
Text Classification Algorithms: A Survey
Subjects: Computer Science, Information Systems | Others

Contributor: Kamran Kowsari

In recent years, there has been an exponential growth in the number of complex documents and texts that require a

deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many

machine learning approaches have achieved surpassing results in natural language processing. The success of these

learning algorithms relies on their capacity to understand complex models and non-linear relationships within data.

However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In

this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature

extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluation methods. Finally, the

limitations of each technique and its application in real-world problems are discussed.

Keywords: text classification ; text mining ; text representation ; text categorization ; text analysis ; document classification

DOIDOI 10.3390/info1004015010.3390/info10040150

MediumMedium Text ClassificationText Classification

MendeleyMendeley Add to LibraryAdd to Library

contributionscontributions welcomewelcome

arXivarXiv 1904.080671904.08067

licenselicense MITMIT

contributorscontributors 77

Introduction

Text and Document Feature Extraction

Text feature extraction and pre-processing for classification algorithms are very significant. In this section, we start to talk

about text cleaning since most of the documents contain a lot of noise. In this part, we discuss two primary methods of

text feature extractions- word embedding and weighted word.

Text Cleaning and Pre-processing

In Natural Language Processing (NLP), most of the text and documents contain many words that are redundant for text

classification, such as stopwords, miss-spellings, slangs, and etc. In this section, we briefly explain some techniques and

methods for text cleaning and pre-processing text documents. In many algorithms like statistical and probabilistic learning

methods, noise and unnecessary features can negatively affect the overall performance. So, elimination of these features

is extremely important.

Tokenization

Tokenization is the process of breaking down a stream of text into words, phrases, symbols, or any other meaningful

elements called tokens. The main goal of this step is to extract individual words in a sentence. Along with text

classification, in text mining, it is necessary to incorporate a parser in the pipeline which performs the tokenization of the

documents; for example:

sentence:

After sleeping for four hours, he decided to sleep for another four

In this case, the tokens are as follows:

{'After', 'sleeping', 'for', 'four', 'hours', 'he', 'decided', 'to', 'sleep', 'for',

'another', 'four'}

Here is python code for Tokenization:

from nltk.tokenize import word_tokenize

text = "After sleeping for four hours, he decided to sleep for another four"

tokens = word_tokenize(text)

print(tokens)

Stop words

Text and document classification over social media, such as Twitter, Facebook, and so on is usually affected by the noisy

nature (abbreviations, irregular forms) of the text corpora.

Here is an example from geeksforgeeks

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

example_sent = "This is a sample sentence, showing off the stop words filtration."

stop_words = set(stopwords.words('english'))

word_tokens = word_tokenize(example_sent)

filtered_sentence = [w for w in word_tokens if not w in stop_words]

filtered_sentence = []

for w in word_tokens:

 if w not in stop_words:

 filtered_sentence.append(w)

print(word_tokens)

print(filtered_sentence)

Output:

['This', 'is', 'a', 'sample', 'sentence', ',', 'showing',

'off', 'the', 'stop', 'words', 'filtration', '.']

['This', 'sample', 'sentence', ',', 'showing', 'stop',

'words', 'filtration', '.']

Capitalization

Sentences can contain a mixture of uppercase and lower case letters. Multiple sentences make up a text document. To

reduce the problem space, the most common approach is to reduce everything to lower case. This brings all words in a

document in the same space, but it often changes the meaning of some words, such as "US" to "us" where the first one

represents the United States of America and the second one is a pronoun. To solve this, slang and abbreviation

converters can be applied.

text = "The United States of America (USA) or America, is a federal republic composed

of 50 states"

print(text)

print(text.lower())

Output:

"The United States of America (USA) or America, is a federal republic composed of 50

states"

"the united states of america (usa) or america, is a federal republic composed of 50

states"

Slangs and Abbreviations

Slangs and abbreviations can cause problems while executing pre-processing steps. An abbreviation is a shortened form

of a word, such as SVM stand for Support Vector Machine. Slang is a version of the language that depicts informal

conversation or text that has a different meaning, such as "lost the plot", it essentially means that 'they've gone mad'. The

common method to deal with these words is converting them to formal language.

Noise Removal

Another issue of text cleaning as a pre-processing step is noise removal. Text documents generally contain characters like

punctuations or special characters and they are not necessary for text mining or classification purposes. Although

punctuation is critical to understand the meaning of the sentence, it can affect the classification algorithms negatively.

Here is simple code to remove standard noise from the text:

def text_cleaner(text):

 rules = [

 {r'>\s+': u'>'}, # remove spaces after a tag opens or closes

 {r'\s+': u' '}, # replace consecutive spaces

 {r'\s*<br\s*/?>\s*': u'\n'}, # newline after a

 {r'</(div)\s*>\s*': u'\n'}, # newline after </p> and </div> and <h1/>.

 {r'</(p|h\d)\s*>\s*': u'\n\n'}, # newline after </p> and </div> and <h1/>.

 {r'<head>.*<\s*(/head|body)[^>]*>': u''}, # remove <head> to </head>

 {r'<a\s+href="([^"]+)"[^>]*>.*': r'\1'}, # show links instead of texts

 {r'[\t]*<[^<]*?/?>': u''}, # remove remaining tags

 {r'^\s+': u''} # remove spaces at the beginning

]

 for rule in rules:

 for (k, v) in rule.items():

 regex = re.compile(k)

 text = regex.sub(v, text)

 text = text.rstrip()

 return text.lower()

Spelling Correction

An optional part of the pre-processing step is correcting the misspelled words. Different techniques, such as hashing-

based and context-sensitive spelling correction techniques, or spelling correction using trie and damerau-levenshtein

distance bigram have been introduced to tackle this issue.

from autocorrect import spell

print spell('caaaar')

print spell(u'mussage')

print spell(u'survice')

print spell(u'hte')

Result:

caesar

message

service

the

Stemming

Text Stemming is modifying a word to obtain its variants using different linguistic processes like affixation (addition of

affixes). For example, the stem of the word "studying" is "study", to which -ing.

Here is an example of Stemming from NLTK

from nltk.stem import PorterStemmer

from nltk.tokenize import sent_tokenize, word_tokenize

ps = PorterStemmer()

example_words = ["python","pythoner","pythoning","pythoned","pythonly"]

for w in example_words:

print(ps.stem(w))

Result:

python

python

python

python

pythonli

Lemmatization

Text lemmatization is the process of eliminating redundant prefix or suffix of a word and extract the base word (lemma).

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

print(lemmatizer.lemmatize("cats"))

Word Embedding

Different word embedding procedures have been proposed to translate these unigrams into consumable input for machine

learning algorithms. A very simple way to perform such embedding is term-frequency (TF) where each word will be

mapped to a number corresponding to the number of occurrence of that word in the whole corpora. The other term

frequency functions have been also used that represent word-frequency as a Boolean or logarithmically scaled number.

Here, each document will be converted to a vector of the same length containing the frequency of the words in that

document. Although such an approach may seem very intuitive. It suffers from the fact that particular words that are used

very commonly in language literature might dominate this sort of word representations.

Word2Vec

Original from https://code.google.com/p/word2vec/

I’ve copied it to a github project so that I can apply and track community patches (starting with capability for Mac OS X

compilation).

makefile and some source has been modified for Mac OS X
compilation See https://code.google.com/p/word2vec/issues/detail?id=1#c5

memory patch for word2vec has been applied See https://code.google.com/p/word2vec/issues/detail?id=2

Project file layout altered

There seems to be a segfault in the compute-accuracy utility.

To get started:

cd scripts && ./demo-word.sh

Original README text follows:

This tool provides an efficient implementation of the continuous bag-of-words and skip-gram architectures for computing

vector representations of words. These representations can be subsequently used in many natural language processing

applications and for further research purposes.

this code provides an implementation of the Continuous Bag-of-Words (CBOW) and the Skip-gram model (SG), as well as

several demo scripts.

Given a text corpus, the word2vec tool learns a vector for every word in the vocabulary using the Continuous Bag-of-

Words or the Skip-Gram neural network architectures. The user should specify the following: - desired vector

dimensionality (size of the context window for either the Skip-Gram or the Continuous Bag-of-Words model), training

algorithm (hierarchical softmax and/or negative sampling), the threshold for downsampling the frequent words, number of

threads to use, the format of the output word vector file (text or binary).

Usually, other hyper-parameters, such as the learning rate do not need to be tuned for different training sets.

The script demo-word.sh downloads a small (100MB) text corpus from the web and trains a small word vector model.

After the training is finished, users can interactively explore the similarity of the words.

More information about the scripts is provided at https://code.google.com/p/word2vec/

Global Vectors for Word Representation (GloVe)

An implementation of the GloVe model for learning word representations is provided, and describe how to download web-

dataset vectors or train your own. See the project page or the paper for more information on glove vectors.

Contextualized Word Representations

ELMo is a deep contextualized word representation that models both (1) complex characteristics of word use (e.g., syntax

and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). These word vectors are

learned functions of the internal states of a deep bidirectional language model (biLM), which is pre-trained on a large text

corpus. They can be easily added to existing models and significantly improve the state of the art across a broad range of

challenging NLP problems, including question answering, textual entailment, and sentiment analysis.

ELMo representations are:

Contextual: The representation for each word depends on the entire context in which it is used.

Deep: The word representations combine all layers of a deep pre-trained neural network.

Character based: ELMo representations are purely character based, allowing the network to use morphological clues

to form robust representations for out-of-vocabulary tokens unseen in training.

Tensorflow implementation

Tensorflow implementation of the pre-trained biLM used to compute ELMo representations from "Deep contextualized

word representations".

This repository supports both training biLMs and using pre-trained models for prediction.

We also have a pytorch implementation available in AllenNLP.

You may also find it easier to use the version provided in Tensorflow Hub if you just like to make predictions.

pre-trained models:

We have got several pre-trained English language biLMs available for use. Each model is specified with two separate

files, a JSON formatted "options" file with hyperparameters and a hdf5 formatted file with the model weights. Links to the

pre-trained models are available here.

There are three ways to integrate ELMo representations into a downstream task, depending on your use case.

1. Compute representations on the fly from raw text using character input. This is the most general method and will

handle any input text. It is also the most computationally expensive.

2. Precompute and cache the context-independent token representations, then compute context dependent

representations using the biLSTMs for input data. This method is less computationally expensive then #1, but is only

applicable with a fixed, prescribed vocabulary.

3. Precompute the representations for your entire dataset and save to a file.

We have used all of these methods in the past for various use cases. #1 is necessary for evaluating at test time on

unseen data (e.g. public SQuAD leaderboard). #2 is a good compromise for large datasets where the size of the file in is

unfeasible (SNLI, SQuAD). #3 is a good choice for smaller datasets or in cases where you'd like to use ELMo in other

frameworks.

In all cases, the process roughly follows the same steps. First, create a Batcher (or TokenBatcher for #2) to

translate tokenized strings to NumPy arrays of character (or token) ids. Then, load the pre-trained ELMo model

(class BidirectionalLanguageModel). Finally, for steps #1 and #2 use weight_layers to compute the final

ELMo representations. For #3, use BidirectionalLanguageModel to write all the intermediate layers to a file.

