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Stachybotrys microspora triprenyl phenol (SMTP) is a large family of small molecules derived from the fungus S.

microspora. SMTP acts as a zymogen modulator (specifically, plasminogen modulator) that alters plasminogen

conformation to enhance its binding to fibrin and subsequent fibrinolysis. Certain SMTP congeners exert anti-

inflammatory effects by targeting soluble epoxide hydrolase. SMTP congeners with both plasminogen modulation

activity and anti-inflammatory activity ameliorate various aspects of ischemic stroke in rodents and primates. A

remarkable feature of SMTP efficacy is the suppression of hemorrhagic transformation, which is exacerbated by

conventional thrombolytic treatments.

Stachybotrys microspora  triprenyl phenol  plasminogen  fibrinolysis  thrombolytic

soluble epoxide hydrolase  antioxidative  inflammation  stroke  cerebral infarction

SMTP

The hemostatic system is finely regulated to achieve continuous blood circulation and prevent blood loss based on

the balance between blood coagulation and fibrinolysis (blood clot degradation) . The zymogens in this

system contribute to autonomous regulation through spatiotemporal activation in response to physiological

demands or stimuli . Defects in the hemostatic system lead to bleeding or thrombotic disorders . To

date, several drugs have been developed to treat diseases related to or resulting from such defects in the

hemostatic system. Particularly, antithrombotics, which inhibit blood clot formation, and thrombolytics, which

accelerate the degradation of blood clots, are widely used to treat, control, or prevent thrombotic complications

such as ischemic diseases of the heart, brain, lungs, and kidneys . Despite several efforts to

elaborate the use of these drugs, a significant population of treated patients suffer from bleeding events, which are

occasionally severe or fatal . Thus, it is believed that antithrombotics and thrombolytics are associated with

an inherent inevitable bleeding risk .

In 1993, we initiated an investigation to identify a bioactive compound that controls the hemostatic system,

particularly a small molecule that promotes endogenous fibrinolysis . Our theory was that a molecule that

modulates the physiological process will achieve a therapeutic effect without excessive bleeding risk. Using several

systems to screen random microbial metabolites, we discovered multiple compounds with a novel activity,

zymogen modulation . Stachybotrys microspora triprenyl phenol (SMTP) is a class of identified compounds that

modulate the conformation of plasminogen to promote plasminogen binding to fibrin or the cell surface . SMTP is

a large family of metabolites from S. microspora, comprising more than 60 congeners (Table S1) . In

agreement with our hypothesis, SMTP promotes thrombolysis without causing excessive bleeding .

Subsequently, we observed an unexpected additional function of SMTP, the inhibition of soluble epoxide hydrolase
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(sEH), which is a key enzyme that controls inflammation . Along with the radical-scavenging activity inherent in

the SMTP structure, the combination of thrombolytic and anti-inflammatory actions of SMTP played a key role in

the treatment of ischemic stroke in several models of rodents and monkeys .

1. Origin of SMTP

Background: Thrombotic and Thromboembolic Disorders and Treatment

Thrombotic and thromboembolic disorders are ischemic diseases that occur due to vascular occlusion by a blood

clot formed in situ (thrombosis) or in an upstream vessel (embolism) that occludes a vessel at a downstream site

. The clot shuts off the supply of blood and oxygen, resulting in the death of the affected tissue.

Thrombosis/thromboembolism can occur in both arteries and veins. Arterial thrombosis is the cause of most cases

of heart attack (myocardial infarction) and ischemic stroke (brain infarction). Venous thrombosis/thromboembolism

includes deep vein thrombosis, which accounts for most cases of pulmonary embolism (pulmonary infarction) .

These cardiovascular diseases constitute the most common causes of death in the developed world.

Atherosclerosis, or the rupture of an atherosclerotic plaque, is one of the most influential triggers for arterial

thrombosis . Atherosclerosis develops in the vessel wall through an accumulation of lipid deposits, mediated

by macrophage foam cells that accumulate large amounts of cholesterol derived from lipoproteins such as low-

density lipoprotein (LDL) that is oxidized in the vessel wall. Upon rupture of an atherosclerotic plaque, platelets

rapidly aggregate to form a hemostatic plug through binding to collagen and von Willebrand factor. The aggregated

platelets are activated to release several factors that promote the coagulation cascade and platelet

aggregation/activation.

