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In recent years, there has been an exponential growth in the number of complex documents and texts that require
a deeper understanding of machine learning methods to be able to accurately classify texts in many applications.
Many machine learning approaches have achieved surpassing results in natural language processing. The
success of these learning algorithms relies on their capacity to understand complex models and non-linear
relationships within data. However, finding suitable structures, architectures, and techniques for text classification is
a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This
overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and
techniques, and evaluation methods. Finally, the limitations of each technique and its application in real-world

problems are discussed.
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Text and Document Feature Extraction

Text feature extraction and pre-processing for classification algorithms are very significant. In this section, we start
to talk about text cleaning since most of the documents contain a lot of noise. In this part, we discuss two primary

methods of text feature extractions- word embedding and weighted word.

Text Cleaning and Pre-processing

In Natural Language Processing (NLP), most of the text and documents contain many words that are redundant for
text classification, such as stopwords, miss-spellings, slangs, and etc. In this section, we briefly explain some

technigues and methods for text cleaning and pre-processing text documents. In many algorithms like statistical
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and probabilistic learning methods, noise and unnecessary features can negatively affect the overall performance.
So, elimination of these features is extremely important.

Tokenization

Tokenization is the process of breaking down a stream of text into words, phrases, symbols, or any other
meaningful elements called tokens. The main goal of this step is to extract individual words in a sentence. Along
with text classification, in text mining, it is necessary to incorporate a parser in the pipeline which performs the
tokenization of the documents; for example:

sentence:

After sleeping for four hours, he decided to sleep for another four

In this case, the tokens are as follows:

{'After', 'sleeping', 'for', 'four', ‘'hours', 'he', 'decided', 'to', 'sleep',
'for', 'another', 'four'}

Here is python code for Tokenization:

from nltk.tokenize import word_tokenize
text = "After sleeping for four hours, he decided to sleep for another four"
tokens = word_tokenize(text)

print(tokens)

Stop words

Text and document classification over social media, such as Twitter, Facebook, and so on is usually affected by the
noisy nature (abbreviations, irregular forms) of the text corpora.

Here is an example from geeksforgeeks

from nltk.corpus import stopwords

from nltk.tokenize import word_tokenize

example_sent = "This is a sample sentence, showing off the stop words filtration."

stop_words = set(stopwords.words('english'))

word_tokens = word_tokenize(example_sent)
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filtered_sentence =

filtered_sentence

[]

for w in word_tokens:

if w not in stop_words:

print(word_tokens)

print(filtered_sentence)

Output:
['This', 'is', 'a', 'sample',
'off', 'the', 'stop', 'words',
['This', 'sample', 'sentence',
'words', 'filtration', '.']

Capitalization

[w for w in word_tokens if not w in stop_words]

filtered_sentence.append(w)

'sentence', ',', 'showing',
'filtration', '.']
",'", 'showing', 'stop',

Sentences can contain a mixture of uppercase and lower case letters. Multiple sentences make up a text

document. To reduce the problem space, the most common approach is to reduce everything to lower case. This

brings all words in a document in the same space, but it often changes the meaning of some words, such as "US"

to "us" where the first one represents the United States of America and the second one is a pronoun. To solve this,

slang and abbreviation converters can be applied.

text =
composed of 50 states"
print(text)
print(text.lower())

Output:

50 states"

50 states"

Slangs and Abbreviations

"The United States of America (USA) or America,

"The United States of America (USA) or America,

"the united states of america (usa) or america,

is a federal republic

is a federal republic composed of

is a federal republic composed of
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Slangs and abbreviations can cause problems while executing pre-processing steps. An abbreviation is a
shortened form of a word, such as SVM stand for Support Vector Machine. Slang is a version of the language that
depicts informal conversation or text that has a different meaning, such as "lost the plot", it essentially means that

'they've gone mad'. The common method to deal with these words is converting them to formal language.

Noise Removal

Another issue of text cleaning as a pre-processing step is noise removal. Text documents generally contain
characters like punctuations or special characters and they are not necessary for text mining or classification
purposes. Although punctuation is critical to understand the meaning of the sentence, it can affect the classification

algorithms negatively.

Here is simple code to remove standard noise from the text:

def text_cleaner(text):
rules = [
{r'>\s+': u'>'}, # remove spaces after a tag opens or closes
{r'\s+': u' '}, # replace consecutive spaces
{r'\s*<br\s*/?>\s*': u'\n'}, # newline after a <br>
{r'</(div)\s*>\s*': u'\n'}, # newline after </p> and </div> and <hi1/>.

{r'</(p|h\d)\s*>\s*': u'\n\n'}, # newline after </p> and </div> and

<h1/>.
{r'<head>.*<\s*(/head|body)[A>]*>': u''}, # remove <head> to </head>
{r'<a\s+href="([A"]+)"[A>]*>."</a>": r'\1'}, # show links instead of
texts
{r'[ \t]*<[A<]*?/?>": u''}, # remove remaining tags
{r'M\s+': u''} # remove spaces at the beginning
]

for rule in rules:

for (k, v) in rule.items():
regex = re.compile(k)
text = regex.sub(v, text)

text = text.rstrip()

return text.lower ()

Spelling_Correction

An optional part of the pre-processing step is correcting the misspelled words. Different techniques, such as
hashing-based and context-sensitive spelling correction techniques, or spelling correction using trie and damerau-

levenshtein distance bigram have been introduced to tackle this issue.
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from autocorrect import spell

print spell('caaaar')
print spell(u'mussage')
print spell(u'survice')

print spell(u'hte')

Result;

caesar
message
service
the

Stemming
Text Stemming is modifying a word to obtain its variants using different linguistic processes like affixation (addition

of affixes). For example, the stem of the word "studying" is "study"”, to which -ing.

Here is an example of Stemming from NLTK

from nltk.stem import PorterStemmer

from nltk.tokenize import sent_tokenize, word_tokenize

ps = PorterStemmer ()

example_words = ["python", "pythoner", "pythoning", "pythoned", "pythonly"]

for w in example_words:

print(ps.stem(w))

Result:

python
python
python
python
pythonli
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Lemmatization
Text lemmatization is the process of eliminating redundant prefix or suffix of a word and extract the base word

(lemma).

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer ()

print(lemmatizer.lemmatize("cats"))

Word Embedding

Different word embedding procedures have been proposed to translate these unigrams into consumable input for
machine learning algorithms. A very simple way to perform such embedding is term-frequency (TF) where each
word will be mapped to a number corresponding to the number of occurrence of that word in the whole corpora.
The other term frequency functions have been also used that represent word-frequency as a Boolean or
logarithmically scaled number. Here, each document will be converted to a vector of the same length containing the
frequency of the words in that document. Although such an approach may seem very intuitive. It suffers from the
fact that particular words that are used very commonly in language literature might dominate this sort of word

representations.

Input Projection Output Input Projection Output

W(t-2) W(t-2)

W(t-1) ‘ W(t-1)
|W(t) W(t)

W(t+1) ‘ W(tr1)

W(t+2) W(t+2)

CBOW Skip-gram

Word2Vec

Original from https://code.google.com/p/word2vec/
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I've copied it to a github project so that | can apply and track community patches (starting with capability for Mac

OS X compilation).

 makefile and some source has been modified for Mac (0133 X

compilation See https://code.google.com/p/word2vec/issues/detail?id=1#c5

 memory patch for word2vec has been applied See https://code.google.com/p/word2vec/issues/detail?id=2

» Project file layout altered

There seems to be a segfault in the compute-accuracy utility.

To get started:

cd scripts && ./demo-word.sh

Original README text follows:

This tool provides an efficient implementation of the continuous bag-of-words and skip-gram architectures for
computing vector representations of words. These representations can be subsequently used in many natural

language processing applications and for further research purposes.

this code provides an implementation of the Continuous Bag-of-Words (CBOW) and the Skip-gram model (SG), as

well as several demo scripts.

Given a text corpus, the word2vec tool learns a vector for every word in the vocabulary using the Continuous Bag-
of-Words or the Skip-Gram neural network architectures. The user should specify the following: - desired vector
dimensionality (size of the context window for either the Skip-Gram or the Continuous Bag-of-Words model),
training algorithm (hierarchical softmax and/or negative sampling), the threshold for downsampling the frequent

words, number of threads to use, the format of the output word vector file (text or binary).

Usually, other hyper-parameters, such as the learning rate do not need to be tuned for different training sets.

The script demo-word.sh downloads a small (100MB) text corpus from the web and trains a small word vector

model. After the training is finished, users can interactively explore the similarity of the words.

More information about the scripts is provided at https://code.google.com/p/word2vec/

Global Vectors for Word Representation (GloVe)
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An implementation of the GloVe model for learning word representations is provided, and describe how to
download web-dataset vectors or train your own. See the project page or the paper for more information on glove

vectors.

Contextualized Word Representations

ELMo is a deep contextualized word representation that models both (1) complex characteristics of word use (e.g.,

syntax and semantics), and (2) how these uses vary across linguistic contexts (i.e., to model polysemy). These
word vectors are learned functions of the internal states of a deep bidirectional language model (biLM), which is
pre-trained on a large text corpus. They can be easily added to existing models and significantly improve the state
of the art across a broad range of challenging NLP problems, including question answering, textual entailment, and

sentiment analysis.
ELMo representations are:

» Contextual: The representation for each word depends on the entire context in which it is used.

» Deep: The word representations combine all layers of a deep pre-trained neural network.

o Character based: ELMo representations are purely character based, allowing the network to use
morphological clues to form robust representations for out-of-vocabulary tokens unseen in training.

Tensorflow implementation

Tensorflow implementation of the pre-trained biLM used to compute ELMo representations from "Deep

contextualized word representations”.
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This repository supports both training biLMs and using pre-trained models for prediction.

We also have a pytorch implementation available in AllenNLP.

You may also find it easier to use the version provided in Tensorflow Hub if you just like to make predictions.

pre-trained models:

We have got several pre-trained English language biLMs available for use. Each model is specified with two
separate files, a JSON formatted "options" file with hyperparameters and a hdf5 formatted file with the model

weights. Links to the pre-trained models are available here.

There are three ways to integrate ELMo representations into a downstream task, depending on your use case.

1. Compute representations on the fly from raw text using character input. This is the most general method and
will handle any input text. It is also the most computationally expensive.

2. Precompute and cache the context-independent token representations, then compute context dependent
representations using the biLSTMs for input data. This method is less computationally expensive then #1, but is
only applicable with a fixed, prescribed vocabulary.

