation process, whereby the
phenotype of one somatic cell type can be converted into another without an intermediate progenitor stage 37, For
instance, leda and his colleagues used a combination of Gata4, Mef2c, and Thx5 developmental transcription
factors to transdifferentiate postnatal cardiac or dermal fibroblasts into cardiomyocyte-like cells. The gene
expression profile and function of the differentiated cells was also found to be similar to the adult cardiomyocytes
79 Similar studies enhancing the in vivo efficiency of cardiac cell reprogramming 4 and the use of small

molecules for the same have also been reported 49,

Gene editing, in combination with stem cell technology, has the potential to revolutionize the field of medicine,
especially for the corrective therapy of monogenic diseases such as sickle cell anemia. In the most simplistic
representation, it works by generating patient-specific iPSCs, correcting the genetic defect, ex vivo/in vivo
differentiation of the modified cells, followed by the transplantation of the corrected cells/tissue into the patient. The
discovery of gene-editing tools, such as zinc finger nucleases, TALENS, and CRISPR/Cas9 has relatively
simplified the process of gene editing, making the dream come true. One of the encouraging examples is the

replacement of CAG expansion by normal repeats in the huntingtin gene in iPSCs derived from fibroblast cells of

https://encyclopedia.pub/entry/15667 10/16



Cell Transdifferentiation and Reprogramming | Encyclopedia.pub

Huntington patient. The correction was sustained by the differentiation DARPP-32-positive neurons as well under

both in vitro and in vivo conditions 221,
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