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Carbonaceous organic matter occurs under various phases and forms, where its fine characterization is mostly

restricted to petroleum and coal geology. As a consequence, few studies have integrated the complete link

between various forms of organic matter and metals to decipher hydrothermal ore concentrating processes. The

study of Dill et al., integrating the concentration of sulfides and oxides with the interaction of silicates and organic

matters, is an example of the next step to reach for defining the complex role of organic matter for the formation of

orogenic gold deposits.
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1. Introduction

For at least 6000 years, the use of gold marked a change for humanity: the use of metals. Gold was the first metal

used because it occurs in a native form. Gold is insoluble under surface conditions and non-oxidable, so its

physical properties are conserved. Presenting a shining yellowish color like that of the sun and exhibiting extreme

malleability, gold was first used for ornamental purposes and later as a medium of exchange and coinage. The first

exploitations were from rivers or dried riverbeds, where gold was physically concentrated as nuggets. Later, gold

was extracted from quartz vein outcroppings at surfaces. Both types of gold extraction are still in use today.

Humans have always had a fascination and irrational relationship with gold. Gold was and is still a physical means

for conserving values (e.g., ). Consequently, wars, invasions, colonizations, and territorial conquests (gold

rushes) were established and driven. Gold, as has any other substance, positively and negatively impacted human

development. Artisanal gold extractions are still providing revenue for 15–20 million persons worldwide , whereas

hundreds of mines are producing gold commercially in more than 42 countries ( www.gold.org (accessed on 21

March 2021)).

In the inorganic world of metals, minerals, and rocks, consideration of the roles of organic matter in accumulating,

solubilizing, and precipitating gold in lodes was not a natural way of thinking for geologists. At first, it may appear

paradoxical that the ultimate noble metal requires organic matter for concentration. In this contribution, I address

recent advances regarding the role of carbon-rich organic matter in forming rich and large gold deposits in three

stages: (1) the source stage, when gold in seawater accumulates in organic-rich sediments; (2) the mobilization

stage, when gold is solubilized by hydrocarbon-metal complexes and colloidal nanoparticles for hydrothermal
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transport along faults; and (3) the precipitation stage. It is demonstrated that unusual CO -rich, H O-poor fluids,

documented for some of the largest and richest orogenic gold deposits, are the result of chemical reactions

involving hydrocarbon degradation, hence demonstrating the fundamental role of carbonaceous organic matter.

2. Fluid Composition and Generation

The fluid composition of orogenic gold deposits was estimated from the study of fluid inclusions for more than 70

years (e.g., ). Hundreds of studies have detailed the mineralizing fluids from worldwide examples covering all

ages (e.g., ). The fluids are aqueous with low salinity (<5 wt% NaCl equiv.), ubiquitous CO , and variable

contents of N , CH , and, in some cases, H , C H , H S, He, and Ar. Thermodynamic calculations have

demonstrated that metamorphic dehydration of seafloor rocks is a viable mechanism for producing abundant

aqueous-carbonic and low-salinity fluids. Elmer et al.  and Phillip and Powell  demonstrated that seafloor rocks,

hydrated initially by hydrothermal seawater convection cells at oceanic ridges , release fluids at the metamorphic

transition of greenschist to amphibolite, mostly when chlorite is converted to amphibole. Metamorphic fluids have a

more diverse volatile composition than other fluids, such as seawater, magmatic fluids, or meteoric fluids, because

they are generated by devolatilization of lithologies, where organic compounds in sedimentary rocks contribute to

C-O-H-S-N contents .

Of particular interest, CO -rich and H O-poor fluid inclusions have been documented from some world-class gold

districts and deposits, such as those at the Red Lake , Ashanti  and Tarkwa goldfields , and the Detour

Gold and Wona deposits . Fluids for these deposits also contain CH , N , and C H . The origins of these fluids

are still debated (e.g., ).