3. Precompute the representations for your entire dataset and save to a file.

We have used all of these methods in the past for various use cases. #1 is necessary for evaluating at test time on
unseen data (e.g. public SQUAD leaderboard). #2 is a good compromise for large datasets where the size of the
file in is unfeasible (SNLI, SQUAD). #3 is a good choice for smaller datasets or in cases where you'd like to use

ELMo in other frameworks.

In all cases, the process roughly follows the same steps. First, create a Batcher (or TokenBatcher for #2) to
translate tokenized strings to NumPy arrays of character (or token) ids. Then, load the pre-trained ELMo model
(class BidirectionallLanguageModel). Finally, for steps #1 and #2 use weight_layers to compute the final

ELMo representations. For #3, use BidirectionallLanguageModel to write all the intermediate layers to a file.
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Architecture of the language model applied to an example sentence [Reference: arXiv paper].
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Source Nearest Neighbors

playing, game, games, played, players, plays,
GloVe play
player, Play, football, multiplayer

Chico Ruiz made a

Kieffer , the only junior in the group , was
spectacular play

commended for his ability to hit in the clutch,
on Alusik 's

as well as his all-round excellent play .
grounder {...}

biLM
Olivia De Havilland {...} they were actors who had been handed
signedtodo a fat roles in a successful play , and had talent
Broadway play for  enough to fill the roles competently , with nice
Garson {...} understatement .
Nearest neighbors to “play” using GloVe and the context embeddings from a biLM.
FastText

fastText

fastText is a library for efficient learning of word representations and sentence classification.

Github: facebookresearch/fastText

Models

o Recent state-of-the-art English word vectors.

» Word vectors for 157 languages trained on Wikipedia and Crawl.

» Models for language identification and various supervised tasks.

Supplementary data :

e The preprocessed YFCC100M data .
FAQ

You can find answers to frequently asked questions on Their project website.

Cheatsheet

Also a cheatsheet is provided full of useful one-liners.
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Weighted Words

Term frequency
Term frequency is Bag of words that is one of the simplest techniques of text feature extraction. This method is

based on counting the number of the words in each document and assigns it to feature space.

Term Frequency-Inverse Document Frequency

The mathematical representation of the weight of a term in a document by Tf-idf is given:

N
df (t)

Where N is number of documents and df(t) is the number of documents containing the term t in the corpus. The

W(d.t) = TF(d,t)*log(——)

first part would improve recall and the later would improve the precision of the word embedding. Although tf-idf tries
to overcome the problem of common terms in document, it still suffers from some other descriptive limitations.
Namely, tf-idf cannot account for the similarity between words in the document since each word is presented as an
index. In the recent years, with development of more complex models, such as neural nets, new methods has been
presented that can incorporate concepts, such as similarity of words and part of speech tagging. This work uses,
word2vec and Glove, two of the most common methods that have been successfully used for deep learning

techniques.

from sklearn.feature_extraction.text import TfidfVectorizer
def loadData(X_train, X_test, MAX_NB_WORDS=75000):
vectorizer_x = TfidfVectorizer(max_features=MAX_NB_WORDS)
X_train = vectorizer_x.fit_transform(X_train).toarray()
X_test = vectorizer_x.transform(X_test).toarray()
print("tf-idf with",str(np.array(X_train).shape[1]), "features")

return (X_train, X_test)

Comparison of Feature Extraction Techniques

Model Advantages Limitation
Weighted Words » Easy to compute |t does not capture the position in
» Easy to compute the similarity between 2 the text (syntactic)
documents using it It does not capture meaning in the
« Basic metric to extract the most text (semantics)
descriptive terms in a document « Common words effect on the
» Works with an unknown word (e.g., New results (e.g., “am”, “is”, etc.)

words in languages)

TF-IDF « Easy to compute « It does not capture the position in
the text (syntactic)
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Word2Vec

GloVe (Pre-Trained)

GloVe (Trained)

FastText

Contextualized
Word
Representations

Easy to compute the similarity between 2
documents using it

Basic metric to extract the most
descriptive terms in a document
Common words do not affect the results
due to IDF (e.g., “am”, “is”, etc.)

It captures the position of the words in
the text (syntactic)

It captures meaning in the words
(semantics)

It captures the position of the words in
the text (syntactic)

It captures meaning in the words
(semantics)

Trained on huge corpus

It is very straightforward, e.g., to enforce
the word vectors to capture sub-linear
relationships in the vector space
(performs better than Word2vec)

Lower weight for highly frequent word

pairs, such as stop words like “am”, “is”,
etc. Will not dominate training progress

Works for rare words (rare in their
character n-grams which are still shared
with other words

Solves out of vocabulary words with n-
gram in character level

It captures the meaning of the word from
the text (incorporates context, handling

polysemy)

Dimensionality Reduction

It does not capture meaning in the
text (semantics)

It cannot capture the meaning of
the word from the text (fails to
capture polysemy)

It cannot capture out-of-vocabulary
words from corpus

It cannot capture the meaning of
the word from the text (fails to
capture polysemy)

Memory consumption for storage

It cannot capture out-of-vocabulary
words from corpus

Memory consumption for storage
Needs huge corpus to learn

It cannot capture out-of-vocabulary
words from the corpus

It cannot capture the meaning of
the word from the text (fails to
capture polysemy)

It cannot capture the meaning of
the word from the text (fails to
capture polysemy)

Memory consumption for storage
Computationally is more expensive
in comparing with GloVe and
Word2Vec

Memory consumption for storage
Improves performance notably on
downstream tasks.
Computationally is more expensive
in comparison to others

Needs another word embedding
for all LSTM and feedforward
layers

It cannot capture out-of-vocabulary
words from a corpus

Works only sentence and
document level (it cannot work for
individual word level)
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Principal Component Analysis (PCA)

Principle component analysis~(PCA) is the most popular technique in multivariate analysis and dimensionality
reduction. PCA is a method to identify a subspace in which the data approximately lies. This means finding new

variables that are uncorrelated and maximizing the variance to preserve as much variability as possible.

Example of PCA on text dataset (20newsgroups) from tf-idf with 75000 features to 2000 components:

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

def TFIDF(X_train, X_test, MAX_NB_WORDS=75000):
vectorizer_x = TfidfVectorizer(max_features=MAX_NB_WORDS)
X_train = vectorizer_x.fit_transform(X_train).toarray()
X_test = vectorizer_x.transform(X_test).toarray()
print("tf-idf with", str(np.array(X_train).shape[1]), "features")

return (X_train, X_test)

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset="test"')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train,X_test = TFIDF(X_train, X_test)

from sklearn.decomposition import PCA
pca = PCA(n_components=2000)
X_train_new = pca.fit_transform(X_train)

X_test_new = pca.transform(X_test)

print("train with old features: ",np.array(X_train).shape)

print("train with new features:" ,np.array(X_train_new).shape)
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print("test with old features: ",np.array(X_test).shape)
print("test with new features:" ,np.array(X_test_new).shape)
output:

tf-idf with 75000 features

train with old features: (11314, 75000)
train with new features: (11314, 2000)
test with old features: (7532, 75000)
test with new features: (7532, 2000)

Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) is another commonly used technique for data classification and dimensionality
reduction. LDA is particularly helpful where the within-class frequencies are unequal and their performances have
been evaluated on randomly generated test data. Class-dependent and class-independent transformation are two
approaches in LDA where the ratio of between-class-variance to within-class-variance and the ratio of the overall-

variance to within-class-variance are used respectively.

from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

def TFIDF(X_train, X_test, MAX_NB_WORDS=75000):
vectorizer_x = TfidfVectorizer(max_features=MAX_NB_WORDS)
X_train = vectorizer_x.fit_transform(X_train).toarray()
X_test = vectorizer_x.transform(X_test).toarray()
print("tf-idf with", str(np.array(X_train).shape[1]), "features")
return (X_train, X_test)

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target
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y_test = newsgroups_test.target

X_train,X_test = TFIDF(X_train, X_test)

LDA = LinearDiscriminantAnalysis(n_components=15)

LDA.fit(X_train,y_train)
LDA.transform(X_train)

X_test_new = LDA.transform(X_test)

X_train_new

X_train_new

print("train with old features: ",np.array(X_train).shape)

print("train with new features:" ,np.array(X_train_new).shape)

print("test with old features: ",np.array(X_test).shape)

print("test with new features:" ,np.array(X_test_new).shape)

output:

tf-idf with 75000 features

train with old features: (11314, 75000)
train with new features: (11314, 15)
test with old features: (7532, 75000)
test with new features: (7532, 15)

Non-negative Matrix Factorization (NMF)

from sklearn.feature_extraction.text import TfidfVectorizer
import numpy as np

from sklearn.decomposition import NMF

def TFIDF(X_train, X_test, MAX_NB_WORDS=75000):
vectorizer_x = TfidfVectorizer (max_features=MAX_NB_WORDS)
X_train = vectorizer_x.fit_transform(X_train).toarray()
X_test = vectorizer_x.transform(X_test).toarray()
print("tf-idf with", str(np.array(X_train).shape[1]), "features")
return (X_train, X_test)
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from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train,X_test = TFIDF(X_train, X_test)

NMF_ = NMF(n_components=2000)
NMF_.fit(X_train)
NMF_.transform(X_train)

X_train_new

X_train_new
X_test_new = NMF_.transform(X_test)

print("train with old features: ",np.array(X_train).shape)

print("train with new features:" ,np.array(X_train_new).shape)

print("test with old features: ",np.array(X_test).shape)

print("test with new features:" ,np.array(X_test_new))

output:

tf-idf with 75000 features

train with old features: (11314, 75000)
train with new features: (11314, 2000)
test with old features: (7532, 75000)
test with new features: (7532, 2000)

Random Projection

Random projection or random feature is a dimensionality reduction technique mostly used for very large volume
dataset or very high dimensional feature space. Text and document, especially with weighted feature extraction,

can contain a huge number of underlying features. Many researchers addressed Random Projection for text data
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for text mining, text classification and/or dimensionality reduction. We start to review some random projection
techniques.

i

cos(wT x) + { sinfu’ x)

— W

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

def TFIDF(X_train, X_test, MAX_NB_WORDS=75000):
vectorizer_x = TfidfVectorizer (max_features=MAX_NB_WORDS)
X_train = vectorizer_x.fit_transform(X_train).toarray()
X_test = vectorizer_x.transform(X_test).toarray()
print("tf-idf with", str(np.array(X_train).shape[1]), "features")

return (X_train, X_test)

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset='train')
newsgroups_test = fetch_20newsgroups(subset="test")
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train,X_test = TFIDF(X_train,X_test)

from sklearn import random_projection
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RandomProjection = random_projection.GaussianRandomProjection(n_components=2000)
X_train_new = RandomProjection.fit_transform(X_train)