Architecture of the language model applied to an example sentence [Reference: arXiv paper].

FastText

fastText is a library for efficient learning of word representations and sentence classification.

Github: facebookresearch/fastText

Models

Recent state-of-the-art English word vectors.

Word vectors for 157 languages trained on Wikipedia and Crawl.

Models for language identification and various supervised tasks.

Supplementary data :

The preprocessed YFCC100M data .

FAQ

You can find answers to frequently asked questions on Their project website.

Cheatsheet

Also a cheatsheet is provided full of useful one-liners.

Weighted Words

Term frequency

Term frequency is Bag of words that is one of the simplest techniques of text feature extraction. This method is based on

counting the number of the words in each document and assigns it to feature space.

Term Frequency-Inverse Document Frequency

The mathematical representation of the weight of a term in a document by Tf-idf is given:

Where N is number of documents and df(t) is the number of documents containing the term t in the corpus. The first part

would improve recall and the later would improve the precision of the word embedding. Although tf-idf tries to overcome

the problem of common terms in document, it still suffers from some other descriptive limitations. Namely, tf-idf cannot

account for the similarity between words in the document since each word is presented as an index. In the recent years,

with development of more complex models, such as neural nets, new methods has been presented that can incorporate

concepts, such as similarity of words and part of speech tagging. This work uses, word2vec and Glove, two of the most

common methods that have been successfully used for deep learning techniques.

from sklearn.feature_extraction.text import TfidfVectorizer

def loadData(X_train, X_test,MAX_NB_WORDS=75000):

 vectorizer_x = TfidfVectorizer(max_features=MAX_NB_WORDS)

 X_train = vectorizer_x.fit_transform(X_train).toarray()

 X_test = vectorizer_x.transform(X_test).toarray()

 print("tf-idf with",str(np.array(X_train).shape[1]),"features")

 return (X_train,X_test)

Comparison of Feature Extraction Techniques

Model Advantages Limitation

Weighted Words Easy to compute
Easy to compute the similarity between 2
documents using it
Basic metric to extract the most descriptive terms
in a document
Works with an unknown word (e.g., New words in
languages)

It does not capture the position in the text
(syntactic)
It does not capture meaning in the text
(semantics)
Common words effect on the results (e.g.,
“am”, “is”, etc.)

TF-IDF Easy to compute
Easy to compute the similarity between 2
documents using it
Basic metric to extract the most descriptive terms
in a document
Common words do not affect the results due to
IDF (e.g., “am”, “is”, etc.)

It does not capture the position in the text
(syntactic)
It does not capture meaning in the text
(semantics)

Word2Vec It captures the position of the words in the text
(syntactic)
It captures meaning in the words (semantics)

It cannot capture the meaning of the word
from the text (fails to capture polysemy)
It cannot capture out-of-vocabulary words
from corpus

GloVe (Pre-Trained) It captures the position of the words in the text
(syntactic)
It captures meaning in the words (semantics)
Trained on huge corpus

It cannot capture the meaning of the word
from the text (fails to capture polysemy)
Memory consumption for storage
It cannot capture out-of-vocabulary words
from corpus

GloVe (Trained) It is very straightforward, e.g., to enforce the word
vectors to capture sub-linear relationships in the
vector space (performs better than Word2vec)
Lower weight for highly frequent word pairs, such
as stop words like “am”, “is”, etc. Will not
dominate training progress

Memory consumption for storage
Needs huge corpus to learn
It cannot capture out-of-vocabulary words
from the corpus
It cannot capture the meaning of the word
from the text (fails to capture polysemy)

FastText Works for rare words (rare in their character n-
grams which are still shared with other words
Solves out of vocabulary words with n-gram in
character level

It cannot capture the meaning of the word
from the text (fails to capture polysemy)
Memory consumption for storage
Computationally is more expensive in
comparing with GloVe and Word2Vec

Contextualized Word
Representations

It captures the meaning of the word from the text
(incorporates context, handling polysemy)

Memory consumption for storage
Improves performance notably on
downstream tasks. Computationally is
more expensive in comparison to others
Needs another word embedding for all
LSTM and feedforward layers
It cannot capture out-of-vocabulary words
from a corpus
Works only sentence and document level
(it cannot work for individual word level)

Dimensionality Reduction

Principal Component Analysis (PCA)

Principle component analysis~(PCA) is the most popular technique in multivariate analysis and dimensionality reduction.

PCA is a method to identify a subspace in which the data approximately lies. This means finding new variables that are

uncorrelated and maximizing the variance to preserve as much variability as possible.

Example of PCA on text dataset (20newsgroups) from tf-idf with 75000 features to 2000 components:

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

def TFIDF(X_train, X_test, MAX_NB_WORDS=75000):

 vectorizer_x = TfidfVectorizer(max_features=MAX_NB_WORDS)

 X_train = vectorizer_x.fit_transform(X_train).toarray()

 X_test = vectorizer_x.transform(X_test).toarray()

 print("tf-idf with", str(np.array(X_train).shape[1]), "features")

 return (X_train, X_test)

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train,X_test = TFIDF(X_train,X_test)

from sklearn.decomposition import PCA

pca = PCA(n_components=2000)

X_train_new = pca.fit_transform(X_train)

X_test_new = pca.transform(X_test)

print("train with old features: ",np.array(X_train).shape)

print("train with new features:" ,np.array(X_train_new).shape)

print("test with old features: ",np.array(X_test).shape)

print("test with new features:" ,np.array(X_test_new).shape)

output:

tf-idf with 75000 features

train with old features: (11314, 75000)

train with new features: (11314, 2000)

test with old features: (7532, 75000)

test with new features: (7532, 2000)

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is another commonly used technique for data classification and dimensionality

reduction. LDA is particularly helpful where the within-class frequencies are unequal and their performances have been

evaluated on randomly generated test data. Class-dependent and class-independent transformation are two approaches

in LDA where the ratio of between-class-variance to within-class-variance and the ratio of the overall-variance to within-

class-variance are used respectively.

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

def TFIDF(X_train, X_test, MAX_NB_WORDS=75000):

 vectorizer_x = TfidfVectorizer(max_features=MAX_NB_WORDS)

 X_train = vectorizer_x.fit_transform(X_train).toarray()

 X_test = vectorizer_x.transform(X_test).toarray()

 print("tf-idf with", str(np.array(X_train).shape[1]), "features")

 return (X_train, X_test)

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train,X_test = TFIDF(X_train,X_test)

LDA = LinearDiscriminantAnalysis(n_components=15)

X_train_new = LDA.fit(X_train,y_train)

X_train_new = LDA.transform(X_train)

X_test_new = LDA.transform(X_test)

print("train with old features: ",np.array(X_train).shape)

print("train with new features:" ,np.array(X_train_new).shape)

print("test with old features: ",np.array(X_test).shape)

print("test with new features:" ,np.array(X_test_new).shape)

output:

tf-idf with 75000 features

train with old features: (11314, 75000)

train with new features: (11314, 15)

test with old features: (7532, 75000)

test with new features: (7532, 15)

Non-negative Matrix Factorization (NMF)

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

from sklearn.decomposition import NMF

def TFIDF(X_train, X_test, MAX_NB_WORDS=75000):

 vectorizer_x = TfidfVectorizer(max_features=MAX_NB_WORDS)

 X_train = vectorizer_x.fit_transform(X_train).toarray()

 X_test = vectorizer_x.transform(X_test).toarray()

 print("tf-idf with", str(np.array(X_train).shape[1]), "features")

 return (X_train, X_test)

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train,X_test = TFIDF(X_train,X_test)

NMF_ = NMF(n_components=2000)

X_train_new = NMF_.fit(X_train)

X_train_new = NMF_.transform(X_train)

X_test_new = NMF_.transform(X_test)

print("train with old features: ",np.array(X_train).shape)

print("train with new features:" ,np.array(X_train_new).shape)

print("test with old features: ",np.array(X_test).shape)

print("test with new features:" ,np.array(X_test_new))

output:

tf-idf with 75000 features

train with old features: (11314, 75000)

train with new features: (11314, 2000)

test with old features: (7532, 75000)

test with new features: (7532, 2000)

Random Projection

Random projection or random feature is a dimensionality reduction technique mostly used for very large volume dataset

or very high dimensional feature space. Text and document, especially with weighted feature extraction, can contain a

huge number of underlying features. Many researchers addressed Random Projection for text data for text mining, text

classification and/or dimensionality reduction. We start to review some random projection techniques.

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

def TFIDF(X_train, X_test, MAX_NB_WORDS=75000):

 vectorizer_x = TfidfVectorizer(max_features=MAX_NB_WORDS)

 X_train = vectorizer_x.fit_transform(X_train).toarray()

 X_test = vectorizer_x.transform(X_test).toarray()

 print("tf-idf with", str(np.array(X_train).shape[1]), "features")

 return (X_train, X_test)

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train,X_test = TFIDF(X_train,X_test)

from sklearn import random_projection

RandomProjection = random_projection.GaussianRandomProjection(n_components=2000)

X_train_new = RandomProjection.fit_transform(X_train)

X_test_new = RandomProjection.transform(X_test)

print("train with old features: ",np.array(X_train).shape)

print("train with new features:" ,np.array(X_train_new).shape)

print("test with old features: ",np.array(X_test).shape)

print("test with new features:" ,np.array(X_test_new).shape)

output:

tf-idf with 75000 features

train with old features: (11314, 75000)

train with new features: (11314, 2000)

test with old features: (7532, 75000)

test with new features: (7532, 2000)

Autoencoder

Autoencoder is a neural network technique that is trained to attempt to map its input to its output. The autoencoder as

dimensional reduction methods have achieved great success via the powerful reprehensibility of neural networks. The

main idea is, one hidden layer between the input and output layers with fewer neurons can be used to reduce the

dimension of feature space. Specially for texts, documents, and sequences that contains many features, autoencoder

could help to process data faster and more efficiently.

from keras.layers import Input, Dense

from keras.models import Model

this is the size of our encoded representations

encoding_dim = 1500

this is our input placeholder

input = Input(shape=(n,))

"encoded" is the encoded representation of the input

encoded = Dense(encoding_dim, activation='relu')(input)

"decoded" is the lossy reconstruction of the input

decoded = Dense(n, activation='sigmoid')(encoded)

this model maps an input to its reconstruction

autoencoder = Model(input, decoded)

this model maps an input to its encoded representation

encoder = Model(input, encoded)

encoded_input = Input(shape=(encoding_dim,))

retrieve the last layer of the autoencoder model

decoder_layer = autoencoder.layers[-1]

create the decoder model

decoder = Model(encoded_input, decoder_layer(encoded_input))

autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy')

Load data:

autoencoder.fit(x_train, x_train,

 epochs=50,

 batch_size=256,

 shuffle=True,

 validation_data=(x_test, x_test))

T-distributed Stochastic Neighbor Embedding (T-SNE)

T-distributed Stochastic Neighbor Embedding (T-SNE) is a nonlinear dimensionality reduction technique for embedding

high-dimensional data which is mostly used for visualization in a low-dimensional space. This approach is based on G.