For the Paleozoic Ashanti gold belt, Western Africa, Goldfarb et al.  suggested that devolatilization of abundant

carbonaceous schists and cherts could lead to a variety of carbon-bearing molecular components within

metamorphic C-O-H-S fluids bearing gold. Such a sedimentary source is confirmed by the compositions of stable

carbon isotopic mixture in quartz-hosted, CO -rich fluid inclusions . These unusual fluids are thus likely derived

from the metamorphism of carbonaceous-rich sedimentary rocks. Nonetheless, these fluids are associated with

either very high-grade or very large gold deposits, suggesting that CO -rich and H O-poor fluids have

unrecognized potential for forming exceptional orogenic gold deposits.

3. Sources of Gold

The sources of gold for orogenic deposits have been reviewed by numerous authors (e.g., ). Gold can be

sourced from intrusion degassing (e.g., ) and oceanic basalt devolatilization (e.g., ). However,

carbonaceous- and pyrite-rich sedimentary rocks, commonly referred to as black shales, are considered one of the

most important sources (e.g., ).

Gold and other trace metals occurring in sedimentary pyrite can be liberated by recrystallization and hydrothermal

replacement processes occurring under metamorphic conditions, corresponding to the pyrite–pyrrhotite transition
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. Gold concentrations in nodular pyrite average 0.09 ppm  but can reach 10 ppm Au in orogenic

gold districts (e.g., ). Considering that nodular pyrite can constitute up to 20% of black shales and that

black shales are very extensive marine sediments, these rocks may constitute a significant volume for providing

gold. In addition, because pyrrhotite (Fe S) has a lower S content (37.67% vs. 53.45%) than pyrite (FeS ), the

conversion can also provide S in solution for solubilizing gold . Gaboury  stated that, in addition to gold, fluids

and ligands (HS ) can all be sourced from the metamorphism of black shales and associated rocks under

amphibolite conditions.

Using a solid-probe mass spectrometer system , Gaboury  documented that ethane (C H ) is present in fluid

inclusions from orogenic gold deposits, ranging in age from ~2800 Ma to ~100 Ma. Ethane is sourced from

thermally degraded organic matter because the values of CH4/(C H  + C H ), expressed as C1/C2+ in

hydrothermal fluids, are lower than 100 . Consequently, ethane provides a reliable tracer for the involvement of

carbonaceous and pyritic shales at depth in the formation of gold deposits .

The ultimate support for a sedimentary gold source model is provided by the link between gold dissolved in oceans

and the temporal distribution of orogenic gold deposits. This was first proposed by Tomkins  and later

documented by Large et al.  by using gold concentrations in primary pyrites from black shales. Oxidizing

seawater conditions are favorable for gathering gold in nodular sedimentary pyrite in black shales . The lack of

major orogenic gold deposits from the middle to late Proterozoic (~1800 to 800 Ma—the boring period) is

interpreted as being related to low levels of Au in the oceans . During this period, the deep oceans were anoxic

and sulfidic , hence limiting the bacterial reduction of sulfate and the incorporation of gold in primary pyrite .

The occurrence of orogenic gold deposits in Neoproterozoic time, such as those in Sudan, which also contain

ethane , coincides with the reappearance of oxygenic conditions in the oceans .

4. The Fundamental Involvement of Organic Matter

Therefore, the roles of carbonaceous matter appear fundamental for (1) concentrating gold in organic-rich

sediments by bacterial reactions, (2) solubilizing gold as hydrocarbon-phase metal and colloidal gold nanoparticles

during the hydrothermal remobilization of gold in lodes and veins, and (3) precipitating gold (Figure 1).

Carbonaceous- and pyritic-rich shales would provide gold, HS  ligands, and fluids, in addition to various organic C-

H-N-S compounds, having the potential to enhance the gold carrying capacity of mineralizing fluids. Furthermore,

hydrocarbons in the fluids may enhance gold precipitation with graphite.

For gold sourced from organic-rich pyrite-bearing shales, all three of the reviewed processes could operate

sequentially to form orogenic gold deposits.

