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HCV leads to chronic infection in many patients that may progress to liver cirrhosis and hepatocellular carcinoma (HCC).

The interferon (IFN) response is a critical component of the antiviral innate immune response against HCV infection. IFN

signaling promotes the expression of many factors that can block the viral replication cycle. These IFN-induced antiviral

factors can act at every level of HCV infection by decreasing viral entry, replication, transcription, translation, packaging

and release. However, the antiviral state can generate significant collateral damage to the cell, requiring very tight control

over the magnitude and duration of the IFN response. This is partially achieved through IFN-mediated negative self-

regulation that helps in the termination of the IFN response and the return to homeostasis. However, these negative

regulatory mechanisms can be hijacked by HCV to increase viral replication and promote productive infections.

Keywords: type I IFN ; HCV

1. Hepatitis C Virus (HCV)

HCV infection leads to the death of over half a million people every year . Although several antiretroviral agents have

been recently developed that impede viral replication and lead to viral clearance in most patients, the high prevalence of

the infection (around 2% of the world population), the high number of undiagnosed patients and the slow progression to

fatal symptoms, makes HCV infection a major gastrointestinal health problem . After viral entry, HCV produces an acute

infection that can be cleared spontaneously in some patients (15-50% of cases) or it may progress to a chronic infection in

others (55-85%) . Most chronically infected patients respond to the infection with sustained liver inflammation and liver

injury that may cause liver fibrosis, cirrhosis, and, in some cases, hepatocellular carcinoma (HCC) . These are the

primary causes of death after HCV infection.

A careful description of the viral particle and the mechanisms that allow viral replication can be found in any of the several

excellent reviews about HCV published recently . Briefly, HCV belongs to the Flaviviridae family of positive, single-

stranded, enveloped RNA viruses. The viral particle is small in size (40-80 nm) and circulates in the blood bound to

lipoproteins and lipid particles, which can help viral evasion from the immune system and efficient infection of target

hepatocytes . At the hepatocyte surface, HCV binds to different receptors, including LDLR (low-density lipoprotein

receptor) and CLDN1 (Claudin-1), and is transported to the cytoplasm by endocytosis . Once in the endosome, the low

pH helps viral uncoating, and the viral genome is free to bind to the endoplasmic reticulum, where the formation of a

membranous web helps viral replication . Prior to replication, the viral genome is translated from a 5´ internal ribosome

entry site (IRES) by cap-independent translation . Translation produces a polyprotein that is cleaved into three

structural proteins (core protein and E1 and E2 glycoproteins) and seven non-structural proteins (p7, NS2, NS3, NS4A,

NS4B, NS5A, and NS5B) that are required for polyprotein processing, viral replication, packaging and release, and for

blocking the cellular antiviral response.

2. HCV and the Antiviral Response

Efficient HCV replication requires that viral proteins block type I IFN (interferon) synthesis and signaling pathways. These

are key routes of the type I IFN response, one of the primary innate immune weapons against microbe infection. IFNs

have been classified in different groups according to the cellular receptor that they bind: type I (which includes IFNα and

β), type II (IFNγ), and type III (IFNλ). However, there is a significant overlap in the genes that are induced after activation

of the different IFNs . A systematic description of the IFN response can be found in any of the outstanding reviews

published recently . In this excerpt, we describe the relationship between HCV and type I IFN.

The synthesis of type I IFN is the result of the activation of cellular sensors by PAMPs (pathogen-associated molecular

patterns) such as DNA, RNA, or LPS (lipopolysaccharide). In the case of HCV, viral RNA is sensed shortly after infection

by the canonical sensor RIG-I (retinoic acid-inducible gene I, which binds to the viral genome), by the non-canonical

protein kinase R (PKR, which recognizes the viral 5´UTR) or by the DEAD-box helicase 3 X-linked (DDX3X, activated by
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the viral 3´UTR) . RIG-I and the canonical sensor TLR3 (toll-like receptor 3) can also be activated by the viral

dsRNA (double-stranded RNA) produced during replication . In addition, it has been recently shown that the

canonical sensor MDA5 (melanoma differentiation-associated protein 5) can also bind viral RNA and activate IFN .