X_test_new = RandomProjection.transform(X_test)

print("train with old features: ",np.array(X_train).shape)

print("train with new features:" ,np.array(X_train_new).shape)

print("test with old features: ",np.array(X_test).shape)

print("test with new features:" ,np.array(X_test_new).shape)

output:

tf-idf with 75000 features

train with old features: (11314, 75000)
train with new features: (11314, 2000)
test with old features: (7532, 75000)
test with new features: (7532, 2000)

Autoencoder

Autoencoder is a neural network technique that is trained to attempt to map its input to its output. The autoencoder
as dimensional reduction methods have achieved great success via the powerful reprehensibility of neural
networks. The main idea is, one hidden layer between the input and output layers with fewer neurons can be used
to reduce the dimension of feature space. Specially for texts, documents, and sequences that contains many

features, autoencoder could help to process data faster and more efficiently.
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Decoder

N —

Encoder

from keras.layers import Input, Dense

from keras.models import Model

# this is the size of our encoded representations

encoding_dim = 1500

# this is our input placeholder

input = Input(shape=(n,))

# "encoded" is the encoded representation of the input
encoded = Dense(encoding_dim, activation='relu')(input)

# "decoded" is the lossy reconstruction of the input
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decoded = Dense(n, activation='sigmoid')(encoded)

# this model maps an input to its reconstruction

autoencoder = Model(input, decoded)

# this model maps an input to its encoded representation

encoder = Model(input, encoded)

encoded_input = Input(shape=(encoding_dim,))

# retrieve the last layer of the autoencoder model
decoder_layer = autoencoder.layers[-1]

# create the decoder model

decoder = Model(encoded_input, decoder_layer(encoded_input))

autoencoder.compile(optimizer="adadelta', loss='binary_crossentropy')

Load data:

autoencoder.fit(x_train, x_train,
epochs=50,
batch_size=256,
shuffle=True,

validation_data=(x_test, x_test))

T-distributed Stochastic Neighbor Embedding (T-SNE)

T-distributed Stochastic Neighbor Embedding (T-SNE) is a nonlinear dimensionality reduction technique for

embedding high-dimensional data which is mostly used for visualization in a low-dimensional space. This approach

is based on G. Hinton and ST. Roweis . SNE works by converting the high dimensional Euclidean distances into

conditional probabilities which represent similarities.

Example:

import numpy as np

from sklearn.manifold import TSNE

X = np.array([[0, 06, 0], [0, 1, 1], [1, O, 1], [, 1, 111)
X_embedded = TSNE(n_components=2).fit_transform(X)
X_embedded. shape
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Example of Glove and T-SNE for text:

Woman
Aunt
Man ‘Queen
Uncle - .
Niece

King
Nephew -~

Text Classification Techniques

Rocchio classification

The first version of Rocchio algorithm is introduced by rocchio in 1971 to use relevance feedback in querying full-

text databases. Since then many researchers have addressed and developed this technique for text and document

classification. This method uses TF-IDF weights for each informative word instead of a set of Boolean features.

Using a training set of documents, Rocchio's algorithm builds a prototype vector for each class which is an average

vector over all training document vectors that belongs to a certain class. Then, it will assign each test document to

a class with maximum similarity that between test document and each of the prototype vectors.

When in nearest centroid classifier, we used for text as input data for classification with tf-idf vectors, this classifier

is known as the Rocchio classifier.

from
from
from
from
from

from

sklearn.

sklearn.

sklearn

sklearn.
sklearn.

sklearn.

neighbors.nearest_centroid import NearestCentroid
pipeline import Pipeline

import metrics

feature_extraction.text import CountVectorizer
feature_extraction.text import TfidfTransformer

datasets import fetch_20newsgroups

https://encyclopedia.pub/entry/957 23/81



Text Classification Algorithms: A Survey | Encyclopedia.pub

1)

Output:

precision

.75
.44
.75
.71
.81
.83
.49
.86
.91
.85
.95
.94
.40
.84
.89
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X_test = newsgroups_test.data

recall fi1-score
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X_train = newsgroups_train.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

newsgroups_train = fetch_20newsgroups(subset="train")

newsgroups_test = fetch_20newsgroups(subset="test')

text_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf',

NearestCentroid()),

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

.49
.76
.68
.59
.71
.66
.88
.76
.86
.79
.80
.66
.70
.49
.72
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print(metrics.classification_report(y_test,

.60
.56
.71
.65
.76
.74
.63
.80
.89
.82
.87
.78
.51
.62
.80

predicted))

support

319
389
394
392
385
395
390
396
398
397
399
396
393
396
394
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15 0.55 0.73 0.63 398
16 0.68 0.76 0.71 364
17 0.97 0.70 0.81 376
18 0.54 0.53 0.53 310
19 0.58 0.39 0.47 251
avg / total 0.74 0.69 0.70 7532
Boosting and Bagging
Boosting
Dataset Error
o ° o%,° o Train Test |o ® .\'\: Train Test
e % oo .. . ..
b ° ’ ] '
e o0 [ ]
) o. ° $ o: L
o0 e LY
®ee® % ® o0 %

Boosting is a Ensemble learning meta-algorithm for primarily reducing variance in supervised learning. It is

basically a family of machine learning algorithms that convert weak learners to strong ones. Boosting is based on

the question posed by Michael Kearns and Leslie Valiant (1988, 1989) Can a set of weak learners create a single

strong learner? A weak learner is defined to be a Classification that is only slightly correlated with the true

classification (it can label examples better than random guessing). In contrast, a strong learner is a classifier that is

arbitrarily well-correlated with the true classification.

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="'train")
newsgroups_test = fetch_20newsgroups(subset="test"')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

text_clf = Pipeline([('vect', CountVectorizer()),
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predicted =

Output:
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avg / total

Bagging

('tfidf', TfidfTransformer()),

('clf', GradientBoostingClassifier(n_estimators=100)),

1)

precision

0.
.69
.70
.64
.79
.83
.81
.84
.90
.90
.93
.90
.33
.87
.87
.85
.65
.96
.70
.62
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81

.78

text_clf.fit(X_train, y_train)

recall

0.
.70
.68
.72
.79
.64
.84
.75
.86
.85
.86
.81
.69
.72
.84
.87
.78
.74
.55
.56
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66

.75

text_clf.predict(X_test)

print(metrics.classification_report(y_test,

fl-score

0.
.69
.69
.68
.79
.72
.82
.79
.88
.88
.90
.85
.45
.79
.85
.86
.71
.84
.62
.59
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73

.76

predicted))

support
319
389
394
392
385
395
390
396
398
397
399
396
393
396
394
398
364
376
310
251

7532
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from sklearn.ensemble import BaggingClassifier

from sklearn.neighbors import KNeighborsClassifier

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="'train')
newsgroups_test = fetch_20newsgroups(subset="test")
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target
text_clf = Pipeline([('vect', CountVectorizer()),

('tfidf', TfidfTransformer()),
('clf', BaggingClassifier(KNeighborsClassifier())),

1

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))
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Output:
precision recall f1-score support
(0] 0.57 0.74 0.65 319
1 0.60 0.56 0.58 389
2 0.62 0.54 0.58 394
3 0.54 0.57 0.55 392
4 0.63 0.54 0.58 385
5 0.68 0.62 0.65 395
6 0.55 0.46 0.50 390
7 0.77 0.67 0.72 396
8 0.79 0.82 0.80 398
9 0.74 Q.77 0.76 397
10 0.81 0.86 0.83 399
11 0.74 0.85 0.79 396
12 0.67 0.49 0.57 393
13 0.78 0.51 0.62 396
14 0.76 0.78 0.77 394
15 0.71 0.81 0.76 398
16 0.73 0.73 0.73 364
17 0.64 0.79 0.71 376
18 0.45 0.69 0.54 310
19 0.61 0.54 0.57 251
avg / total 0.67 0.67 0.67 7532

Naive Bayes Classifier

Naive Bayes text classification has been used in industry and academia for a long time (introduced by Thomas
Bayes between 1701-1761). However, this technique is being studied since the 1950s for text and document
categorization. Naive Bayes Classifier (NBC) is generative model which is widely used in Information Retrieval.
Many researchers addressed and developed this technique for their applications. We start with the most basic
version of NBC which developed by using term-frequency (Bag of Word) fetaure extraction technique by counting

number of words in documents

from sklearn.naive_bayes import MultinomialNB
from sklearn.pipeline import Pipeline
from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer
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1

Output:

precision

.80
.81
.82
.67
.86
.89
.93
.85
.94
.92
.89
.59
.84
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X_test = newsgroups_test.data

text_clf.fit(X_train, y_train)

recall fi1-score
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X_train = newsgroups_train.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

predicted = text_clf.predict(X_test)

.52
.65
.65
.78
77
.75
.69
.92
.93
.90
.97
.97
.60

©O © 06 O & ©6 O & 6 O & o o

print(metrics.classification_report(y_test,

.63
.72
.73
.72
.81
.82
.80
.88
.93
.91
.93
.74
.70

from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="train")

newsgroups_test = fetch_20newsgroups(subset="test')

text_clf = Pipeline([('vect', CountVectorizer()),
('tfidf', TfidfTransformer()),
('clf', MultinomialNB()),

predicted))

support

319
389
394
392
385
395
390
396
398
397
399
396
393
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13 0.92 0.74 0.82 396
14 0.84 0.89 0.87 394
15 0.44 0.98 0.61 398
16 0.64 0.94 0.76 364
17 0.93 0.91 0.92 376
18 0.96 0.42 0.58 310
19 0.97 0.14 0.24 251
avg / total 0.82 0.77 0.77 7532

K-nearest Neighbor

R In machine learning, the k-nearest neighbors algorithm (kNN) is a non-parametric technique used for
classification. This method is used in Natural-language processing (NLP) as a text classification technique in many

researches in the past decades.