Hinton and ST. Roweis . SNE works by converting the high dimensional Euclidean distances into conditional probabilities

which represent similarities.

Example:

import numpy as np

from sklearn.manifold import TSNE

X = np.array([[0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]])

X_embedded = TSNE(n_components=2).fit_transform(X)

X_embedded.shape

Example of Glove and T-SNE for text:

Text Classification Techniques

Rocchio classification

The first version of Rocchio algorithm is introduced by rocchio in 1971 to use relevance feedback in querying full-text

databases. Since then many researchers have addressed and developed this technique for text and document

classification. This method uses TF-IDF weights for each informative word instead of a set of Boolean features. Using a

training set of documents, Rocchio's algorithm builds a prototype vector for each class which is an average vector over all

training document vectors that belongs to a certain class. Then, it will assign each test document to a class with maximum

similarity that between test document and each of the prototype vectors.

When in nearest centroid classifier, we used for text as input data for classification with tf-idf vectors, this classifier is

known as the Rocchio classifier.

from sklearn.neighbors.nearest_centroid import NearestCentroid

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

text_clf = Pipeline([('vect', CountVectorizer()),

 ('tfidf', TfidfTransformer()),

 ('clf', NearestCentroid()),

])

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

Output:

 precision recall f1-score support

 0 0.75 0.49 0.60 319

 1 0.44 0.76 0.56 389

 2 0.75 0.68 0.71 394

 3 0.71 0.59 0.65 392

 4 0.81 0.71 0.76 385

 5 0.83 0.66 0.74 395

 6 0.49 0.88 0.63 390

 7 0.86 0.76 0.80 396

 8 0.91 0.86 0.89 398

 9 0.85 0.79 0.82 397

 10 0.95 0.80 0.87 399

 11 0.94 0.66 0.78 396

 12 0.40 0.70 0.51 393

 13 0.84 0.49 0.62 396

 14 0.89 0.72 0.80 394

 15 0.55 0.73 0.63 398

 16 0.68 0.76 0.71 364

 17 0.97 0.70 0.81 376

 18 0.54 0.53 0.53 310

 19 0.58 0.39 0.47 251

avg / total 0.74 0.69 0.70 7532

Boosting and Bagging

Boosting

Boosting is a Ensemble learning meta-algorithm for primarily reducing variance in supervised learning. It is basically a

family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on the question posed

by Michael Kearns and Leslie Valiant (1988, 1989) Can a set of weak learners create a single strong learner? A weak

learner is defined to be a Classification that is only slightly correlated with the true classification (it can label examples

better than random guessing). In contrast, a strong learner is a classifier that is arbitrarily well-correlated with the true

classification.

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

text_clf = Pipeline([('vect', CountVectorizer()),

 ('tfidf', TfidfTransformer()),

 ('clf', GradientBoostingClassifier(n_estimators=100)),

])

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

Output:

 precision recall f1-score support

 0 0.81 0.66 0.73 319

 1 0.69 0.70 0.69 389

 2 0.70 0.68 0.69 394

 3 0.64 0.72 0.68 392

 4 0.79 0.79 0.79 385

 5 0.83 0.64 0.72 395

 6 0.81 0.84 0.82 390

 7 0.84 0.75 0.79 396

 8 0.90 0.86 0.88 398

 9 0.90 0.85 0.88 397

 10 0.93 0.86 0.90 399

 11 0.90 0.81 0.85 396

 12 0.33 0.69 0.45 393

 13 0.87 0.72 0.79 396

 14 0.87 0.84 0.85 394

 15 0.85 0.87 0.86 398

 16 0.65 0.78 0.71 364

 17 0.96 0.74 0.84 376

 18 0.70 0.55 0.62 310

 19 0.62 0.56 0.59 251

avg / total 0.78 0.75 0.76 7532

Bagging

from sklearn.ensemble import BaggingClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

text_clf = Pipeline([('vect', CountVectorizer()),

 ('tfidf', TfidfTransformer()),

 ('clf', BaggingClassifier(KNeighborsClassifier())),

])

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

Output:

 precision recall f1-score support

 0 0.57 0.74 0.65 319

 1 0.60 0.56 0.58 389

 2 0.62 0.54 0.58 394

 3 0.54 0.57 0.55 392

 4 0.63 0.54 0.58 385

 5 0.68 0.62 0.65 395

 6 0.55 0.46 0.50 390

 7 0.77 0.67 0.72 396

 8 0.79 0.82 0.80 398

 9 0.74 0.77 0.76 397

 10 0.81 0.86 0.83 399

 11 0.74 0.85 0.79 396

 12 0.67 0.49 0.57 393

 13 0.78 0.51 0.62 396

 14 0.76 0.78 0.77 394

 15 0.71 0.81 0.76 398

 16 0.73 0.73 0.73 364

 17 0.64 0.79 0.71 376

 18 0.45 0.69 0.54 310

 19 0.61 0.54 0.57 251

avg / total 0.67 0.67 0.67 7532

Naive Bayes Classifier

Naïve Bayes text classification has been used in industry and academia for a long time (introduced by Thomas Bayes

between 1701-1761). However, this technique is being studied since the 1950s for text and document categorization.

Naive Bayes Classifier (NBC) is generative model which is widely used in Information Retrieval. Many researchers

addressed and developed this technique for their applications. We start with the most basic version of NBC which

developed by using term-frequency (Bag of Word) fetaure extraction technique by counting number of words in

documents

from sklearn.naive_bayes import MultinomialNB

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

text_clf = Pipeline([('vect', CountVectorizer()),

 ('tfidf', TfidfTransformer()),

 ('clf', MultinomialNB()),

])

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

Output:

 precision recall f1-score support

 0 0.80 0.52 0.63 319

 1 0.81 0.65 0.72 389

 2 0.82 0.65 0.73 394

 3 0.67 0.78 0.72 392

 4 0.86 0.77 0.81 385

 5 0.89 0.75 0.82 395

 6 0.93 0.69 0.80 390

 7 0.85 0.92 0.88 396

 8 0.94 0.93 0.93 398

 9 0.92 0.90 0.91 397

 10 0.89 0.97 0.93 399

 11 0.59 0.97 0.74 396

 12 0.84 0.60 0.70 393

 13 0.92 0.74 0.82 396

 14 0.84 0.89 0.87 394

 15 0.44 0.98 0.61 398

 16 0.64 0.94 0.76 364

 17 0.93 0.91 0.92 376

 18 0.96 0.42 0.58 310

 19 0.97 0.14 0.24 251

avg / total 0.82 0.77 0.77 7532

K-nearest Neighbor

R In machine learning, the k-nearest neighbors algorithm (kNN) is a non-parametric technique used for classification. This

method is used in Natural-language processing (NLP) as a text classification technique in many researches in the past

decades.

from sklearn.neighbors import KNeighborsClassifier

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

text_clf = Pipeline([('vect', CountVectorizer()),

 ('tfidf', TfidfTransformer()),

 ('clf', KNeighborsClassifier()),

])

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

Output:

 precision recall f1-score support

 0 0.43 0.76 0.55 319

 1 0.50 0.61 0.55 389

 2 0.56 0.57 0.57 394

 3 0.53 0.58 0.56 392

 4 0.59 0.56 0.57 385

 5 0.69 0.60 0.64 395

 6 0.58 0.45 0.51 390

 7 0.75 0.69 0.72 396

 8 0.84 0.81 0.82 398

 9 0.77 0.72 0.74 397

 10 0.85 0.84 0.84 399

 11 0.76 0.84 0.80 396

 12 0.70 0.50 0.58 393

 13 0.82 0.49 0.62 396

 14 0.79 0.76 0.78 394

 15 0.75 0.76 0.76 398

 16 0.70 0.73 0.72 364

 17 0.62 0.76 0.69 376

 18 0.55 0.61 0.58 310

 19 0.56 0.49 0.52 251

avg / total 0.67 0.66 0.66 7532

Support Vector Machine (SVM)

The original version of SVM was introduced by Vapnik and Chervonenkis in 1963. The early 1990s, nonlinear version was

addressed by BE. Boser et al. Original version of SVM was designed for binary classification problem, but Many

researchers have worked on multi-class problem using this authoritative technique.

The advantages of support vector machines are based on scikit-learn page:

Effective in high dimensional spaces.

Still effective in cases where number of dimensions is greater than the number of samples.

Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided, but it is

also possible to specify custom kernels.

The disadvantages of support vector machines include:

If the number of features is much greater than the number of samples, avoiding over-fitting via choosing kernel

functions and regularization term is crucial.

SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation

(see Scores and probabilities, below).

from sklearn.svm import LinearSVC

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

text_clf = Pipeline([('vect', CountVectorizer()),

 ('tfidf', TfidfTransformer()),

 ('clf', LinearSVC()),

])

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

output:

 precision recall f1-score support

 0 0.82 0.80 0.81 319

 1 0.76 0.80 0.78 389

 2 0.77 0.73 0.75 394

 3 0.71 0.76 0.74 392

 4 0.84 0.86 0.85 385

 5 0.87 0.76 0.81 395

 6 0.83 0.91 0.87 390

 7 0.92 0.91 0.91 396

 8 0.95 0.95 0.95 398

 9 0.92 0.95 0.93 397

 10 0.96 0.98 0.97 399

 11 0.93 0.94 0.93 396

 12 0.81 0.79 0.80 393

 13 0.90 0.87 0.88 396

 14 0.90 0.93 0.92 394

 15 0.84 0.93 0.88 398

 16 0.75 0.92 0.82 364

 17 0.97 0.89 0.93 376

 18 0.82 0.62 0.71 310

 19 0.75 0.61 0.68 251

avg / total 0.85 0.85 0.85 7532

Decision Tree

One of earlier classification algorithm for text and data mining is decision tree. Decision tree classifiers (DTC's) are used

successfully in many diverse areas of classification. The structure of this technique includes a hierarchical decomposition

of the data space (only train dataset). Decision tree as classification task was introduced by D. Morgan and developed

by JR. Quinlan. The main idea is creating trees based on the attributes of the data points, but the challenge is determining

which attribute should be in parent level and which one should be in child level. To solve this problem, De

Mantaras introduced statistical modeling for feature selection in tree.

from sklearn import tree

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

text_clf = Pipeline([('vect', CountVectorizer()),

 ('tfidf', TfidfTransformer()),

 ('clf', tree.DecisionTreeClassifier()),

])

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

output:

 precision recall f1-score support

 0 0.51 0.48 0.49 319

 1 0.42 0.42 0.42 389

 2 0.51 0.56 0.53 394

 3 0.46 0.42 0.44 392

 4 0.50 0.56 0.53 385

 5 0.50 0.47 0.48 395

 6 0.66 0.73 0.69 390

 7 0.60 0.59 0.59 396

 8 0.66 0.72 0.69 398

 9 0.53 0.55 0.54 397

 10 0.68 0.66 0.67 399

 11 0.73 0.69 0.71 396

 12 0.34 0.33 0.33 393

 13 0.52 0.42 0.46 396

 14 0.65 0.62 0.63 394

 15 0.68 0.72 0.70 398

 16 0.49 0.62 0.55 364

 17 0.78 0.60 0.68 376

 18 0.38 0.38 0.38 310

 19 0.32 0.32 0.32 251

avg / total 0.55 0.55 0.55 7532

Random Forest

Random forests or random decision forests technique is an ensemble learning method for text classification. This method

was introduced by T. Kam Ho in 1995 for first time which used t trees in parallel. This technique was later developed by L.