The coagulation cascade primarily consists of a sequential process of protease zymogen activation that results in

the formation of fibrin and thrombus. The exposure of coagulation factor VII to tissue factor, a transmembrane cell

surface glycoprotein, is a pathophysiological trigger for the initiation of the coagulation cascade. The hemostatic

thrombus can be removed via another cascade reaction, the fibrinolytic system . In both systems, the activation

of protease zymogens is a key feature that regulates the local propagation of each event. The regulatory

mechanism involves the instant response of the zymogen conformation to pathophysiological stimuli, triggering

coagulation and fibrinolysis; the changes in conformation affect the localization and proteolytic activation of

zymogens.

Generally, drugs targeting platelets (which inhibit platelet aggregation, resulting in the inhibition of blood clot

formation) are used to treat arterial thrombosis , and venous thrombosis is treated with drugs targeting

coagulation cascade proteases . However, agents targeting the coagulation system are increasingly used in

arterial disease, as evidenced by the COMPASS trial, where patients with stable atherosclerotic vascular disease

were treated with a combination of Xa inhibitor and aspirin . Although these drugs treat or prevent arterial and

venous thrombosis/thromboembolism, a significant inherent risk of bleeding limits their use. Another important

class of drugs used to treat thrombotic/thromboembolic disorders is thrombolytics, such as tissue-type
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plasminogen activator (t-PA), which selectively cleaves plasminogen to form plasmin, a protease that degrades

fibrin, the major component of blood clots . However, the timing of thrombolytic intervention crucially affects the

outcome: the earlier, the better. For example, t-PA therapy is beneficial only when used within 3 to 4.5 h of ischemic

stroke onset, and the risk of intracranial hemorrhage increases significantly when used beyond this time window

. Thus, no drug that prevents blood coagulation or promotes thrombolysis without causing bleeding has been

developed to date. Nevertheless, statins, a class of drugs that lower LDL cholesterol levels and suppress or retard

atherosclerosis, are unique in that they reduce the risk of thromboembolic events such as heart attack and

ischemic stroke without elevating the risk of bleeding . However, statins do not directly treat

thrombotic/thromboembolic diseases.

Search for a Bioactive Compound that Enhances Physiological Thrombolysis

One of the authors (K.H.) was involved in the identification of inhibitors of cholesterol biosynthesis and macrophage

foam cell conversion led by Akira Endo, who discovered the first statin drug, ML-236B (compactin), and the

second, monacolin K (lovastatin) . Although we discovered several interesting molecules over more than 10

years of research, none of these compounds was developed further. By the early 1990s, several clinical trials had

proven the clinical benefit of statin drugs for reducing LDL cholesterol, cardiovascular disease incidence, and

mortality . Meanwhile, we explored an approach to discover a new drug that directly controls

thrombotic/thromboembolic disease through a hitherto unsought mechanism.

The theory behind our investigation was that a compound that enhances plasminogen binding to fibrin or the cell

surface would promote physiological fibrinolysis, serving as an ideal approach to achieve regulated thrombus

degradation. The basis of this theory was that (i) binding of plasminogen to fibrin or the cell surface is crucial for its

activation to plasmin ; (ii) lipoprotein(a), a risk factor for cardiovascular diseases and atherosclerosis ,

competes with plasminogen for binding to fibrin and the cell surface ; and (iii) regulated fibrinolysis can occur

without bleeding. Although this theory has no solid basis, especially regarding whether a small molecule could

mediate protein (plasminogen)-to-protein (fibrin or receptor) binding, we started a pilot project to search for a

molecule that enhances the binding of plasminogen to monocytoid cells (screening 1). Fortunately, a screening of

random microbial cultures soon yielded several hits, including complestatin and its analog . On the basis of

these results, we expanded the project to screen for compounds that enhance plasminogen binding to fibrin

(screening 2), cell-mediated fibrinolysis in plasma (screening 3), vascular endothelial cell surface generation of

plasmin (screening 4), and reciprocal activation of plasminogen and single-chain urokinase-type plasminogen

activator (scu-PA or prourokinase) (screening 5). These investigations led to the discovery of novel small molecules

such as SMTP family, plactin family, and surfactin family compounds (see Table S1 and references therein). SMTP

was discovered in screening 2. Notably, several compounds in these studies act through a unique mechanism,

zymogen modulation.

Discovery of SMTP
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Screening 2 identified several hits. Of these, an extract of a culture of S. microspora IFO 30018 (current repository

code NCBI 30018) showed activity to enhance plasminogen-fibrin binding; however, isolation of the active principle

was challenging, as the activity was distributed over a wide range of retention times with a turtle shell-like UV

absorption peak, according to HPLC analysis. Initially, we believed that the mobile phase conditions were

insufficient to achieve clear resolution; however, we subsequently realized that the broad turtle shell-like peak was

due to several overlapping peaks with similar UV spectra. Repeated preparative HPLC fractionations

corresponding to a relatively sharp convex shape in the turtle shell-like area yielded the first SMTP congener,

staplabin (Table S1) . The name staplabin was derived from Stachybotrys plasminogen-binding stimulator.