AClass 1 & Class 2 ® Class 3
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from sklearn.neighbors import KNeighborsClassifier

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="'train'")
newsgroups_test = fetch_20newsgroups(subset="test')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target
text_clf = Pipeline([('vect', CountVectorizer()),

('tfidf', TfidfTransformer()),
('clf', KNeighborsClassifier()),

1)

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

Output:

precision recall f1l-score support
(0] 0.43 0.76 0.55 319
1 0.50 0.61 0.55 389
2 0.56 0.57 0.57 394
3 0.53 0.58 0.56 392
4 0.59 0.56 0.57 385
5 0.69 0.60 0.64 395
6 0.58 0.45 0.51 390
7 0.75 0.69 0.72 396
8 0.84 0.81 0.82 398
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9 Q.77 0.72 0.74 397
10 0.85 0.84 0.84 399
11 0.76 0.84 0.80 396
12 0.70 0.50 0.58 393
13 0.82 0.49 0.62 396
14 0.79 0.76 0.78 394
15 0.75 0.76 0.76 398
16 0.70 0.73 0.72 364
17 0.62 0.76 0.69 376
18 0.55 0.61 0.58 310
19 0.56 0.49 0.52 251

avg / total 0.67 0.66 0.66 7532

Support Vector Machine (SVM)

The original version of SVM was introduced by Vapnik and Chervonenkis in 1963. The early 1990s, nonlinear
version was addressed by BE. Boser et al. Original version of SVM was designed for binary classification problem,

but Many researchers have worked on multi-class problem using this authoritative technique.

The advantages of support vector machines are based on scikit-learn page:

» Effective in high dimensional spaces.

« Still effective in cases where number of dimensions is greater than the number of samples.

» Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient.

» Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided,
but it is also possible to specify custom kernels.

The disadvantages of support vector machines include:

 If the number of features is much greater than the number of samples, avoiding over-fitting via choosing kernel
functions and regularization term is crucial.
 SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-

validation (see Scores and probabilities, below).
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A) Linear Separation ) B) Non-linear Separation

from sklearn.svm import LinearSVC

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target
text_clf = Pipeline([('vect', CountVectorizer()),

('tfidf', TfidfTransformer()),
('clf', LinearsSvc()),

1

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))
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output:
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.82
.76
77
.71
.84
.87
.83
.92
.95
.92
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.93
.81
.90
.90
.84
.75
.97
.82
.75

.85
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.80
.80
.73
.76
.86
.76
.91
.91
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.95
.98
.94
.79
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.89
.62
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.81
.78
.75
.74
.85
.81
.87
.91
.95
.93
.97
.93
.80
.88
.92
.88
.82
.93
.71
.68

.85

support

319
389
394
392
385
395
390
396
398
397
399
396
393
396
394
398
364
376
310
251

7532

One of earlier classification algorithm for text and data mining is decision tree. Decision tree classifiers (DTC's) are

used successfully in many diverse areas of classification. The structure of this technique includes a hierarchical

decomposition of the data space (only train dataset). Decision tree as classification task was introduced by D.

Morgan and developed by JR. Quinlan. The main idea is creating trees based on the attributes of the data points,

but the challenge is determining which attribute should be in parent level and which one should be in child level. To

solve this problem, De Mantaras introduced statistical modeling for feature selection in tree.

from sklearn import tree
from sklearn.pipeline import Pipeline

from sklearn import metrics
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from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target
text_clf = Pipeline([('vect', CountVectorizer()),

('tfidf', TfidfTransformer()),

('clf', tree.DecisionTreeClassifier()),

1

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

output:

precision recall fil-score support
(0] 0.51 0.48 0.49 319
1 0.42 0.42 0.42 389
2 0.51 0.56 0.53 394
3 0.46 0.42 0.44 392
4 0.50 0.56 0.53 385
5 0.50 0.47 0.48 395
6 0.66 0.73 0.69 390
7 0.60 0.59 0.59 396
8 0.66 0.72 0.69 398
9 0.53 0.55 0.54 397
10 0.68 0.66 0.67 399
11 0.73 0.69 0.71 396
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12
13
14
15
16
17
18
19

avg / total

Random Forest

.34
.52
.65
.68
.49
.78
.38
.32
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.33
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.70
.55
.68
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393
396
394
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7532

Random forests or random decision forests technique is an ensemble learning method for text classification. This

method was introduced by T. Kam Ho in 1995 for first time which used t trees in parallel. This technique was later

developed by L. Breiman in 1999 that they found converged for RF as a margin measure.

Tree 1

Tree 2

X

ka

Voting for classification

'

.ﬁ-

Tres t
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from sklearn.ensemble import RandomForestClassifier

from sklearn.pipeline import Pipeline

from sklearn import metrics

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="'train'")
newsgroups_test = fetch_20newsgroups(subset="test"')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target
text_clf = Pipeline([('vect', CountVectorizer()),

('tfidf', TfidfTransformer()),

('clf', RandomForestClassifier(n_estimators=100)),

1)

text_clf.fit(X_train, y_train)

predicted = text_clf.predict(X_test)

print(metrics.classification_report(y_test, predicted))

output:

precision recall fil-score support
0] 0.69 0.63 0.66 319
1 0.56 0.69 0.62 389
2 0.67 0.78 0.72 394
3 0.67 0.67 0.67 392
4 0.71 0.78 0.74 385
5 0.78 0.68 0.73 395
6 0.74 0.92 0.82 390
7 0.81 0.79 0.80 396
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8 0.90 0.89 0.90 398
9 0.80 0.89 0.84 397
10 0.90 0.93 0.91 399
11 0.89 0.91 0.90 396
12 0.68 0.49 0.57 393
13 0.83 0.65 0.73 396
14 0.81 0.88 0.84 394
15 0.68 0.91 0.78 398
16 0.67 0.86 0.75 364
17 0.93 0.78 0.85 376
18 0.86 0.48 0.61 310
19 0.79 0.31 0.45 251
avg / total 0.77 0.76 0.75 7532

Conditional Random Field (CRF)

Conditional Random Field (CRF) is an undirected graphical model as shown in figure. CRFs state the conditional
probability of a label sequence Y give a sequence of observation X i.e. P(Y|X). CRFs can incorporate complex
features of observation sequence without violating the independence assumption by modeling the conditional
probability of the label sequences rather than the joint probability P(X,Y). The concept of cligue which is a fully
connected subgraph and cliqgue potential are used for computing P(X|Y). Considering one potential function for
each clique of the graph, the probability of a variable configuration corresponds to the product of a series of non-
negative potential function. The value computed by each potential function is equivalent to the probability of the

variables in its corresponding clique taken on a particular configuration.

Example from Here Let's use CoNLL 2002 data to build a NER system CoNLL2002 corpus is available in NLTK.
We use Spanish data.
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import nltk

import sklearn_crfsuite

from sklearn_crfsuite import metrics
nltk.corpus.conll2002.fileids()

train_sents = list(nltk.corpus.conll2002.iob_sents('esp.train'))

test_sents = list(nltk.corpus.conll2002.iob_sents('esp.testb'))

sklearn-crfsuite (and python-crfsuite) supports several feature formats; here we use feature dicts.

def word2features(sent, 1i):
word = sent[1i][0]
postag = sent[i][1]

features = {
'bias': 1.0,

'word[-3:]"': word[-3:],
'word[-2:]"': word[-2:],

'postag': postag,
'postag[:2]': postag[:2],

features['BOS'] = True

if i < len(sent)-1:

'word.lower()': word.lower(),

'word.isupper()': word.isupper(),
'word.istitle()': word.istitle(),

'word.isdigit()': word.isdigit(),

}
if i > 0:
wordl = sent[i-1][0]
postagl = sent[i-1][1]
features.update({
'-1:word.lower()': wordl.lower(),
'-1:word.istitle()': wordl.istitle(),
'-1:word.isupper()': wordl.isupper(),
'-1:postag': postagil,
'-1:postag[:2]': postagl[:2],
1)
else:
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wordl = sent[i+1][0]

postagl = sent[i+1][1]

features.update({
'+1:word.lower()': wordl.lower(),
'+1:word.istitle()': wordl.istitle(),
'"+1:word.isupper()': wordl.isupper(),
'+1:postag': postagl,
'+1:postag[:2]': postagl[:2],

1)

else:
features['EOS'] = True

return features

def sent2features(sent):

return [word2features(sent, i) for i in range(len(sent))]

def sent2labels(sent):

return [label for token, postag, label in sent]

def sent2tokens(sent):

return [token for token, postag, label in sent]

X_train = [sent2features(s) for s in train_sents]
y_train = [sent2labels(s) for s in train_sents]
X_test = [sent2features(s) for s in test_sents]
y_test = [sent2labels(s) for s in test_sents]

To see all possible CRF parameters check its docstring. Here we are useing L-BFGS training algorithm (it is
default) with Elastic Net (L1 + L2) regularization.

crf = sklearn_crfsuite.CRF(
algorithm="1lbfgs',
c1=0.1,
c2=0.1,
max_iterations=100,

all_possible_transitions=True

https://encyclopedia.pub/entry/957 40/81



Text Classification Algorithms: A Survey | Encyclopedia.pub

)

crf.fit(X_train, y_train)

Evaluation

))

Output:

B-LOC
B-MISC
B-0RG
B-PER
I-LOC
I-MISC
I-0RG
I-PER

avg / total

Deep Learning

Deep Neural Networks

y_test, y_pred,

O 06 6 O &6 6 0 o o

digits=3

precision

.810
.731
. 807
.850
.690
.699
.852
.893
.992

.970

y_pred = crf.predict(X_test)

© OO0 O © © O o o o

. 784
.569
.832
.884
.637
.589
. 786
. 943
. 997

.971

O 6 06 O &6 06 0 © o

print(metrics.flat_classification_report(

recall fi1-score

L1797
.640
.820
.867
.662
.639
.818
.917
.994

.971

support

1084
339
1400
735
325
557
1104
634
45355

51533

Deep Neural Networks architectures are designed to learn through multiple connection of layers where each single

layer only receives connection from previous and provides connections only to the next layer in hidden part. The

input is a connection of feature space (As discussed in Section Feature_extraction with first hidden layer. For Deep

Neural Networks (DNN), input layer could be tf-ifd, word embedding, or etc. as shown in standard DNN in Figure.

The output layer houses neurons equal to the number of classes for multi-class classification and only one neuron

for binary classification. But our main contribution in this paper is that we have many trained DNNs to serve

different purposes. Here, we have multi-class DNNs where each learning model is generated randomly (number of

nodes in each layer as well as the number of layers are randomly assigned). Our implementation of Deep Neural
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Network (DNN) is basically a discriminatively trained model that uses standard back-propagation algorithm and

sigmoid or ReLU as activation functions. The output layer for multi-class classification should use Softmax.