Breiman in 1999 that they found converged for RF as a margin measure.

from sklearn.ensemble import RandomForestClassifier

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

text_clf = Pipeline([('vect', CountVectorizer()),

 ('tfidf', TfidfTransformer()),

 ('clf', RandomForestClassifier(n_estimators=100)),

])

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

output:

 precision recall f1-score support

 0 0.69 0.63 0.66 319

 1 0.56 0.69 0.62 389

 2 0.67 0.78 0.72 394

 3 0.67 0.67 0.67 392

 4 0.71 0.78 0.74 385

 5 0.78 0.68 0.73 395

 6 0.74 0.92 0.82 390

 7 0.81 0.79 0.80 396

 8 0.90 0.89 0.90 398

 9 0.80 0.89 0.84 397

 10 0.90 0.93 0.91 399

 11 0.89 0.91 0.90 396

 12 0.68 0.49 0.57 393

 13 0.83 0.65 0.73 396

 14 0.81 0.88 0.84 394

 15 0.68 0.91 0.78 398

 16 0.67 0.86 0.75 364

 17 0.93 0.78 0.85 376

 18 0.86 0.48 0.61 310

 19 0.79 0.31 0.45 251

avg / total 0.77 0.76 0.75 7532

Conditional Random Field (CRF)

Conditional Random Field (CRF) is an undirected graphical model as shown in figure. CRFs state the conditional

probability of a label sequence Y give a sequence of observation X i.e. P(Y|X). CRFs can incorporate complex features of

observation sequence without violating the independence assumption by modeling the conditional probability of the label

sequences rather than the joint probability P(X,Y). The concept of clique which is a fully connected subgraph and clique

potential are used for computing P(X|Y). Considering one potential function for each clique of the graph, the probability of

a variable configuration corresponds to the product of a series of non-negative potential function. The value computed by

each potential function is equivalent to the probability of the variables in its corresponding clique taken on a particular

configuration.

Example from Here Let’s use CoNLL 2002 data to build a NER system CoNLL2002 corpus is available in NLTK. We use

Spanish data.

import nltk

import sklearn_crfsuite

from sklearn_crfsuite import metrics

nltk.corpus.conll2002.fileids()

train_sents = list(nltk.corpus.conll2002.iob_sents('esp.train'))

test_sents = list(nltk.corpus.conll2002.iob_sents('esp.testb'))

sklearn-crfsuite (and python-crfsuite) supports several feature formats; here we use feature dicts.

def word2features(sent, i):

 word = sent[i][0]

 postag = sent[i][1]

 features = {

 'bias': 1.0,

 'word.lower()': word.lower(),

 'word[-3:]': word[-3:],

 'word[-2:]': word[-2:],

 'word.isupper()': word.isupper(),

 'word.istitle()': word.istitle(),

 'word.isdigit()': word.isdigit(),

 'postag': postag,

 'postag[:2]': postag[:2],

 }

 if i > 0:

 word1 = sent[i-1][0]

 postag1 = sent[i-1][1]

 features.update({

 '-1:word.lower()': word1.lower(),

 '-1:word.istitle()': word1.istitle(),

 '-1:word.isupper()': word1.isupper(),

 '-1:postag': postag1,

 '-1:postag[:2]': postag1[:2],

 })

 else:

 features['BOS'] = True

 if i < len(sent)-1:

 word1 = sent[i+1][0]

 postag1 = sent[i+1][1]

 features.update({

 '+1:word.lower()': word1.lower(),

 '+1:word.istitle()': word1.istitle(),

 '+1:word.isupper()': word1.isupper(),

 '+1:postag': postag1,

 '+1:postag[:2]': postag1[:2],

 })

 else:

 features['EOS'] = True

 return features

def sent2features(sent):

 return [word2features(sent, i) for i in range(len(sent))]

def sent2labels(sent):

 return [label for token, postag, label in sent]

def sent2tokens(sent):

 return [token for token, postag, label in sent]

X_train = [sent2features(s) for s in train_sents]

y_train = [sent2labels(s) for s in train_sents]

X_test = [sent2features(s) for s in test_sents]

y_test = [sent2labels(s) for s in test_sents]

To see all possible CRF parameters check its docstring. Here we are useing L-BFGS training algorithm (it is default) with

Elastic Net (L1 + L2) regularization.

crf = sklearn_crfsuite.CRF(

 algorithm='lbfgs',

 c1=0.1,

 c2=0.1,

 max_iterations=100,

 all_possible_transitions=True

)

crf.fit(X_train, y_train)

Evaluation

y_pred = crf.predict(X_test)

print(metrics.flat_classification_report(

 y_test, y_pred, digits=3

))

Output:

 precision recall f1-score support

 B-LOC 0.810 0.784 0.797 1084

 B-MISC 0.731 0.569 0.640 339

 B-ORG 0.807 0.832 0.820 1400

 B-PER 0.850 0.884 0.867 735

 I-LOC 0.690 0.637 0.662 325

 I-MISC 0.699 0.589 0.639 557

 I-ORG 0.852 0.786 0.818 1104

 I-PER 0.893 0.943 0.917 634

 O 0.992 0.997 0.994 45355

avg / total 0.970 0.971 0.971 51533

Deep Learning

Deep Neural Networks

Deep Neural Networks architectures are designed to learn through multiple connection of layers where each single layer

only receives connection from previous and provides connections only to the next layer in hidden part. The input is a

connection of feature space (As discussed in Section Feature_extraction with first hidden layer. For Deep Neural

Networks (DNN), input layer could be tf-ifd, word embedding, or etc. as shown in standard DNN in Figure. The output

layer houses neurons equal to the number of classes for multi-class classification and only one neuron for binary

classification. But our main contribution in this paper is that we have many trained DNNs to serve different purposes.

Here, we have multi-class DNNs where each learning model is generated randomly (number of nodes in each layer as

well as the number of layers are randomly assigned). Our implementation of Deep Neural Network (DNN) is basically a

discriminatively trained model that uses standard back-propagation algorithm and sigmoid or ReLU as activation

functions. The output layer for multi-class classification should use Softmax.

import packages:

from sklearn.datasets import fetch_20newsgroups

from keras.layers import Dropout, Dense

from keras.models import Sequential

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

from sklearn import metrics

convert text to TF-IDF:

def TFIDF(X_train, X_test,MAX_NB_WORDS=75000):

 vectorizer_x = TfidfVectorizer(max_features=MAX_NB_WORDS)

 X_train = vectorizer_x.fit_transform(X_train).toarray()

 X_test = vectorizer_x.transform(X_test).toarray()

 print("tf-idf with",str(np.array(X_train).shape[1]),"features")

 return (X_train,X_test)

Build a DNN Model for Text:

def Build_Model_DNN_Text(shape, nClasses, dropout=0.5):

 """

 buildModel_DNN_Tex(shape, nClasses,dropout)

 Build Deep neural networks Model for text classification

 Shape is input feature space

 nClasses is number of classes

 """

 model = Sequential()

 node = 512 # number of nodes

 nLayers = 4 # number of hidden layer

 model.add(Dense(node,input_dim=shape,activation='relu'))

 model.add(Dropout(dropout))

 for i in range(0,nLayers):

 model.add(Dense(node,input_dim=node,activation='relu'))

 model.add(Dropout(dropout))

 model.add(Dense(nClasses, activation='softmax'))

 model.compile(loss='sparse_categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

 return model

Load text dataset (20newsgroups):

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

run DNN and see our result:

X_train_tfidf,X_test_tfidf = TFIDF(X_train,X_test)

model_DNN = Build_Model_DNN_Text(X_train_tfidf.shape[1], 20)

model_DNN.fit(X_train_tfidf, y_train,

 validation_data=(X_test_tfidf, y_test),

 epochs=10,

 batch_size=128,

 verbose=2)

predicted = model_DNN.predict(X_test_tfidf)

print(metrics.classification_report(y_test, predicted))

Model summary:

Layer (type) Output Shape Param #

===

dense_1 (Dense) (None, 512) 38400512

dropout_1 (Dropout) (None, 512) 0

dense_2 (Dense) (None, 512) 262656

dropout_2 (Dropout) (None, 512) 0

dense_3 (Dense) (None, 512) 262656

dropout_3 (Dropout) (None, 512) 0

dense_4 (Dense) (None, 512) 262656

dropout_4 (Dropout) (None, 512) 0

dense_5 (Dense) (None, 512) 262656

dropout_5 (Dropout) (None, 512) 0

dense_6 (Dense) (None, 20) 10260

===

Total params: 39,461,396

Trainable params: 39,461,396

Non-trainable params: 0

Output:

Train on 11314 samples, validate on 7532 samples

Epoch 1/10

 - 16s - loss: 2.7553 - acc: 0.1090 - val_loss: 1.9330 - val_acc: 0.3184

Epoch 2/10

 - 15s - loss: 1.5330 - acc: 0.4222 - val_loss: 1.1546 - val_acc: 0.6204

Epoch 3/10

 - 15s - loss: 0.7438 - acc: 0.7257 - val_loss: 0.8405 - val_acc: 0.7499

Epoch 4/10

 - 15s - loss: 0.2967 - acc: 0.9020 - val_loss: 0.9214 - val_acc: 0.7767

Epoch 5/10

 - 15s - loss: 0.1557 - acc: 0.9543 - val_loss: 0.8965 - val_acc: 0.7917

Epoch 6/10

 - 15s - loss: 0.1015 - acc: 0.9705 - val_loss: 0.9427 - val_acc: 0.7949

Epoch 7/10

 - 15s - loss: 0.0595 - acc: 0.9835 - val_loss: 0.9893 - val_acc: 0.7995

Epoch 8/10

 - 15s - loss: 0.0495 - acc: 0.9866 - val_loss: 0.9512 - val_acc: 0.8079

Epoch 9/10

 - 15s - loss: 0.0437 - acc: 0.9867 - val_loss: 0.9690 - val_acc: 0.8117

Epoch 10/10

 - 15s - loss: 0.0443 - acc: 0.9880 - val_loss: 1.0004 - val_acc: 0.8070

 precision recall f1-score support

 0 0.76 0.78 0.77 319

 1 0.67 0.80 0.73 389

 2 0.82 0.63 0.71 394

 3 0.76 0.69 0.72 392

 4 0.65 0.86 0.74 385

 5 0.84 0.75 0.79 395

 6 0.82 0.87 0.84 390

 7 0.86 0.90 0.88 396

 8 0.95 0.91 0.93 398

 9 0.91 0.92 0.92 397

 10 0.98 0.92 0.95 399

 11 0.96 0.85 0.90 396

 12 0.71 0.69 0.70 393

 13 0.95 0.70 0.81 396

 14 0.86 0.91 0.88 394

 15 0.85 0.90 0.87 398

 16 0.79 0.84 0.81 364

 17 0.99 0.77 0.87 376

 18 0.58 0.75 0.65 310

 19 0.52 0.60 0.55 251

avg / total 0.82 0.81 0.81 7532

Recurrent Neural Networks (RNN)

Another neural network architecture that is addressed by the researchers for text miming and classification is Recurrent

Neural Networks (RNN). RNN assigns more weights to the previous data points of sequence. Therefore, this technique is

a powerful method for text, string and sequential data classification. Moreover, this technique could be used for image

classification as we did in this work. In RNN, the neural net considers the information of previous nodes in a very

sophisticated method which allows for better semantic analysis of the structures in the dataset.

Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a gating mechanism for RNN which was introduced by J. Chung et al. and K.Cho et al..

GRU is a simplified variant of the LSTM architecture, but there are differences as follows: GRU contains two gates and

does not possess any internal memory (as shown in Figure; and finally, a second non-linearity is not applied (tanh in

Figure).

Long Short-Term Memory (LSTM)

Long Short-Term Memory~(LSTM) was introduced by S. Hochreiter and J. Schmidhuber and developed by many research

scientists.

To deal with these problems Long Short-Term Memory (LSTM) is a special type of RNN that preserves long term

dependency in a more effective way compared to the basic RNNs. This is particularly useful to overcome vanishing

gradient problem. Although LSTM has a chain-like structure similar to RNN, LSTM uses multiple gates to carefully

regulate the amount of information that will be allowed into each node state. Figure shows the basic cell of a LSTM model.

import packages:

from keras.layers import Dropout, Dense, GRU, Embedding

from keras.models import Sequential

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

from sklearn import metrics

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from sklearn.datasets import fetch_20newsgroups

convert text to word embedding (Using GloVe):

def loadData_Tokenizer(X_train, X_test,MAX_NB_WORDS=75000,MAX_SEQUENCE_LENGTH=500):

 np.random.seed(7)

 text = np.concatenate((X_train, X_test), axis=0)

 text = np.array(text)

 tokenizer = Tokenizer(num_words=MAX_NB_WORDS)

 tokenizer.fit_on_texts(text)

 sequences = tokenizer.texts_to_sequences(text)

 word_index = tokenizer.word_index

 text = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

 print('Found %s unique tokens.' % len(word_index))

 indices = np.arange(text.shape[0])

 # np.random.shuffle(indices)

 text = text[indices]

 print(text.shape)

 X_train = text[0:len(X_train),]

 X_test = text[len(X_train):,]

 embeddings_index = {}

 f =

open("C:\\Users\\kamran\\Documents\\GitHub\\RMDL\\Examples\\Glove\\glove.6B.50d.txt",

encoding="utf8")

 for line in f:

 values = line.split()

 word = values[0]

 try:

 coefs = np.asarray(values[1:], dtype='float32')

 except:

 pass

 embeddings_index[word] = coefs

 f.close()

 print('Total %s word vectors.' % len(embeddings_index))

 return (X_train, X_test, word_index,embeddings_index)

Build a RNN Model for Text:

def Build_Model_RNN_Text(word_index, embeddings_index, nclasses,

MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50, dropout=0.5):

 """

 def buildModel_RNN(word_index, embeddings_index, nclasses,

MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50, dropout=0.5):

 word_index in word index ,

 embeddings_index is embeddings index, look at data_helper.py

 nClasses is number of classes,

 MAX_SEQUENCE_LENGTH is maximum lenght of text sequences

 """

 model = Sequential()

 hidden_layer = 3

 gru_node = 32

 embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))

 for word, i in word_index.items():

 embedding_vector = embeddings_index.get(word)

 if embedding_vector is not None:

 # words not found in embedding index will be all-zeros.

 if len(embedding_matrix[i]) != len(embedding_vector):

 print("could not broadcast input array from shape",

str(len(embedding_matrix[i])),

 "into shape", str(len(embedding_vector)), " Please make sure

your"

 " EMBEDDING_DIM is

equal to embedding_vector file ,GloVe,")

 exit(1)

 embedding_matrix[i] = embedding_vector

 model.add(Embedding(len(word_index) + 1,

 EMBEDDING_DIM,

 weights=[embedding_matrix],

 input_length=MAX_SEQUENCE_LENGTH,

 trainable=True))

 print(gru_node)

 for i in range(0,hidden_layer):

 model.add(GRU(gru_node,return_sequences=True, recurrent_dropout=0.2))

 model.add(Dropout(dropout))

 model.add(GRU(gru_node, recurrent_dropout=0.2))

 model.add(Dropout(dropout))

 model.add(Dense(256, activation='relu'))

 model.add(Dense(nclasses, activation='softmax'))

 model.compile(loss='sparse_categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

 return model

run RNN and see our result:

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train_Glove,X_test_Glove, word_index,embeddings_index =

loadData_Tokenizer(X_train,X_test)

model_RNN = Build_Model_RNN_Text(word_index,embeddings_index, 20)

model_RNN.fit(X_train_Glove, y_train,

 validation_data=(X_test_Glove, y_test),

 epochs=10,

 batch_size=128,

 verbose=2)

predicted = model_RNN.predict_classes(X_test_Glove)

print(metrics.classification_report(y_test, predicted))

Model summary:

Layer (type) Output Shape Param #

===

embedding_1 (Embedding) (None, 500, 50) 8960500

gru_1 (GRU) (None, 500, 256) 235776

dropout_1 (Dropout) (None, 500, 256) 0

gru_2 (GRU) (None, 500, 256) 393984

dropout_2 (Dropout) (None, 500, 256) 0

gru_3 (GRU) (None, 500, 256) 393984

dropout_3 (Dropout) (None, 500, 256) 0

gru_4 (GRU) (None, 256) 393984

dense_1 (Dense) (None, 20) 5140

===

Total params: 10,383,368

Trainable params: 10,383,368

Non-trainable params: 0

Output:

Train on 11314 samples, validate on 7532 samples

Epoch 1/20

 - 268s - loss: 2.5347 - acc: 0.1792 - val_loss: 2.2857 - val_acc: 0.2460

Epoch 2/20

 - 271s - loss: 1.6751 - acc: 0.3999 - val_loss: 1.4972 - val_acc: 0.4660

Epoch 3/20

 - 270s - loss: 1.0945 - acc: 0.6072 - val_loss: 1.3232 - val_acc: 0.5483

Epoch 4/20

 - 269s - loss: 0.7761 - acc: 0.7312 - val_loss: 1.1009 - val_acc: 0.6452

Epoch 5/20

 - 269s - loss: 0.5513 - acc: 0.8112 - val_loss: 1.0395 - val_acc: 0.6832

Epoch 6/20

 - 269s - loss: 0.3765 - acc: 0.8754 - val_loss: 0.9977 - val_acc: 0.7086

Epoch 7/20

 - 270s - loss: 0.2481 - acc: 0.9202 - val_loss: 1.0485 - val_acc: 0.7270

Epoch 8/20

 - 269s - loss: 0.1717 - acc: 0.9463 - val_loss: 1.0269 - val_acc: 0.7394

Epoch 9/20

 - 269s - loss: 0.1130 - acc: 0.9644 - val_loss: 1.1498 - val_acc: 0.7369

Epoch 10/20

 - 269s - loss: 0.0640 - acc: 0.9808 - val_loss: 1.1442 - val_acc: 0.7508

Epoch 11/20

 - 269s - loss: 0.0567 - acc: 0.9828 - val_loss: 1.2318 - val_acc: 0.7414

Epoch 12/20

 - 268s - loss: 0.0472 - acc: 0.9858 - val_loss: 1.2204 - val_acc: 0.7496

Epoch 13/20

 - 269s - loss: 0.0319 - acc: 0.9910 - val_loss: 1.1895 - val_acc: 0.7657

Epoch 14/20

 - 268s - loss: 0.0466 - acc: 0.9853 - val_loss: 1.2821 - val_acc: 0.7517

Epoch 15/20

 - 271s - loss: 0.0269 - acc: 0.9917 - val_loss: 1.2869 - val_acc: 0.7557

Epoch 16/20

 - 271s - loss: 0.0187 - acc: 0.9950 - val_loss: 1.3037 - val_acc: 0.7598

Epoch 17/20

 - 268s - loss: 0.0157 - acc: 0.9959 - val_loss: 1.2974 - val_acc: 0.7638

Epoch 18/20

 - 270s - loss: 0.0121 - acc: 0.9966 - val_loss: 1.3526 - val_acc: 0.7602

Epoch 19/20

 - 269s - loss: 0.0262 - acc: 0.9926 - val_loss: 1.4182 - val_acc: 0.7517

Epoch 20/20

 - 269s - loss: 0.0249 - acc: 0.9918 - val_loss: 1.3453 - val_acc: 0.7638

 precision recall f1-score support

 0 0.71 0.71 0.71 319

 1 0.72 0.68 0.70 389

 2 0.76 0.62 0.69 394

 3 0.67 0.58 0.62 392

 4 0.68 0.67 0.68 385

 5 0.75 0.73 0.74 395

 6 0.82 0.74 0.78 390

 7 0.83 0.83 0.83 396

 8 0.81 0.90 0.86 398

 9 0.92 0.90 0.91 397

 10 0.91 0.94 0.93 399

 11 0.87 0.76 0.81 396

 12 0.57 0.70 0.63 393

 13 0.81 0.85 0.83 396

 14 0.74 0.93 0.82 394

 15 0.82 0.83 0.83 398

 16 0.74 0.78 0.76 364

 17 0.96 0.83 0.89 376

 18 0.64 0.60 0.62 310

 19 0.48 0.56 0.52 251

avg / total 0.77 0.76 0.76 7532

Convolutional Neural Networks (CNN)

Another deep learning architecture that is employed for hierarchical document classification is Convolutional Neural

Networks (CNN) . Although originally built for image processing with architecture similar to the visual cortex, CNNs have

also been effectively used for text classification. In a basic CNN for image processing, an image tensor is convolved with

a set of kernels of size d by d. These convolution layers are called feature maps and can be stacked to provide multiple

filters on the input. To reduce the computational complexity, CNNs use pooling which reduces the size of the output from

one layer to the next in the network. Different pooling techniques are used to reduce outputs while preserving important

features.