Following the isolation of staplabin, we isolated two minor analogs, SMTP-1 and SMTP-2 (Table S1) .

Additionally, we developed a method to isolate multiple congeners by changing the composition of the culture

medium to alter the turtle shell-shaped pattern to a truly peaked pattern. To clearly define each anticipated

congener that would follow staplabin, we used a new designation, consisting of SMTP and a number.

SMTP Congeners

The structure of the SMTP congeners consists of a chromanlactam moiety, an isoprene side chain, and a side

chain linked to the nitrogen atom of the chromanlactam moiety (N-linked side chain) (Figure 1). Using the newly

devised culture conditions mentioned above, we discovered six additional SMTP congeners, SMTP-3 to SMTP-8

(Table S1) . These differed with respect to the N-linked side chains, all of which constituted known a-amino

acids. Therefore, we hypothesized that the N-linked side chains originated from amino acids present inside the cell

or in medium. To test this possibility, we used a poor medium in which amine compounds were restricted but which

contained a specific amine to be incorporated as the N-linked side chain . This precursor amine-feeding method

enabled us to produce large amounts (up to 10 g L  of culture) of a specific SMTP congener quite selectively. This

is a huge achievement, considering that the yield of staplabin was only 24 mg L  . Furthermore, selective

incorporation of the fed amine into the N-linked side chain was confirmed by the robust incorporation of rare

amines such as D-amino acids following feeding  . Several SMTP congeners were isolated using a fermentation

method that was fed with the precursor amine  (see Table S1 for details). Furthermore, some

analogs differing in the isoprene side chain structure have been identified by microbial conversions of SMTP-0,

which has a hydrogen atom as the N-linked side chain (Figure 1) .
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Figure 1. Structures of key Stachybotrys microspora triprenyl phenol (SMTP) congeners and substituted

chromanlactam core unit.

Structure of SMTP

The structures of the SMTP congeners were elucidated using a combination of spectroscopic methods, including

NMR and MS. The initial absolute stereochemistry was proposed utilizing NMR techniques using the simplest

congener, SMTP-0 (Figure 1), and its derivatives. The results obtained were consistent with the 8S, 9S

configuration. However, a recent investigation that utilized a combination of NMR and crystallographic techniques

proved an 8S, 9R configuration for an analog of SMTP, stachybotrin C (Table S1) . Considering that

stachybotrin C can be produced by feeding S. microspora with the precursor amine and that SMTP is produced

from a common precursor, pre-SMTP (see Section 2.6), we conclude that all SMTP congeners exhibit an 8S, 9R

configuration, and herein revise their stereochemistry (Figure 1).

Biosynthesis of SMTP

To elucidate the mechanism underlying the generation of a wide variety of SMTP congeners, we searched for a

biosynthesis precursor of SMTP. We hypothesized that such a precursor might accumulate and disappear before

and after amine feeding, respectively. We isolated two candidates: LL-Z1272b (ilicicolin B) and a novel compound.

The latter, designated pre-SMTP, has no lactam but two aldehydes in the chroman moiety (Figure 2) [59]. Pre-

SMTP spontaneously reacts with primary amines to yield an SMTP congener with the amine as an N-linked side

chain. Thus, various SMTP congeners can be nonenzymatically derived from pre-SMTP. Incorporating relevant

information from other studies  , we propose an overall pathway for SMTP biosynthesis, as presented in

Figure 2.
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Figure 2. Putative pathway for SMTP biosynthesis. The synthetic pathway for SMTP-type and phenylspirodrimane-

type triprenyl phenols may diverge, through differential cyclization mechanisms, from LL-Z1272b (ilicicolin B), a key

intermediate synthesized from farnesyl diphosphate and orsellinic acid. Pre-SMTP forms various SMTPs via a

nonenzymatic reaction with an amine. Stachybotrydial  may yield a wide variety of phenylspirodrimanes via a

similar mechanism, because aromatic o-dialdehydes (shaded in light blue) are highly reactive with an amine .

The precursor amine feeding method can be applied to selectively synthesize a phenylspirodrimane of interest 

using Stachybotrys sp. F462, which forms stachybotramide, a phenylspirodrimane-type triprenyl phenol  .
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