Input Layer Hidden Layer Output Layer
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import packages:

from sklearn.datasets import fetch_20newsgroups

from keras.layers import Dropout, Dense

from keras.models import Sequential

from sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

from sklearn import metrics

convert text to TF-IDF:
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def TFIDF(X_train, X_test, MAX_NB_WORDS=75000):
vectorizer_x = TfidfVectorizer (max_features=MAX_NB_WORDS)
X_train = vectorizer_x.fit_transform(X_train).toarray()
X_test = vectorizer_x.transform(X_test).toarray()
print("tf-idf with",str(np.array(X_train).shape[1]), "features")

return (X_train, X_test)

Build a DNN Model for Text:

def Build_Model_DNN_Text(shape, nClasses, dropout=0.5):
mmnn
buildModel DNN_Tex(shape, nClasses,dropout)
Build Deep neural networks Model for text classification
Shape is input feature space
nClasses is number of classes
mmnn
model = Sequential()
node = 512 # number of nodes

nLayers = 4 # number of hidden layer

model.add(Dense(node, input_dim=shape, activation="relu'))
model.add(Dropout(dropout))
for i in range(0O,nLayers):
model.add(Dense(node, input_dim=node, activation="relu'))
model.add(Dropout(dropout))

model.add(Dense(nClasses, activation='softmax'))
model.compile(loss='sparse_categorical_crossentropy',
optimizer="adam',

metrics=['accuracy'])

return model

Load text dataset (20newsgroups):

newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test')

X_train = newsgroups_train.data
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X_test = newsgroups_test.data
y_train = newsgroups_train.target

y_test = newsgroups_test.target

run DNN and see our result:

X_train_tfidf, X_test_tfidf = TFIDF(X_train, X_test)
model DNN = Build_Model DNN_Text(X_train_tfidf.shape[1], 20)
model_DNN.fit(X_train_tfidf, y_train,
validation_data=(X_test_tfidf, y_test),
epochs=10,
batch_size=128,

verbose=2)

predicted = model DNN.predict(X_test_tfidf)

print(metrics.classification_report(y_test, predicted))

Model summary:

Layer (type) Output Shape Param #
dense 1 (ense)  (Nome, 512) —
dropout_1 (Dropout) (None, 512) 0

dense_2 (Dense) (None, 512) 262656
dropout_2 (Dropout) (None, 512) 0

dense_3 (Dense) (None, 512) 262656
dropout_3 (Dropout) (None, 512) 0

dense_4 (Dense) (None, 512) 262656
dropout_4 (Dropout) (None, 512) 0
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dense_5 (Dense) (None, 512) 262656
dropout_5 (Dropout) (None, 512) 0
dense_6 (Dense) (None, 20) 10260

Total params: 39,461,396
Trainable params: 39,461,396

Non-trainable params: 0

Output:

Train on 11314 samples, validate on 7532 samples

Epoch 1/10

- 16s - loss: 2.7553 - acc: 0.1090 - val loss: 1.9330 - val acc: 0.3184
Epoch 2/10

- 15s - loss: 1.5330 - acc: 0.4222 - val loss: 1.1546 - val_acc: 0.6204
Epoch 3/10

- 15s - loss: 0.7438 - acc: 0.7257 - val loss: 0.8405 - val acc: 0.7499
Epoch 4/10

- 15s - loss: 0.2967 - acc: 0.9020 - val loss: 0.9214 - val _acc: 0.7767
Epoch 5/10

- 15s - loss: 0.1557 - acc: 0.9543 - val loss: 0.8965 - val acc: 0.7917
Epoch 6/10

- 15s - loss: 0.1015 - acc: 0.9705 - val loss: 0.9427 - val_acc: 0.7949
Epoch 7/10

- 15s - loss: 0.0595 - acc: 0.9835 - val loss: 0.9893 - val _acc: 0.7995
Epoch 8/10

- 15s - loss: 0.0495 - acc: 0.9866 - val loss: 0.9512 - val _acc: 0.8079
Epoch 9/10

- 15s - loss: 0.0437 - acc: 0.9867
Epoch 10/10
- 15s - loss: 0.0443 - acc: 0.9880

val_loss: 0.9690 - val acc: 0.8117

val_loss: 1.0004 - val_acc: 0.8070

precision recall f1-score support
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Recurrent Neural Networks (RNN)
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7
.73
.71
.72
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.79
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.93
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.81
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.81

319
389
394
392
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397
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398
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310
251

7532
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Another neural network architecture that is addressed by the researchers for text miming and classification is
Recurrent Neural Networks (RNN). RNN assigns more weights to the previous data points of sequence. Therefore,
this technique is a powerful method for text, string and sequential data classification. Moreover, this technique
could be used for image classification as we did in this work. In RNN, the neural net considers the information of
previous nodes in a very sophisticated method which allows for better semantic analysis of the structures in the
dataset.

Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) is a gating mechanism for RNN which was introduced by J. Chung_et al. and K.Cho et

al.. GRU is a simplified variant of the LSTM architecture, but there are differences as follows: GRU contains two
gates and does not possess any internal memory (as shown in Figure; and finally, a second non-linearity is not
applied (tanh in Figure).
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he—1

Long_Short-Term Memory (LSTM),

Long Short-Term Memory~(LSTM) was introduced by S. Hochreiter and J. Schmidhuber and developed by many

research scientists.

To deal with these problems Long Short-Term Memory (LSTM) is a special type of RNN that preserves long term
dependency in a more effective way compared to the basic RNNs. This is particularly useful to overcome vanishing
gradient problem. Although LSTM has a chain-like structure similar to RNN, LSTM uses multiple gates to carefully
regulate the amount of information that will be allowed into each node state. Figure shows the basic cell of a LSTM

model.

import packages:

from keras.layers import Dropout, Dense, GRU, Embedding
from keras.models import Sequential

from sklearn.feature_extraction.text import TfidfVectorizer
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import numpy as np

from sklearn import metrics

from keras.preprocessing.text import Tokenizer

from keras.preprocessing.sequence import pad_sequences

from sklearn.datasets import fetch_20newsgroups

convert text to word embedding (Using GloVe):

def loadData_Tokenizer (X_train,
X_test, MAX_NB_WORDS=75000, MAX_SEQUENCE_LENGTH=500) :

np.random.seed(7)

text = np.concatenate((X_train, X_test), axis=0)

text = np.array(text)

tokenizer = Tokenizer (num_words=MAX_NB_WORDS)

tokenizer.fit_on_texts(text)

sequences = tokenizer.texts_to_sequences(text)

word_index = tokenizer.word_index

text = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

print('Found %s unique tokens.' % len(word_index))

indices = np.arange(text.shape[0])

# np.random.shuffle(indices)

text = text[indices]

print(text.shape)

X_train = text[0:len(X_train), ]

X_test = text[len(X_train):, ]

embeddings_index = {}

f =

open("C:\\Users\\kamran\\Documents\\GitHub\\RMDL\\Examples\\Glove\\glove.6B.50d.txt'
encoding="utf8")

for line in f:

values = line.split()
word = values[0]
try:
coefs = np.asarray(values[1:], dtype='float32')
except:
pass
embeddings_index[word] = coefs
f.close()
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print('Total %s word vectors.' % len(embeddings_index))

return (X_train, X_test, word_index, embeddings_index)

Build a RNN Model for Text:

def Build_Model_ RNN_Text(word_index, embeddings_index, nclasses,
MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50, dropout=0.5):
def buildModel RNN(word_index, embeddings_index, nclasses,

MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50, dropout=0.5):

word_index in word index ,

embeddings_index is embeddings index, look at data_helper.py

nClasses is number of classes,

MAX_SEQUENCE_LENGTH is maximum lenght of text sequences

model = Sequential()
hidden_layer = 3

gru_node = 32

embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
if len(embedding_matrix[i]) != len(embedding_vector):
print("could not broadcast input array from shape",
str(len(embedding_matrix[i])),
"into shape", str(len(embedding_vector)), " Please make
sure your"
" EMBEDDING_DIM
is equal to embedding_vector file ,Glove,")
exit(1)
embedding_matrix[i] = embedding_vector
model.add(Embedding(len(word_index) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,

trainable=True))
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print(gru_node)

for 1 in range(0,hidden_layer):

model.add(GRU(gru_node, return_sequences=True, recurrent_dropout=0.2))

model.add(Dropout(dropout))
model.add(GRU(gru_node, recurrent_dropout=0.2))
model.add(Dropout(dropout))
model.add(Dense(256, activation='relu'))

model.add(Dense(nclasses, activation='softmax'))

model.compile(loss="'sparse_categorical_crossentropy',
optimizer="adam',
metrics=["'accuracy'])

return model

run RNN and see our result;

newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train_Glove, X_test_Glove, word_index, embeddings_index

loadData_Tokenizer (X_train, X_test)

model_RNN = Build_Model RNN_Text(word_index, embeddings_index, 20)

model RNN.fit(X_train_Glove, y_train,
validation_data=(X_test_Glove, y_test),
epochs=10,
batch_size=128,

verbose=2)

predicted = model_RNN.predict_classes(X_test_Glove)
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print(metrics.classification_report(y_test,

Model summary:

predicted))

Total params: 10,383,368
Trainable params: 10,383,368

Non-trainable params: 0

Layer (type) Output Shape Param #
mbedding 1 (Enbedding)  (Nome, 500, 50) ——
gru_1 (GRU) (None, 500, 256) 235776
dropout_1 (Dropout) (None, 500, 256) 0

gru_2 (GRU) (None, 500, 256) 393984
dropout_2 (Dropout) (None, 500, 256) 0

gru_3 (GRU) (None, 500, 256) 393984
dropout_3 (Dropout) (None, 500, 256) 0

gru_4 (GRU) (None, 256) 393984
dense_1 (Dense) (None, 20) 5140

Output:

Epoch 1/20

- 268s - loss: 2.5347 - acc:
Epoch 2/20

- 271s - loss: 1.6751 - acc:

Train on 11314 samples, validate on 7532 samples

0.1792 - val_loss:

0.3999 - val loss:

2.2857 - val_acc:

1.4972 - val_acc:

0.2460

0.4660
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Epoch 3/20

- 270s - loss: 1.0945 - acc: 0.6072 - val loss: 1.3232 - val acc: 0.5483
Epoch 4/20

- 269s - loss: 0.7761 - acc: 0.7312 - val loss: 1.1009 - val acc: 0.6452
Epoch 5/20

- 269s - loss: 0.5513 - acc: 0.8112 - val loss: 1.0395 - val acc: 0.6832
Epoch 6/20

- 269s - loss: 0.3765 - acc: 0.8754 - val_loss: 0.9977 - val acc: 0.7086
Epoch 7/20

- 270s - loss: 0.2481 - acc: 0.9202 - val _loss: 1.0485 - val acc: 0.7270
Epoch 8/20