The most common pooling method is max pooling where the maximum element is selected from the pooling window. In

order to feed the pooled output from stacked featured maps to the next layer, the maps are flattened into one column. The

final layers in a CNN are typically fully connected dense layers. In general, during the back-propagation step of a

convolutional neural network not only the weights are adjusted but also the feature detector filters. A potential problem of

CNN used for text is the number of 'channels', Sigma (size of the feature space). This might be very large (e.g. 50K), for

text but for images this is less of a problem (e.g. only 3 channels of RGB). This means the dimensionality of the CNN for

text is very high.

import packages:

from keras.layers import Dropout, Dense,Input,Embedding,Flatten, MaxPooling1D, Conv1D

from keras.models import Sequential,Model

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

from sklearn import metrics

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from sklearn.datasets import fetch_20newsgroups

from keras.layers.merge import Concatenate

convert text to word embedding (Using GloVe):

def loadData_Tokenizer(X_train, X_test,MAX_NB_WORDS=75000,MAX_SEQUENCE_LENGTH=500):

 np.random.seed(7)

 text = np.concatenate((X_train, X_test), axis=0)

 text = np.array(text)

 tokenizer = Tokenizer(num_words=MAX_NB_WORDS)

 tokenizer.fit_on_texts(text)

 sequences = tokenizer.texts_to_sequences(text)

 word_index = tokenizer.word_index

 text = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

 print('Found %s unique tokens.' % len(word_index))

 indices = np.arange(text.shape[0])

 # np.random.shuffle(indices)

 text = text[indices]

 print(text.shape)

 X_train = text[0:len(X_train),]

 X_test = text[len(X_train):,]

 embeddings_index = {}

 f =

open("C:\\Users\\kamran\\Documents\\GitHub\\RMDL\\Examples\\Glove\\glove.6B.50d.txt",

encoding="utf8")

 for line in f:

 values = line.split()

 word = values[0]

 try:

 coefs = np.asarray(values[1:], dtype='float32')

 except:

 pass

 embeddings_index[word] = coefs

 f.close()

 print('Total %s word vectors.' % len(embeddings_index))

 return (X_train, X_test, word_index,embeddings_index)

Build a CNN Model for Text:

def Build_Model_CNN_Text(word_index, embeddings_index, nclasses,

MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50, dropout=0.5):

 """

 def buildModel_CNN(word_index, embeddings_index, nclasses,

MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50, dropout=0.5):

 word_index in word index ,

 embeddings_index is embeddings index, look at data_helper.py

 nClasses is number of classes,

 MAX_SEQUENCE_LENGTH is maximum lenght of text sequences,

 EMBEDDING_DIM is an int value for dimention of word embedding look at

data_helper.py

 """

 model = Sequential()

 embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))

 for word, i in word_index.items():

 embedding_vector = embeddings_index.get(word)

 if embedding_vector is not None:

 # words not found in embedding index will be all-zeros.

 if len(embedding_matrix[i]) !=len(embedding_vector):

 print("could not broadcast input array from

shape",str(len(embedding_matrix[i])),

 "into shape",str(len(embedding_vector))," Please make

sure your"

 " EMBEDDING_DIM is equal to embedding_vector file

,GloVe,")

 exit(1)

 embedding_matrix[i] = embedding_vector

 embedding_layer = Embedding(len(word_index) + 1,

 EMBEDDING_DIM,

 weights=[embedding_matrix],

 input_length=MAX_SEQUENCE_LENGTH,

 trainable=True)

 # applying a more complex convolutional approach

 convs = []

 filter_sizes = []

 layer = 5

 print("Filter ",layer)

 for fl in range(0,layer):

 filter_sizes.append((fl+2))

 node = 128

 sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='int32')

 embedded_sequences = embedding_layer(sequence_input)

 for fsz in filter_sizes:

 l_conv = Conv1D(node, kernel_size=fsz, activation='relu')(embedded_sequences)

 l_pool = MaxPooling1D(5)(l_conv)

 #l_pool = Dropout(0.25)(l_pool)

 convs.append(l_pool)

 l_merge = Concatenate(axis=1)(convs)

 l_cov1 = Conv1D(node, 5, activation='relu')(l_merge)

 l_cov1 = Dropout(dropout)(l_cov1)

 l_pool1 = MaxPooling1D(5)(l_cov1)

 l_cov2 = Conv1D(node, 5, activation='relu')(l_pool1)

 l_cov2 = Dropout(dropout)(l_cov2)

 l_pool2 = MaxPooling1D(30)(l_cov2)

 l_flat = Flatten()(l_pool2)

 l_dense = Dense(1024, activation='relu')(l_flat)

 l_dense = Dropout(dropout)(l_dense)

 l_dense = Dense(512, activation='relu')(l_dense)

 l_dense = Dropout(dropout)(l_dense)

 preds = Dense(nclasses, activation='softmax')(l_dense)

 model = Model(sequence_input, preds)

 model.compile(loss='sparse_categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

 return model

run CNN and see our result:

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train_Glove,X_test_Glove, word_index,embeddings_index =

loadData_Tokenizer(X_train,X_test)

model_CNN = Build_Model_CNN_Text(word_index,embeddings_index, 20)

model_CNN.summary()

model_CNN.fit(X_train_Glove, y_train,

 validation_data=(X_test_Glove, y_test),

 epochs=15,

 batch_size=128,

 verbose=2)

predicted = model_CNN.predict(X_test_Glove)

predicted = np.argmax(predicted, axis=1)

print(metrics.classification_report(y_test, predicted))

Model:

Layer (type) Output Shape Param # Connected to

===

input_1 (InputLayer) (None, 500) 0

embedding_1 (Embedding) (None, 500, 50) 8960500 input_1[0][0]

conv1d_1 (Conv1D) (None, 499, 128) 12928 embedding_1[0][0]

conv1d_2 (Conv1D) (None, 498, 128) 19328 embedding_1[0][0]

conv1d_3 (Conv1D) (None, 497, 128) 25728 embedding_1[0][0]

conv1d_4 (Conv1D) (None, 496, 128) 32128 embedding_1[0][0]

conv1d_5 (Conv1D) (None, 495, 128) 38528 embedding_1[0][0]

max_pooling1d_1 (MaxPooling1D) (None, 99, 128) 0 conv1d_1[0][0]

max_pooling1d_2 (MaxPooling1D) (None, 99, 128) 0 conv1d_2[0][0]

max_pooling1d_3 (MaxPooling1D) (None, 99, 128) 0 conv1d_3[0][0]

max_pooling1d_4 (MaxPooling1D) (None, 99, 128) 0 conv1d_4[0][0]

max_pooling1d_5 (MaxPooling1D) (None, 99, 128) 0 conv1d_5[0][0]

concatenate_1 (Concatenate) (None, 495, 128) 0 max_pooling1d_1[0][0]

 max_pooling1d_2[0][0]

 max_pooling1d_3[0][0]

 max_pooling1d_4[0][0]

 max_pooling1d_5[0][0]

conv1d_6 (Conv1D) (None, 491, 128) 82048 concatenate_1[0][0]

dropout_1 (Dropout) (None, 491, 128) 0 conv1d_6[0][0]

max_pooling1d_6 (MaxPooling1D) (None, 98, 128) 0 dropout_1[0][0]

conv1d_7 (Conv1D) (None, 94, 128) 82048 max_pooling1d_6[0][0]

dropout_2 (Dropout) (None, 94, 128) 0 conv1d_7[0][0]

max_pooling1d_7 (MaxPooling1D) (None, 3, 128) 0 dropout_2[0][0]

flatten_1 (Flatten) (None, 384) 0 max_pooling1d_7[0][0]

dense_1 (Dense) (None, 1024) 394240 flatten_1[0][0]

dropout_3 (Dropout) (None, 1024) 0 dense_1[0][0]

dense_2 (Dense) (None, 512) 524800 dropout_3[0][0]

dropout_4 (Dropout) (None, 512) 0 dense_2[0][0]

dense_3 (Dense) (None, 20) 10260 dropout_4[0][0]

===

Total params: 10,182,536

Trainable params: 10,182,536

Non-trainable params: 0

Output:

Train on 11314 samples, validate on 7532 samples

Epoch 1/15

 - 6s - loss: 2.9329 - acc: 0.0783 - val_loss: 2.7628 - val_acc: 0.1403

Epoch 2/15

 - 4s - loss: 2.2534 - acc: 0.2249 - val_loss: 2.1715 - val_acc: 0.4007

Epoch 3/15

 - 4s - loss: 1.5643 - acc: 0.4326 - val_loss: 1.7846 - val_acc: 0.5052

Epoch 4/15

 - 4s - loss: 1.1771 - acc: 0.5662 - val_loss: 1.4949 - val_acc: 0.6131

Epoch 5/15

 - 4s - loss: 0.8880 - acc: 0.6797 - val_loss: 1.3629 - val_acc: 0.6256

Epoch 6/15

 - 4s - loss: 0.6990 - acc: 0.7569 - val_loss: 1.2013 - val_acc: 0.6624

Epoch 7/15

 - 4s - loss: 0.5037 - acc: 0.8200 - val_loss: 1.0674 - val_acc: 0.6807

Epoch 8/15

 - 4s - loss: 0.4050 - acc: 0.8626 - val_loss: 1.0223 - val_acc: 0.6863

Epoch 9/15

 - 4s - loss: 0.2952 - acc: 0.8968 - val_loss: 0.9045 - val_acc: 0.7120

Epoch 10/15

 - 4s - loss: 0.2314 - acc: 0.9217 - val_loss: 0.8574 - val_acc: 0.7326

Epoch 11/15

 - 4s - loss: 0.1778 - acc: 0.9436 - val_loss: 0.8752 - val_acc: 0.7270

Epoch 12/15

 - 4s - loss: 0.1475 - acc: 0.9524 - val_loss: 0.8299 - val_acc: 0.7355

Epoch 13/15

 - 4s - loss: 0.1089 - acc: 0.9657 - val_loss: 0.8034 - val_acc: 0.7491

Epoch 14/15

 - 4s - loss: 0.1047 - acc: 0.9666 - val_loss: 0.8172 - val_acc: 0.7463

Epoch 15/15

 - 4s - loss: 0.0749 - acc: 0.9774 - val_loss: 0.8511 - val_acc: 0.7313

 precision recall f1-score support

 0 0.75 0.61 0.67 319

 1 0.63 0.74 0.68 389

 2 0.74 0.54 0.62 394

 3 0.49 0.76 0.60 392

 4 0.60 0.70 0.64 385

 5 0.79 0.57 0.66 395

 6 0.73 0.76 0.74 390

 7 0.83 0.74 0.78 396

 8 0.86 0.88 0.87 398

 9 0.95 0.78 0.86 397

 10 0.93 0.93 0.93 399

 11 0.92 0.77 0.84 396

 12 0.55 0.72 0.62 393

 13 0.76 0.85 0.80 396

 14 0.86 0.83 0.84 394

 15 0.91 0.73 0.81 398

 16 0.75 0.65 0.70 364

 17 0.95 0.86 0.90 376

 18 0.60 0.49 0.54 310

 19 0.37 0.60 0.46 251

avg / total 0.76 0.73 0.74 7532

Hierarchical Attention Networks

Recurrent Convolutional Neural Networks (RCNN)

Recurrent Convolutional Neural Networks (RCNN) is also used for text classification. The main idea of this technique is

capturing contextual information with the recurrent structure and constructing the representation of text using a

convolutional neural network. This architecture is a combination of RNN and CNN to use advantages of both technique in

a model.