Activated sensors can bind MAVS (mitochondrial antiviral signaling protein) and TRIF (Toll-Interleukin Receptor-domain-

containing adapter-inducing interferon-β), which trigger the induction of transcription factors NF-κB (nuclear factor κb) and

IRF (interferon regulatory factors), in charge of activating IFN synthesis.

IFN signaling induces the expression of numerous genes with potent antiviral functions at different levels. Secreted type I

IFN binds to IFNAR (IFN-α/β receptor), activating JAK/STAT (Janus kinase/signal transducers and activators of

transcription) and phosphorylation, dimerization, and nuclear translocation of STAT1 and STAT2 (signal transducer and

activator of transcription 1 and 2). Once in the nucleus, STAT1/STAT2 are bound by IRF9 to constitute the ISGF3 (IFN-

stimulated gene factor 3) complex, in charge of activating the transcription of the vast ISG (IFN-stimulated genes)

repertoire . Several ISGs have been shown to decrease HCV replication by affecting viral infection (Mx, TRIM,

IFITM, CH25H), viral RNA translation, replication, stability (OAS, IFIT, GBP1), or virus packaging and release

(tetherin/BST2, viperin) . These effects are reinforced by ISGs that contribute to IFN synthesis or signaling. Indeed,

expression of PKR, STAT1, STAT2, or IRFs is also induced by IFN, resulting in a positive loop that amplifies the IFN

response. Interestingly, several ISGs inhibit the IFN response to allow the cell to return to homeostasis . One of

them is SOCS3 (suppressor of cytokine signaling 3) which blocks JAK activity and STAT binding. Therefore, these

inhibitory ISGs can be considered as actual proviral factors induced by IFN.

Activation of some of these inhibitory ISGs is one of the mechanisms employed by HCV to counteract the IFN pathway.

Viral core protein induces SOCS3 and PP2A (Protein Phosphatase 2), which also blocks STAT1 function . In

addition, several HCV proteins have evolved to block the function of specific antiviral ISGs or to block IFN synthesis:

MAVS and TRIF are cleaved by the viral NS3-NS4A protease, and RIG-I pathway is blocked by HCV-mediated induction

of autophagy . Despite this and against initial expectations, many patients with active HCV infections have high

levels of ISG mRNAs . One possibility to explain this observation is that ISG mRNAs are not efficiently translated in

HCV-infected cells due to PKR activation. Although PKR activation by the viral genome may seem to work against the

HCV cell cycle, it is an excellent weapon to increase viral replication. PKR activates the IFN synthesis pathway but also

phosphorylates eIF2α (eukaryotic translation initiation factor 2 alpha) leading to inhibition of cap-dependent translation.

Since viral translation is cap-independent, it is not affected by PKR action . Instead, translation of newly transcribed

ISG mRNAs will be abrogated. Similar to PKR, two other ISGs with a proviral function in HCV infection are ISG15 and

DDX3X, whose activation results in increased levels of lipogenic genes required for viral packaging . ISG15 is

particularly interesting. ISG15 is required for protein ISGylation, an IFN-induced ubiquitin-like process that serves to

modify newly-translated proteins co-translationally . After infection, high levels of viral proteins need to be translated,

and viral protein ISGylation should alter viral protein stability or structure, and its function . However, ISG translation is

also mandatory in newly infected cells. In fact, RIG-I ISGylation affects its functionality and leads to reduced IFN response

. Therefore, the battle between viral replication and the antiviral response causes severe collateral damage over

cellular and viral proteins, as ISGylation compromises their stability and function, and PKR blocks their translation. Under

such circumstances, it is plausible that cellular and viral evolution has fostered the development of non-coding RNAs that

are resistant to such protein-hostile environments and could function to modulate viral replication and the antiviral

response 
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