- 269s - loss: 0.1717 - acc: 0.9463 - val_loss: 1.0269 - val_acc: 0.7394
Epoch 9/20

- 269s - loss: 0.1130 - acc: 0.9644 - val_loss: 1.1498 - val_acc: 0.7369
Epoch 10/20

- 269s - loss: 0.0640 - acc: 0.9808 - val_loss: 1.1442 - val acc: 0.7508
Epoch 11/20

- 269s - loss: 0.0567 - acc: 0.9828 - val loss: 1.2318 - val acc: 0.7414
Epoch 12/20

- 268s - loss: 0.0472 - acc: 0.9858 - val_loss: 1.2204 - val acc: 0.7496
Epoch 13/20

- 269s - loss: 0.0319 - acc: 0.9910 - val_loss: 1.1895 - val acc: 0.7657
Epoch 14/20

- 268s - loss: 0.0466 - acc: 0.9853 - val_loss: 1.2821 - val_acc: 0.7517
Epoch 15/20

- 271s - loss: 0.0269 - acc: 0.9917 - val_loss: 1.2869 - val acc: 0.7557
Epoch 16/20

- 271s - loss: 0.0187 - acc: 0.9950 - val_loss: 1.3037 - val_acc: 0.7598
Epoch 17/20

- 268s - loss: 0.0157 - acc: 0.9959 - val loss: 1.2974 - val acc: 0.7638
Epoch 18/20

- 270s - loss: 0.0121 - acc: 0.9966 - val loss: 1.3526 - val_acc: 0.7602
Epoch 19/20

- 269s - loss: 0.0262 - acc: 0.9926 - val loss: 1.4182 - val acc: 0.7517
Epoch 20/20

- 269s - loss: 0.0249 - acc: 0.9918 - val loss: 1.3453 - val acc: 0.7638

precision recall fil-score support
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(0] 0.71 0.71 0.71 319
1 0.72 0.68 0.70 389
2 0.76 0.62 0.69 394
3 0.67 0.58 0.62 392
4 0.68 0.67 0.68 385
5 0.75 0.73 0.74 395
6 0.82 0.74 0.78 390
7 0.83 0.83 0.83 396
8 0.81 0.90 0.86 398
9 0.92 0.90 0.91 397
10 0.91 0.94 0.93 399
11 0.87 0.76 0.81 396
12 0.57 0.70 0.63 393
13 0.81 0.85 0.83 396
14 0.74 0.93 0.82 394
15 0.82 0.83 0.83 398
16 0.74 0.78 0.76 364
17 0.96 0.83 0.89 376
18 0.64 0.60 0.62 310
19 0.48 0.56 0.52 251
avg / total 0.77 0.76 0.76 7532

Convolutional Neural Networks (CNN)

Another deep learning architecture that is employed for hierarchical document classification is Convolutional Neural
Networks (CNN) . Although originally built for image processing with architecture similar to the visual cortex, CNNs
have also been effectively used for text classification. In a basic CNN for image processing, an image tensor is
convolved with a set of kernels of size d by d. These convolution layers are called feature maps and can be
stacked to provide multiple filters on the input. To reduce the computational complexity, CNNs use pooling which
reduces the size of the output from one layer to the next in the network. Different pooling techniques are used to

reduce outputs while preserving important features.

The most common pooling method is max pooling where the maximum element is selected from the pooling
window. In order to feed the pooled output from stacked featured maps to the next layer, the maps are flattened
into one column. The final layers in a CNN are typically fully connected dense layers. In general, during the back-
propagation step of a convolutional neural network not only the weights are adjusted but also the feature detector

filters. A potential problem of CNN used for text is the number of ‘channels', Sigma (size of the feature space). This
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might be very large (e.g. 50K), for text but for images this is less of a problem (e.g. only 3 channels of RGB). This

means the dimensionality of the CNN for text is very high.

Embedding '°

. Convolutional Layer
. Pooling Layer
. Fully Connected Layer

. Output Layer

Pooling

LD Pooling

1D  Pooling

Word Cany

Conv
D Conv
1D

Flatten
Layer

Output
k nodes

import packages:

from

from

from

from
from
from
from

from

keras.layers import Dropout, Dense,Input,Embedding,Flatten, MaxPoolingiD,

ConvlD

keras.models import Sequential,Model

sklearn.feature_extraction.text import TfidfVectorizer

import numpy as np

sklearn import metrics

keras.preprocessing.text import Tokenizer
keras.preprocessing.sequence import pad_sequences
sklearn.datasets import fetch_20newsgroups

keras.layers.merge import Concatenate
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convert text to word embedding (Using GloVe):

def loadData_Tokenizer (X_train,
X_test, MAX_NB_WORDS=75000, MAX_SEQUENCE_LENGTH=500) :

np.random.seed(7)

text = np.concatenate((X_train, X_test), axis=0)

text = np.array(text)

tokenizer = Tokenizer (num_words=MAX_NB_WORDS)

tokenizer.fit_on_texts(text)

sequences = tokenizer.texts_to_sequences(text)

word_index = tokenizer.word_index

text = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)

print('Found %s unique tokens.' % len(word_index))

indices = np.arange(text.shape[0])

# np.random.shuffle(indices)

text = text[indices]

print(text.shape)

X_train = text[0:1len(X_train), ]

X_test = text[len(X_train):, ]

embeddings_index = {}

f =
open("C:\\Users\\kamran\\Documents\\GitHub\\RMDL\\Examples\\Glove\\glove.6B.50d.txt'
encoding="utf8")

for line in f:
values = line.split()
word = values[0]
try:
coefs = np.asarray(values[1:], dtype='float32')
except:
pass
embeddings_index[word] = coefs
f.close()
print('Total %s word vectors.' % len(embeddings_index))

return (X_train, X_test, word_index,embeddings_index)

Build a CNN Model for Text:

def Build_Model_CNN_Text(word_index, embeddings_index, nclasses,

MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50, dropout=0.5):
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def buildModel CNN(word_index, embeddings_index, nclasses,
MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50, dropout=0.5):
word_index in word index ,
embeddings_index is embeddings index, look at data_helper.py
nClasses is number of classes,
MAX_SEQUENCE_LENGTH is maximum lenght of text sequences,

EMBEDDING_DIM is an int value for dimention of word embedding look at
data_helper.py

model = Sequential()
embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
if len(embedding_matrix[i]) !=len(embedding_vector):
print("could not broadcast input array from
shape",str(len(embedding_matrix[i])),
"into shape",str(len(embedding_vector))," Please
make sure your"
" EMBEDDING_DIM is equal to embedding_vector
file ,Glove,")
exit(1)

embedding_matrix[i] embedding_vector

embedding_layer = Embedding(len(word_index) + 1,
EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,
trainable=True)

# applying a more complex convolutional approach
convs = []
filter_sizes = []

layer = 5

https://encyclopedia.pub/entry/957 57/81



Text Classification Algorithms: A Survey | Encyclopedia.pub

print("Filter ",layer)
for f1 in range(0, layer):
filter_sizes.append((fl+2))

node = 128
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH, ), dtype='int32'")

embedded_sequences = embedding_layer (sequence_input)

for fsz in filter_sizes:
1l conv = ConviD(node, kernel_size=fsz, activation='relu')
(embedded_sequences)
1_pool = MaxPoolinglD(5)(1_conv)
#1_pool = Dropout(0.25)(1_pool)
convs.append(1l_pool)

1_merge = Concatenate(axis=1)(convs)

1 _covi ConvlD(node, 5, activation='relu')(l_merge)

1l covi
1 pooll = MaxPoolingi1D(5)(1_covl)

Dropout (dropout) (1l_covl)

1l _cov2 = ConvlD(node, 5, activation='relu')(l_pooll)
1 _cov2 = Dropout(dropout)(1l_cov2)

1 pool2 = MaxPooling1D(30)(1l_cov2)

1 _flat = Flatten()(1l_pool2)

1 dense = Dense(1024, activation='relu')(1l _flat)

1_dense Dropout(dropout) (1l_dense)

1_dense Dense(512, activation='relu')(1l_dense)

1 _dense Dropout(dropout)(1l_dense)

preds Dense(nclasses, activation='softmax')(l_dense)

model Model(sequence_input, preds)

model.compile(loss="'sparse_categorical_crossentropy',

optimizer="adam',

metrics=["'accuracy'])

return model

run CNN and see our result;
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newsgroups_train = fetch_20newsgroups(subset="train")
newsgroups_test = fetch_20newsgroups(subset="test')
X_train = newsgroups_train.data

X_test = newsgroups_test.data

y_train = newsgroups_train.target

y_test = newsgroups_test.target

X_train_Glove, X_test_Glove, word_index, embeddings_index =

loadData_Tokenizer(X_train, X_test)

model_CNN = Build_Model_ CNN_Text(word_index, embeddings_index, 20)

model_CNN.summary()

model_CNN.fit(X_train_Glove, y_train,
validation_data=(X_test_Glove, y_test),
epochs=15,
batch_size=128,

verbose=2)

predicted model_ CNN.predict(X_test_Glove)

predicted np.argmax(predicted, axis=1)

print(metrics.classification_report(y_test, predicted))

Model:
Layer (type) Output Shape Param # Connected to
input_1 (InputLayer) (None, 500) 0
embedding_1 (Embedding) (None, 500, 50) 8960500 input_1[0][0]
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convlid_1 (ConvilD) (None, 499, 128) 12928 embedding_1[0][0]
convlid_2 (Convi1D) (None, 498, 128) 19328 embedding_1[0][0]
convlid_3 (Convi1D) (None, 497, 128) 25728 embedding_1[0][0]
convlid_4 (ConvilD) (None, 496, 128) 32128 embedding_1[0][0]
convld_5 (Convi1D) (None, 495, 128) 38528 embedding_1[0][0]
max_poolingld_1 (MaxPoolinglD) (None, 99, 128) 0 convld_1[0][0]
max_poolingld_2 (MaxPoolinglD) (None, 99, 128) 0 convld_2[0][0]
max_poolingld_3 (MaxPoolinglD) (None, 99, 128) 0 convld_3[0][0]
max_poolingld_4 (MaxPoolinglD) (None, 99, 128) 0] convld_4[0][0]
max_poolingld_5 (MaxPoolinglD) (None, 99, 128) 0] convld_5[0][0]
concatenate_1 (Concatenate) (None, 495, 128) 0]

max_poolingld_1[0][0]

max_poolingld_2[0][0]

max_poolingld_3[0][0]

max_poolingld_4[0][0]

max_poolingld_5[0][0]

convld_6 (ConvilD) (None, 491, 128) 82048 concatenate_1[0]
[0]

dropout_1 (Dropout) (None, 491, 128) 0 convld_6[0][0]
max_poolingld_6 (MaxPoolingiD) (None, 98, 128) 0 dropout_1[0][0]
convld_7 (ConvilD) (None, 94, 128) 82048
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max_poolingld_6[0][0]

dropout_2 (Dropout) (None, 94, 128) 0 convld_7[0][0]
max_poolingld_7 (MaxPoolingiD) (None, 3, 128) 0 dropout_2[0][0]
flatten_1 (Flatten) (None, 384) 0

max_poolingld_7[0][0]

dense_1 (Dense) (None, 1024) 394240 flatten_1[0][0]
dropout_3 (Dropout) (None, 1024) 0 dense_1[0][0]
dense_2 (Dense) (None, 512) 524800 dropout_3[0][0]
dropout_4 (Dropout) (None, 512) 0] dense_2[0][0]
dense_3 (Dense) (None, 20) 10260 dropout_4[0][0]