import packages:

from keras.preprocessing import sequence

from keras.models import Sequential

from keras.layers import Dense, Dropout, Activation

from keras.layers import Embedding

from keras.layers import GRU

from keras.layers import Conv1D, MaxPooling1D

from keras.datasets import imdb

from sklearn.datasets import fetch_20newsgroups

import numpy as np

from sklearn import metrics

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

Convert text to word embedding (Using GloVe):

def loadData_Tokenizer(X_train, X_test,MAX_NB_WORDS=75000,MAX_SEQUENCE_LENGTH=500):

 np.random.seed(7)

 text = np.concatenate((X_train, X_test), axis=0)

 text = np.array(text)

 tokenizer = Tokenizer(num_words=MAX_NB_WORDS)

 tokenizer.fit_on_texts(text)

 sequences = tokenizer.texts_to_sequences(text)

 word_index = tokenizer.word_index

 text = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

 print('Found %s unique tokens.' % len(word_index))

 indices = np.arange(text.shape[0])

 # np.random.shuffle(indices)

 text = text[indices]

 print(text.shape)

 X_train = text[0:len(X_train),]

 X_test = text[len(X_train):,]

 embeddings_index = {}

 f =

open("C:\\Users\\kamran\\Documents\\GitHub\\RMDL\\Examples\\Glove\\glove.6B.50d.txt",

encoding="utf8")

 for line in f:

 values = line.split()

 word = values[0]

 try:

 coefs = np.asarray(values[1:], dtype='float32')

 except:

 pass

 embeddings_index[word] = coefs

 f.close()

 print('Total %s word vectors.' % len(embeddings_index))

 return (X_train, X_test, word_index,embeddings_index)

def Build_Model_RCNN_Text(word_index, embeddings_index, nclasses,

MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50):

 kernel_size = 2

 filters = 256

 pool_size = 2

 gru_node = 256

 embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))

 for word, i in word_index.items():

 embedding_vector = embeddings_index.get(word)

 if embedding_vector is not None:

 # words not found in embedding index will be all-zeros.

 if len(embedding_matrix[i]) !=len(embedding_vector):

 print("could not broadcast input array from

shape",str(len(embedding_matrix[i])),

 "into shape",str(len(embedding_vector))," Please make

sure your"

 " EMBEDDING_DIM is equal to embedding_vector file

,GloVe,")

 exit(1)

 embedding_matrix[i] = embedding_vector

 model = Sequential()

 model.add(Embedding(len(word_index) + 1,

 EMBEDDING_DIM,

 weights=[embedding_matrix],

 input_length=MAX_SEQUENCE_LENGTH,

 trainable=True))

 model.add(Dropout(0.25))

 model.add(Conv1D(filters, kernel_size, activation='relu'))

 model.add(MaxPooling1D(pool_size=pool_size))

 model.add(Conv1D(filters, kernel_size, activation='relu'))

 model.add(MaxPooling1D(pool_size=pool_size))

 model.add(Conv1D(filters, kernel_size, activation='relu'))

 model.add(MaxPooling1D(pool_size=pool_size))

 model.add(Conv1D(filters, kernel_size, activation='relu'))

 model.add(MaxPooling1D(pool_size=pool_size))

 model.add(LSTM(gru_node, return_sequences=True, recurrent_dropout=0.2))

 model.add(LSTM(gru_node, return_sequences=True, recurrent_dropout=0.2))

 model.add(LSTM(gru_node, return_sequences=True, recurrent_dropout=0.2))

 model.add(LSTM(gru_node, recurrent_dropout=0.2))

 model.add(Dense(1024,activation='relu'))

 model.add(Dense(nclasses))

 model.add(Activation('softmax'))

 model.compile(loss='sparse_categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

 return model

newsgroups_train = fetch_20newsgroups(subset='train')

newsgroups_test = fetch_20newsgroups(subset='test')

X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train_Glove,X_test_Glove, word_index,embeddings_index =

loadData_Tokenizer(X_train,X_test)

Run RCNN :

model_RCNN = Build_Model_CNN_Text(word_index,embeddings_index, 20)

model_RCNN.summary()

model_RCNN.fit(X_train_Glove, y_train,

 validation_data=(X_test_Glove, y_test),

 epochs=15,

 batch_size=128,

 verbose=2)

predicted = model_RCNN.predict(X_test_Glove)

predicted = np.argmax(predicted, axis=1)

print(metrics.classification_report(y_test, predicted))

summary of the model:

Layer (type) Output Shape Param #

===

embedding_1 (Embedding) (None, 500, 50) 8960500

dropout_1 (Dropout) (None, 500, 50) 0

conv1d_1 (Conv1D) (None, 499, 256) 25856

max_pooling1d_1 (MaxPooling1 (None, 249, 256) 0

conv1d_2 (Conv1D) (None, 248, 256) 131328

max_pooling1d_2 (MaxPooling1 (None, 124, 256) 0

conv1d_3 (Conv1D) (None, 123, 256) 131328

max_pooling1d_3 (MaxPooling1 (None, 61, 256) 0

conv1d_4 (Conv1D) (None, 60, 256) 131328

max_pooling1d_4 (MaxPooling1 (None, 30, 256) 0

lstm_1 (LSTM) (None, 30, 256) 525312

lstm_2 (LSTM) (None, 30, 256) 525312

lstm_3 (LSTM) (None, 30, 256) 525312

lstm_4 (LSTM) (None, 256) 525312

dense_1 (Dense) (None, 1024) 263168

dense_2 (Dense) (None, 20) 20500

activation_1 (Activation) (None, 20) 0

===

Total params: 11,765,256

Trainable params: 11,765,256

Non-trainable params: 0

Output:

Train on 11314 samples, validate on 7532 samples

Epoch 1/15

 - 28s - loss: 2.6624 - acc: 0.1081 - val_loss: 2.3012 - val_acc: 0.1753

Epoch 2/15

 - 22s - loss: 2.1142 - acc: 0.2224 - val_loss: 1.9168 - val_acc: 0.2669

Epoch 3/15

 - 22s - loss: 1.7465 - acc: 0.3290 - val_loss: 1.8257 - val_acc: 0.3412

Epoch 4/15

 - 22s - loss: 1.4730 - acc: 0.4356 - val_loss: 1.5433 - val_acc: 0.4436

Epoch 5/15

 - 22s - loss: 1.1800 - acc: 0.5556 - val_loss: 1.2973 - val_acc: 0.5467

Epoch 6/15

 - 22s - loss: 0.9910 - acc: 0.6281 - val_loss: 1.2530 - val_acc: 0.5797

Epoch 7/15

 - 22s - loss: 0.8581 - acc: 0.6854 - val_loss: 1.1522 - val_acc: 0.6281

Epoch 8/15

 - 22s - loss: 0.7058 - acc: 0.7428 - val_loss: 1.2385 - val_acc: 0.6033

Epoch 9/15

 - 22s - loss: 0.6792 - acc: 0.7515 - val_loss: 1.0200 - val_acc: 0.6775

Epoch 10/15

 - 22s - loss: 0.5782 - acc: 0.7948 - val_loss: 1.0961 - val_acc: 0.6577

Epoch 11/15

 - 23s - loss: 0.4674 - acc: 0.8341 - val_loss: 1.0866 - val_acc: 0.6924

Epoch 12/15

 - 23s - loss: 0.4284 - acc: 0.8512 - val_loss: 0.9880 - val_acc: 0.7096

Epoch 13/15

 - 22s - loss: 0.3883 - acc: 0.8670 - val_loss: 1.0190 - val_acc: 0.7151

Epoch 14/15

 - 22s - loss: 0.3334 - acc: 0.8874 - val_loss: 1.0025 - val_acc: 0.7232

Epoch 15/15

 - 22s - loss: 0.2857 - acc: 0.9038 - val_loss: 1.0123 - val_acc: 0.7331

 precision recall f1-score support

 0 0.64 0.73 0.68 319

 1 0.45 0.83 0.58 389

 2 0.81 0.64 0.71 394

 3 0.64 0.57 0.61 392

 4 0.55 0.78 0.64 385

 5 0.77 0.52 0.62 395

 6 0.84 0.77 0.80 390

 7 0.87 0.79 0.83 396

 8 0.85 0.90 0.87 398

 9 0.98 0.84 0.90 397

 10 0.93 0.96 0.95 399

 11 0.92 0.79 0.85 396

 12 0.59 0.53 0.56 393

 13 0.82 0.82 0.82 396

 14 0.84 0.84 0.84 394

 15 0.83 0.89 0.86 398

 16 0.68 0.86 0.76 364

 17 0.97 0.86 0.91 376

 18 0.66 0.50 0.57 310

 19 0.53 0.31 0.40 251

avg / total 0.77 0.75 0.75 7532

Random Multimodel Deep Learning (RMDL)

Referenced paper : RMDL: Random Multimodel Deep Learning for Classification

A new ensemble, deep learning approach for classification. Deep learning models have achieved state-of-the-art results

across many domains. RMDL solves the problem of finding the best deep learning structure and architecture while

simultaneously improving robustness and accuracy through ensembles of different deep learning architectures. RDMLs

can accept a variety of data as input including text, video, images, and symbols.

RMDL

Random Multimodel Deep Learning (RDML) architecture for classification. RMDL includes 3 Random models, oneDNN

classifier at left, one Deep CNN classifier at middle, and one Deep RNN classifier at right (each unit could be LSTMor

GRU).

Installation

There are pip and git for RMDL installation:

Using pip

pip install RMDL

Using git

git clone --recursive https://github.com/kk7nc/RMDL.git

The primary requirements for this package are Python 3 with Tensorflow. The requirements.txt file contains a listing of the

required Python packages; to install all requirements, run the following:

pip -r install requirements.txt

Or

pip3 install -r requirements.txt

Or:

conda install --file requirements.txt

Documentation:

The exponential growth in the number of complex datasets every year requires more enhancement in machine learning

methods to provide robust and accurate data classification. Lately, deep learning approaches are achieving better results

compared to previous machine learning algorithms on tasks like image classification, natural language processing, face

recognition, and etc. The success of these deep learning algorithms rely on their capacity to model complex and non-

linear relationships within the data. However, finding suitable structures for these models has been a challenge for

researchers. This paper introduces Random Multimodel Deep Learning (RMDL): a new ensemble, deep learning

approach for classification. RMDL aims to solve the problem of finding the best deep learning architecture while

simultaneously improving the robustness and accuracy through ensembles of multiple deep learning architectures. In

short, RMDL trains multiple models of Deep Neural Network (DNN), Convolutional Neural Network (CNN) and Recurrent

Neural Network (RNN) in parallel and combines their results to produce better result of any of those models individually.

To create these models, each deep learning model has been constructed in a random fashion regarding the number of

layers and nodes in their neural network structure. The resulting RDML model can be used in various domains such as

text, video, images, and symbolic. In this Project, we describe RMDL model in depth and show the results for image and

text classification as well as face recognition. For image classification, we compared our model with some of the available

baselines using MNIST and CIFAR-10 datasets. Similarly, we used four datasets namely, WOS, Reuters, IMDB, and

20newsgroup and compared our results with available baselines. Web of Science (WOS) has been collected by authors

and consists of three sets~(small, medium and large set). Lastly, we used ORL dataset to compare the performance of our

approach with other face recognition methods. These test results show that RDML model consistently outperform

standard methods over a broad range of data types and classification problems.