[23][24][29][30][31] [32]

[33][34][35]

1-x 2

[36] [15]

-

[37] [9]
2 6

2 6 3 8

[38]

[9]

[39]

[32]

[32]

[32]

[40] [15]

[25] [32][41]

-



Organic Matter in Forming Gold-Deposits | Encyclopedia.pub

https://encyclopedia.pub/entry/13639 4/9

Figure 1. Schematic representation of the role of carbonaceous organic matter in the formation of orogenic gold

deposits in three stages. (A) Source stage when gold in seawater accumulates in primary pyrites from the bacterial

reduction of sulfate in organic material-rich sediments. (B) Mobilization stage when gold is solubilized by

hydrocarbon-metal complexes and as colloidal gold nanoparticles for hydrothermal transport along faults following

basin inversion and related tectonic shortening and metamorphism. Hydrocarbons are generated by thermal

maturation of black shales or from abiotic deep contributions. (C) Precipitation stage when gold is co-precipitated

with graphite from hydrocarbon-rich fluids or when gold is precipitated by carbon-rich reducing horizons.

However, in the prograde metamorphic context, it seems unlikely that black shales would provide hydrocarbon

gases, as the organic matter would have been transformed in graphite and semi-graphite before reaching the

greenschist/amphibolite facies boundary . One possible explanation for generating hydrocarbon-bearing fluids

lies in the late metamorphic thermal rebound model . In this model, fluids are generated late during the

exhumation after the rapid burial of rocks induced by the regional tectonic shortening. Buried cooler, hydrated, and

organic matter-bearing rocks are later overprinted by thermal isograd rebound and re-equilibration of the newly

formed crust. This model is coherent with the late origin of orogenic gold deposits .
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The recent study of the Witwatersrand basin  also provides support to the possibility of having hydrocarbons at

temperatures higher than the oil window (60–150 °C) reached during diagenesis and catagenesis (e.g., ).

Hydrocarbon gases and minor oils were involved during hydrothermal gold precipitation at a temperature of 350 ±

50 °C , whereas oil, gas, and bitumen are interpreted to be sourced mostly from underlying black shale units 

.

Conversely, abiotic hydrocarbons (e.g., ; Figure 1B) may enhance gold solubility by forming organic-gold

complexes or facilitating colloidal transport, regardless of the gold source, as proposed for the High Grade Zone

(HGZ) of the Perron gold deposit in the Archean Abitibi Belt, Canada . Nevertheless, the importance of organic

matter for forming orogenic gold deposits is a relatively new concept, and this is especially true for gold transport

by hydrocarbon-rich fluids. Re-assessments of numerous gold deposits, especially those with unusual CO -rich

and H O-poor fluid inclusions, are thus necessary.

Hydrothermal reactions involving the consumption of water and C H , the ultimate proxy for the involvement of

gold-bearing carbonaceous matter at depth , account for CO -rich, H O-poor fluids, as follows:

Ethane and methane are also common constituents of CO -rich fluids. In addition, the presence of H  in the

mineralizing fluids in the Otago Schist  confirms that the chemical reactions (Equations (1) and (2)) are viable for

the ultimate production of CO -rich, H O-poor fluids. Consequently, if these unusual fluids result from hydrocarbon

consumption, then hydrocarbons may be indicative of (1) a favorable sedimentary source for gold, (2) enhanced

gold solubility involving hydrocarbon-metal complexes and colloidal gold, and (3) efficient gold precipitation with

graphite.

Although the genetic roles of organic matter were previously underestimated, the geological settings are

supportive. The Witwatersrand goldfield, the largest in the world, is hosted along the margins of a very large

Archean sedimentary basin (300 km × 100 km), with >4.5 km thick shales and argillites at its base . The Giant

Muruntau mine, the largest single orogenic gold deposit, with >5300 T Au (>170 Moz Au), is hosted in iron-rich and

carbonaceous Ordovician to Early Silurian marine clastic rocks . The Palaeoproterozoic Birimian belts of

Western Africa comprise abundant graphitic shales rich in nodular gold-bearing pyrite . These belts showed the

highest rates of discovery of significant (>1 Moz Au/31 tonnes) deposits in the last decade . The largest

Palaeozoic goldfields are primarily hosted in sedimentary sequences, including the Victorian (Australia) and Mother

Lode (CA, USA) districts.
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