Hierarchical Deep Learning for Text (HDLTex)

Refrenced paper : HDLTex: Hierarchical Deep Learning for Text Classification

HDLTex

Documentation:

Increasingly large document collections require improved information processing methods for searching, retrieving, and

organizing text documents. Central to these information processing methods is document classification, which has

become an important task supervised learning aims to solve. Recently, the performance of traditional supervised

classifiers has degraded as the number of documents has increased. This exponential growth of document volume has

also increated the number of categories. This paper approaches this problem differently from current document

classification methods that view the problem as multi-class classification. Instead we perform hierarchical classification

using an approach we call Hierarchical Deep Learning for Text classification (HDLTex). HDLTex employs stacks of deep

learning architectures to provide hierarchical understanding of the documents.

Comparison Text Classification Algorithms

Model Advantages Disadvantages

Rocchio
Algorithm

Easy to implement
Computationally is very cheap
Relevance feedback mechanism (benefits to
ranking documents as not relevant)

The user can only retrieve a few relevant
documents
Rocchio often misclassifies the type for
multimodal class
This techniques is not very robust
linear combination in this algorithm is not good
for multi-class datasets

Boosting and
Bagging

Improves the stability and accuracy (takes the
advantage of ensemble learning where in multiple
weak learner outperform a single strong learner.)
Reducing variance which helps to avoid
overfitting problems.

Computational complexity
loss of interpretability (if the number of models
is hight, understanding the model is very
difficult)
Requires careful tuning of different hyper-
parameters.

Logistic
Regression

Easy to implement
does not require too many computational
resources
it does not require input features to be scaled
(pre-processing)
It does not require any tuning

it cannot solve non-linear problems
prediction requires that each data point be
independent
attempting to predict outcomes based on a set
of independent variables

Naive Bayes
Classifier

It works very well with text data
Easy to implement
Fast in comparing to other algorithms

A strong assumption about the shape of the
data distribution
limited by data scarcity for which any possible
value in feature space, a likelihood value must
be estimated by a frequentist

K-Nearest
Neighbor

Effective for text datasets
non-parametric
More local characteristics of text or document are
considered
Naturally handles multi-class datasets

computational of this model is very expensive
diffcult to find optimal value of k
Constraint for large search problem to find
nearest neighbors
Finding a meaningful distance function is
difficult for text datasets

Support Vector
Machine (SVM)

SVM can model non-linear decision boundaries
Performs similarly to logistic regression when
linear separation
Robust against overfitting problems~(especially
for text dataset due to high-dimensional space)

lack of transparency in results caused by a
high number of dimensions (especially for text
data).
Choosing an efficient kernel function is difficult
(Susceptible to overfitting/training issues
depending on kernel)
Memory complexity

Decision Tree Can easily handle qualitative (categorical)
features
Works well with decision boundaries parellel to
the feature axis
Decision tree is a very fast algorithm for both
learning and prediction

Issues with diagonal decision boundaries
Can be easily overfit
extremely sensitive to small perturbations in
the data
Problems with out-of-sample prediction

Conditional
Random Field
(CRF)

Its feature design is flexible
Since CRF computes the conditional probability
of global optimal output nodes, it overcomes the
drawbacks of label bias
Combining the advantages of classification and
graphical modeling which combining the ability
to compactly model multivariate data

High computational complexity of the training
step
this algorithm does not perform with unknown
words
Problem about online learning (It makes it very
difficult to re-train the model when newer data
becomes available.)

Random Forest Ensembles of decision trees are very fast to train
in comparison to other techniques
Reduced variance (relative to regular trees)
Not require preparation and pre-processing of the
input data

Quite slow to create predictions once trained
more trees in forest increases time complexity
in the prediction step
Not as easy to visually interpret
Overfitting can easily occur
Need to choose the number of trees at forest

Deep Learning Flexible with features design (Reduces the need
for feature engineering, one of the most time-
consuming parts of machine learning practice.)
Architecture that can be adapted to new
problems
Can deal with complex input-output mappings
Can easily handle online learning (It makes it very
easy to re-train the model when newer data
becomes available.)
Parallel processing capability (It can perform
more than one job at the same time)

Requires a large amount of data (if you only
have small sample text data, deep learning is
unlikely to outperform other approaches.
Is extremely computationally expensive to
train.
Model Interpretability is most important
problem of deep learning~(Deep learning in
most of the time is black-box)
Finding an efficient architecture and structure
is still the main challenge of this technique

Evaluation

F1 Score

Matthew correlation coefficient (MCC)

Compute the Matthews correlation coefficient (MCC)

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class)

classification problems. It takes into account of true and false positives and negatives and is generally regarded as a

balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation

coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction

and -1 an inverse prediction. The statistic is also known as the phi coefficient.

from sklearn.metrics import matthews_corrcoef

y_true = [+1, +1, +1, -1]

y_pred = [+1, -1, +1, +1]

matthews_corrcoef(y_true, y_pred)

Receiver operating characteristics (ROC)

ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC curve and

ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC curve can be drawn

per label, but one can also draw a ROC curve by considering each element of the label indicator matrix as a binary

prediction (micro-averaging).

Another evaluation measure for multi-class classification is macro-averaging, which gives equal weight to the

classification of each label. [sources]

import numpy as np

import matplotlib.pyplot as plt

from itertools import cycle

from sklearn import svm, datasets

from sklearn.metrics import roc_curve, auc

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import label_binarize

from sklearn.multiclass import OneVsRestClassifier

from scipy import interp

Import some data to play with

iris = datasets.load_iris()

X = iris.data

y = iris.target

Binarize the output

y = label_binarize(y, classes=[0, 1, 2])

n_classes = y.shape[1]

Add noisy features to make the problem harder

random_state = np.random.RandomState(0)

n_samples, n_features = X.shape

X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

shuffle and split training and test sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,

 random_state=0)

Learn to predict each class against the other

classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,

 random_state=random_state))

y_score = classifier.fit(X_train, y_train).decision_function(X_test)

Compute ROC curve and ROC area for each class

fpr = dict()

tpr = dict()

roc_auc = dict()

for i in range(n_classes):

 fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])

 roc_auc[i] = auc(fpr[i], tpr[i])

Compute micro-average ROC curve and ROC area

fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())

roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

Plot of a ROC curve for a specific class

plt.figure()

lw = 2

plt.plot(fpr[2], tpr[2], color='darkorange',

 lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2])

plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')

plt.xlim([0.0, 1.0])

plt.ylim([0.0, 1.05])

plt.xlabel('False Positive Rate')

plt.ylabel('True Positive Rate')

plt.title('Receiver operating characteristic example')

plt.legend(loc="lower right")

plt.show()

Area Under Curve (AUC)

Area under ROC curve (AUC) is a summary metric that measures the entire area underneath the ROC curve. AUC holds

helpful properties, such as increased sensitivity in the analysis of variance (ANOVA) tests, independence of decision

threshold, invariance to a priori class probability and the indication of how well negative and positive classes are regarding

decision index.

import numpy as np

from sklearn import metrics

fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)

metrics.auc(fpr, tpr)

Text and Document Datasets

IMDB

IMDB Dataset

Dataset of 25,000 movies reviews from IMDB, labeled by sentiment (positive/negative). Reviews have been

preprocessed, and each review is encoded as a sequence of word indexes (integers). For convenience, words are

indexed by overall frequency in the dataset, so that for instance the integer "3" encodes the 3rd most frequent word in the

data. This allows for quick filtering operations, such as "only consider the top 10,000 most common words, but eliminate

the top 20 most common words".

As a convention, "0" does not stand for a specific word, but instead is used to encode any unknown word.

from keras.datasets import imdb

(x_train, y_train), (x_test, y_test) = imdb.load_data(path="imdb.npz",

 num_words=None,

 skip_top=0,

 maxlen=None,

 seed=113,

 start_char=1,

 oov_char=2,

 index_from=3)

Reuters-21578

Reters-21578 Dataset

Dataset of 11,228 newswires from Reuters, labeled over 46 topics. As with the IMDB dataset, each wire is encoded as a

sequence of word indexes (same conventions).

from keras.datasets import reuters

(x_train, y_train), (x_test, y_test) = reuters.load_data(path="reuters.npz",

 num_words=None,

 skip_top=0,

 maxlen=None,

 test_split=0.2,

 seed=113,

 start_char=1,

 oov_char=2,

 index_from=3)

20Newsgroups

20Newsgroups Dataset

The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for training

(or development) and the other one for testing (or for performance evaluation). The split between the train and test set is

based upon messages posted before and after a specific date.

This module contains two loaders. The first one, sklearn.datasets.fetch_20newsgroups, returns a list of the raw texts that

can be fed to text feature extractors, such as sklearn.feature_extraction.text.CountVectorizer with custom parameters so

as to extract feature vectors. The second one, sklearn.datasets.fetch_20newsgroups_vectorized, returns ready-to-use

features, i.e., it is not necessary to use a feature extractor.

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')

from pprint import pprint

pprint(list(newsgroups_train.target_names))

['alt.atheism',

 'comp.graphics',

 'comp.os.ms-windows.misc',

 'comp.sys.ibm.pc.hardware',

 'comp.sys.mac.hardware',

 'comp.windows.x',

 'misc.forsale',

 'rec.autos',

 'rec.motorcycles',

 'rec.sport.baseball',

 'rec.sport.hockey',

 'sci.crypt',

 'sci.electronics',

 'sci.med',

 'sci.space',

 'soc.religion.christian',

 'talk.politics.guns',

 'talk.politics.mideast',

 'talk.politics.misc',

 'talk.religion.misc']

Web of Science Dataset

Description of Dataset:

Here are three datasets which include WOS-11967, WOS-46985, and WOS-5736 Each folder contains:

X.txt

Y.txt

YL1.txt

YL2.txt

X is input data that include text sequences Y is target value YL1 is the target value of level one (parent label) YL2 is the

target value of level one (child label)

Meta-data: This folder contains on data file as the following attribute: Y1 Y2 Y Domain area keywords Abstract

The abstract is input data that include text sequences of 46,985 published paper Y is target value YL1 is the target value

of level one (parent label) YL2 is the target value of level one (child label) Domain is the major domain which includes 7

labels: {Computer Science, Electrical Engineering, Psychology, Mechanical Engineering, Civil Engineering, Medical

Science, biochemistry} area is subdomain or area of the paper, such as CS-> computer graphics which contain 134

labels. keywords: is authors keyword of the papers

Web of Science Dataset WOS-11967

This dataset contains 11,967 documents with 35 categories which include 7 parents categories.

Web of Science Dataset WOS-46985

This dataset contains 46,985 documents with 134 categories which include 7 parents categories.

Web of Science Dataset WOS-5736

This dataset contains 5,736 documents with 11 categories which include 3 parents categories.

 Referenced paper: HDLTex: Hierarchical Deep Learning for Text Classification

Retrieved from https://encyclopedia.pub/entry/history/show/2038