Total params: 10,182,536
Trainable params: 10,182,536

Non-trainable params: 0

Output:

Train on 11314 samples, validate on 7532 samples

Epoch 1/15

- 6s - loss: 2.9329 - acc: 0.0783 - val _loss: 2.7628 - val_acc: 0.1403
Epoch 2/15

- 4s - loss: 2.2534 - acc: 0.2249 - val_loss: 2.1715 - val_acc: 0.4007
Epoch 3/15

- 4s - loss: 1.5643 - acc: 0.4326 - val_loss: 1.7846 - val_acc: 0.5052
Epoch 4/15

- 4s - loss: 1.1771 - acc: 0.5662 - val_loss: 1.4949 - val acc: 0.6131
Epoch 5/15

- 4s - loss: 0.8880 - acc: 0.6797 - val_loss: 1.3629 - val_acc: 0.6256
Epoch 6/15

- 4s - loss: 0.6990 - acc: 0.7569 - val_loss: 1.2013 - val_acc: 0.6624
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Epoch 7/15

- 4s - loss: 0.5037 - acc: 0.8200 - val loss: 1.0674 - val_acc: 0.6807
Epoch 8/15

- 4s - loss: 0.4050 - acc: 0.8626 - val loss: 1.0223 - val_acc: 0.6863
Epoch 9/15

- 4s - loss: 0.2952 - acc: 0.8968 - val loss: 0.9045 - val_acc: 0.7120
Epoch 10/15

- 4s - loss: 0.2314 - acc: 0.9217 - val _loss: 0.8574 - val_acc: 0.7326
Epoch 11/15

- 4s - loss: 0.1778 - acc: 0.9436 - val loss: 0.8752 - val_acc: 0.7270
Epoch 12/15

- 4s - loss: 0.1475 - acc: 0.9524 - val _loss: 0.8299 - val_acc: 0.7355
Epoch 13/15

- 4s - loss: 0.1089 - acc: 0.9657 - val _loss: 0.8034 - val_acc: 0.7491
Epoch 14/15

- 4s - loss: 0.1047 - acc: 0.9666 - val loss: 0.8172 - val_acc: 0.7463
Epoch 15/15

- 4s - loss: 0.0749 - acc: 0.9774 - val loss: 0.8511 - val acc: 0.7313

precision recall f1-score support
(0] 0.75 0.61 0.67 319
1 0.63 0.74 0.68 389
2 0.74 0.54 0.62 394
3 0.49 0.76 0.60 392
4 0.60 0.70 0.64 385
5 0.79 0.57 0.66 395
6 0.73 0.76 0.74 390
7 0.83 0.74 0.78 396
8 0.86 0.88 0.87 398
9 0.95 0.78 0.86 397
10 0.93 0.93 0.93 399
11 0.92 Q.77 0.84 396
12 0.55 0.72 0.62 393
13 0.76 0.85 0.80 396
14 0.86 0.83 0.84 394
15 0.91 0.73 0.81 398
16 0.75 0.65 0.70 364
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17 0.95 0.86 0.90 376
18 0.60 0.49 0.54 310
19 0.37 0.60 0.46 251
avg / total 0.76 0.73 0.74 7532

Hierarchical Attention Networks

Softmax I

TOLa Y
2OU2YU2E

19poat]
20U

O
oAy

Iapoouq
PIOM

|
|
}
|

Recurrent Convolutional Neural Networks (RCNN)
Recurrent Convolutional Neural Networks (RCNN) is also used for text classification. The main idea of this

technique is capturing contextual information with the recurrent structure and constructing the representation of text
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using a convolutional neural network. This architecture is a combination of RNN and CNN to use advantages of

both technique in a model.

import packages:

from
from
from
from
from
from
from
from
impo
from
from

from

keras.preprocessing import sequence
keras.models import Sequential
keras.layers import Dense, Dropout, Activation
keras.layers import Embedding

keras.layers import GRU

keras.layers import ConvlD, MaxPoolinglD
keras.datasets import imdb
sklearn.datasets import fetch_20newsgroups
rt numpy as np

sklearn import metrics
keras.preprocessing.text import Tokenizer

keras.preprocessing.sequence import pad_sequences

Convert text to word embedding (Using GloVe):

def
X_te

loadData_Tokenizer (X_train,
st, MAX_NB_WORDS=75000, MAX_SEQUENCE_LENGTH=500) :
np.random.seed(7)
text = np.concatenate((X_train, X_test), axis=0)
text = np.array(text)
tokenizer = Tokenizer (num_words=MAX_NB_WORDS)
tokenizer.fit_on_texts(text)
sequences = tokenizer.texts_to_sequences(text)
word_index = tokenizer.word_index
text = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
print('Found %s unique tokens.' % len(word_index))
indices = np.arange(text.shape[0])
# np.random.shuffle(indices)
text = text[indices]
print(text.shape)
X_train = text[0:len(X_train), ]
X_test = text[len(X_train):, ]

embeddings_index = {}
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open("C:\\Users\\kamran\\Documents\\GitHuUb\\RMDL\\Examples\\Glove\\glove.6B.50d.txt'
encoding="utf8")
for line in f:
values = line.split()
word = values[0]
try:
coefs = np.asarray(values[1:], dtype='float32')
except:
pass
embeddings_index[word] = coefs
f.close()
print('Total %s word vectors.' % len(embeddings_index))

return (X_train, X_test, word_index, embeddings_index)

def Build_Model_RCNN_Text (word_index, embeddings_index, nclasses,
MAX_SEQUENCE_LENGTH=500, EMBEDDING_DIM=50):

kernel_size = 2
filters = 256
pool_size = 2

gru_node = 256

embedding_matrix = np.random.random((len(word_index) + 1, EMBEDDING_DIM))
for word, i in word_index.items():
embedding_vector = embeddings_index.get(word)
if embedding_vector is not None:
# words not found in embedding index will be all-zeros.
if len(embedding_matrix[i]) !=len(embedding_vector):
print("could not broadcast input array from
shape",str(len(embedding_matrix[i])),
"into shape",str(len(embedding_vector))," Please
make sure your"
" EMBEDDING_DIM is equal to embedding_vector
file ,Glove,")
exit(1)

embedding_matrix[i] = embedding_vector
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model

model

model
model
model

model

model.
model.
model.
model.
model.
model.
model.
model.
model.
model.
model.

model.

model.

retur

newsgroup
newsgroup
X_train =
X_test =
y_train =
y_test =

= Sequential()
.add(Embedding(len(word_index) + 1,

EMBEDDING_DIM,
weights=[embedding_matrix],
input_length=MAX_SEQUENCE_LENGTH,

trainable=True))

.add(Dropout(0.25))

.add(ConvilD(filters, kernel_size, activation='relu'))

.add(MaxPoolinglD(pool_size=pool_size))

.add(ConvilD(filters, kernel_size, activation='relu'))

add(Dense(1024,activation="'relu'))
add(Dense(nclasses))

add(Activation('softmax'))

optimizer="adam',

metrics=["'accuracy'])

n model

add(MaxPoolinglD(pool_size=pool_size))

add(ConviD(filters, kernel_size, activation='relu'))
add(MaxPoolinglD(pool_size=pool_size))

add(ConviD(filters, kernel_size, activation='relu'))
add(MaxPoolinglD(pool_size=pool_size))

add(LSTM(gru_node, return_sequences=True, recurrent_dropout=0.2))
add(LSTM(gru_node, return_sequences=True, recurrent_dropout=0.2))
add(LSTM(gru_node, return_sequences=True, recurrent_dropout=0.2))

add(LSTM(gru_node, recurrent_dropout=0.2))

compile(loss="'sparse_categorical_crossentropy',

s_train = fetch_20newsgroups(subset="train")

s_test = fetch_20newsgroups(subset="test')

newsgroups_train.data
newsgroups_test.data
newsgroups_train.target

newsgroups_test.target
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X_train_Glove, X_test_Glove, word_index, embeddings_index =
loadData_Tokenizer (X_train, X_test)

Run RCNN :

model_RCNN = Build_Model_CNN_Text(word_index, embeddings_index, 20)

model_RCNN.summary ()

model RCNN.fit(X_train_Glove, y_train,
validation_data=(X_test_Glove, y_test),
epochs=15,
batch_size=128,

verbose=2)

predicted = model_RCNN.predict(X_test_Glove)

predicted = np.argmax(predicted, axis=1)

print(metrics.classification_report(y_test, predicted))

summary of the model:

Layer (type) Output Shape Param #
mbedding 1 (Enbedding)  (None, 500, 50) —
dropout_1 (Dropout) (None, 500, 50) 0

convlid_1 (ConvlD) (None, 499, 256) 25856
max_poolingld_1 (MaxPoolingl (None, 249, 256) 0

convlid_2 (Convi1D) (None, 248, 256) 131328
max_poolingld_2 (MaxPoolingl (None, 124, 256) 0
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convlid_3 (ConvilD) (None, 123, 256) 131328
max_poolingld_3 (MaxPoolingl (None, 61, 256) 0

convlid_4 (Convi1D) (None, 60, 256) 131328
max_poolingld_4 (MaxPoolingl (None, 30, 256) 0

1stm_1 (LSTM) (None, 30, 256) 525312
1stm_2 (LSTM) (None, 30, 256) 525312
1stm_3 (LSTM) (None, 30, 256) 525312
1stm_4 (LSTM) (None, 256) 525312
dense_1 (Dense) (None, 1024) 263168
dense_2 (Dense) (None, 20) 20500
activation_1 (Activation) (None, 20) 0]

Total params: 11,765,256
Trainable params: 11,765,256

Non-trainable params: 0

Output:

Train on 11314 samples, validate on 7532 samples
Epoch 1/15

- 28s - loss: 2.6624 - acc: 0.1081 - val loss: 2.3012 - val_acc: 0.1753
Epoch 2/15

- 22s - loss: 2.1142 - acc: 0.2224 - val loss: 1.9168 - val_acc: 0.2669
Epoch 3/15

- 22s - loss: 1.7465 - acc: 0.3290 - val loss: 1.8257 - val_acc: 0.3412
Epoch 4/15

- 22s - loss: 1.4730 - acc: 0.4356 - val loss: 1.5433 - val_acc: 0.4436
Epoch 5/15
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- 22s - loss: 1.1800 - acc: 0.5556 - val loss: 1.2973 - val _acc: 0.5467
Epoch 6/15

- 22s - loss: 0.9910 - acc: 0.6281 - val loss: 1.2530 - val _acc: 0.5797
Epoch 7/15

- 22s - loss: 0.8581 - acc: 0.6854 - val loss: 1.1522 - val acc: 0.6281
Epoch 8/15

- 22s - loss: 0.7058 - acc: 0.7428 - val loss: 1.2385 - val _acc: 0.6033
Epoch 9/15

- 22s - loss: 0.6792 - acc: 0.7515 - val loss: 1.0200 - val acc: 0.6775
Epoch 10/15

- 22s - loss: 0.5782 - acc: 0.7948 - val loss: 1.0961 - val _acc: 0.6577
Epoch 11/15

- 23s - loss: 0.4674 - acc: 0.8341 - val loss: 1.0866 - val_acc: 0.6924
Epoch 12/15

- 23s - loss: 0.4284 - acc: 0.8512 - val loss: 0.9880 - val _acc: 0.7096
Epoch 13/15

- 22s - loss: 0.3883 - acc: 0.8670 - val loss: 1.0190 - val acc: 0.7151
Epoch 14/15

- 22s - loss: 0.3334 - acc: 0.8874 - val loss: 1.0025 - val_acc: 0.7232
Epoch 15/15

- 22s - loss: 0.2857 - acc: 0.9038 - val loss: 1.0123 - val acc: 0.7331

precision recall fil-score support
(0] 0.64 0.73 0.68 319
1 0.45 0.83 0.58 389
2 0.81 0.64 0.71 394
3 0.64 0.57 0.61 392
4 0.55 0.78 0.64 385
5 Q.77 0.52 0.62 395
6 0.84 Q.77 0.80 390
7 0.87 0.79 0.83 396
8 0.85 0.90 0.87 398
9 0.98 0.84 0.90 397
10 0.93 0.96 0.95 399
11 0.92 0.79 0.85 396
12 0.59 0.53 0.56 393
13 0.82 0.82 0.82 396
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14 0.84 0.84 0.84 394
15 0.83 0.89 0.86 398
16 0.68 0.86 0.76 364
17 0.97 0.86 0.91 376
18 0.66 0.50 0.57 310
19 0.53 0.31 0.40 251
avg / total 0.77 0.75 0.75 7532

Random Multimodel Deep Learning (RMDL)

Referenced paper : RMDL: Random Multimodel Deep Learning_for Classification

A new ensemble, deep learning approach for classification. Deep learning models have achieved state-of-the-art
results across many domains. RMDL solves the problem of finding the best deep learning structure and
architecture while simultaneously improving robustness and accuracy through ensembles of different deep learning

architectures. RDMLs can accept a variety of data as input including text, video, images, and symbols.
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l#-RMDL

Random Multimodel Deep Learning (RDML) architecture for classification. RMDL includes 3 Random models,
oneDNN classifier at left, one Deep CNN classifier at middle, and one Deep RNN classifier at right (each unit could
be LSTMor GRU).

Installation

https://encyclopedia.pub/entry/957 71/81



Text Classification Algorithms: A Survey | Encyclopedia.pub

There are pip and git for RMDL installation:

Using pip

pip install RMDL

Using git

git clone --recursive https://github.com/kk7nc/RMDL.git

The primary requirements for this package are Python 3 with Tensorflow. The requirements.txt file contains a listing

of the required Python packages; to install all requirements, run the following:

pip -r install requirements.txt

Or

pip3 install -r requirements.txt

Or:

conda install --file requirements.txt

Documentation:

The exponential growth in the number of complex datasets every year requires more enhancement in machine
learning methods to provide robust and accurate data classification. Lately, deep learning approaches are
achieving better results compared to previous machine learning algorithms on tasks like image classification,
natural language processing, face recognition, and etc. The success of these deep learning algorithms rely on their
capacity to model complex and non-linear relationships within the data. However, finding suitable structures for
these models has been a challenge for researchers. This paper introduces Random Multimodel Deep Learning
(RMDL): a new ensemble, deep learning approach for classification. RMDL aims to solve the problem of finding the
best deep learning architecture while simultaneously improving the robustness and accuracy through ensembles of
multiple deep learning architectures. In short, RMDL trains multiple models of Deep Neural Network (DNN),
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) in parallel and combines their results to
produce better result of any of those models individually. To create these models, each deep learning model has

been constructed in a random fashion regarding the number of layers and nodes in their neural network structure.
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The resulting RDML model can be used in various domains such as text, video, images, and symbolic. In this
Project, we describe RMDL model in depth and show the results for image and text classification as well as face
recognition. For image classification, we compared our model with some of the available baselines using MNIST
and CIFAR-10 datasets. Similarly, we used four datasets namely, WOS, Reuters, IMDB, and 20newsgroup and
compared our results with available baselines. Web of Science (WOS) has been collected by authors and consists
of three sets~(small, medium and large set). Lastly, we used ORL dataset to compare the performance of our
approach with other face recognition methods. These test results show that RDML model consistently outperform

standard methods over a broad range of data types and classification problems.

Hierarchical Deep Learning_for Text (HDLTex)

Refrenced paper : HDLTex: Hierarchical Deep Learning_for Text Classification

[#HDLTex
Documentation:

Increasingly large document collections require improved information processing methods for searching, retrieving,
and organizing text documents. Central to these information processing methods is document classification, which
has become an important task supervised learning aims to solve. Recently, the performance of traditional
supervised classifiers has degraded as the number of documents has increased. This exponential growth of
document volume has also increated the number of categories. This paper approaches this problem differently
from current document classification methods that view the problem as multi-class classification. Instead we
perform hierarchical classification using an approach we call Hierarchical Deep Learning for Text classification
(HDLTex). HDLTex employs stacks of deep learning architectures to provide hierarchical understanding of the

documents.

Comparison Text Classification Algorithms

Model Advantages Disadvantages

Rocchio
Algorithm

Boosting and
Bagging

Easy to implement

Computationally is very cheap
Relevance feedback mechanism
(benefits to ranking documents as not
relevant)

Improves the stability and accuracy
(takes the advantage of ensemble
learning where in multiple weak learner
outperform a single strong learner.)
Reducing variance which helps to avoid
overfitting problems.

The user can only retrieve a few
relevant documents

Rocchio often misclassifies the type for
multimodal class

This techniques is not very robust
linear combination in this algorithm is
not good for multi-class datasets

Computational complexity

loss of interpretability (if the number of
models is hight, understanding the
model is very difficult)

Requires careful tuning of different
hyper-parameters.
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Logistic
Regression

Naive Bayes
Classifier

K-Nearest
Neighbor

Support Vector
Machine (SVM)

Decision Tree

Conditional
Random Field
(CRF)

Random Forest

Easy to implement

does not require too many computational
resources

it does not require input features to be
scaled (pre-processing)

It does not require any tuning

It works very well with text data
Easy to implement
Fast in comparing to other algorithms

Effective for text datasets
non-parametric

More local characteristics of text or
document are considered

Naturally handles multi-class datasets

SVM can model non-linear decision
boundaries

Performs similarly to logistic regression
when linear separation

Robust against overfitting problems~
(especially for text dataset due to high-
dimensional space)

Can easily handle qualitative
(categorical) features

Works well with decision boundaries
parellel to the feature axis

Decision tree is a very fast algorithm for
both learning and prediction

Its feature design is flexible

Since CRF computes the conditional
probability of global optimal output
nodes, it overcomes the drawbacks of
label bias

Combining the advantages of
classification and graphical modeling
which combining the ability to compactly
model multivariate data

Ensembles of decision trees are very fast
to train in comparison to other techniques
Reduced variance (relative to regular
trees)

it cannot solve non-linear problems
prediction requires that each data point
be independent

attempting to predict outcomes based
on a set of independent variables

A strong assumption about the shape of
the data distribution

limited by data scarcity for which any
possible value in feature space, a
likelihood value must be estimated by a
frequentist

computational of this model is very
expensive

diffcult to find optimal value of k
Constraint for large search problem to
find nearest neighbors

Finding a meaningful distance function
is difficult for text datasets

lack of transparency in results caused
by a high number of dimensions
(especially for text data).

Choosing an efficient kernel function is
difficult (Susceptible to
overfitting/training issues depending on
kernel)

Memory complexity

Issues with diagonal decision
boundaries

Can be easily overfit

extremely sensitive to small
perturbations in the data

Problems with out-of-sample prediction

High computational complexity of the
training step

this algorithm does not perform with
unknown words

Problem about online learning (It makes
it very difficult to re-train the model
when newer data becomes available.)

Quite slow to create predictions once
trained

more trees in forest increases time
complexity in the prediction step
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Deep Learning

Evaluation

Not require preparation and pre-
processing of the input data

Flexible with features design (Reduces
the need for feature engineering, one of
the most time-consuming parts of
machine learning practice.)
Architecture that can be adapted to new
problems

Can deal with complex input-output
mappings

Can easily handle online learning (It
makes it very easy to re-train the model
when newer data becomes available.)
Parallel processing capability (It can
perform more than one job at the same
time)

« Not as easy to visually interpret

» Overfitting can easily occur

» Need to choose the number of trees at
forest

« Requires a large amount of data (if you
only have small sample text data, deep
learning is unlikely to outperform other
approaches.

» Is extremely computationally expensive
to train.

« Model Interpretability is most important
problem of deep learning~(Deep
learning in most of the time is black-
box)

» Finding an efficient architecture and
structure is still the main challenge of
this technique

F1 Score

Sensitivity (recall)

False negative rate

+0 T s il | FN R
False positive rate Specificity
- ™ FP ™

Precision  False omission rate

g | FN
FDR MNegative predictive value
FE ™

Matthew correlation coefficient (MCC)

Compute the Matthews correlation coefficient (MCC)

The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary (two-class)
classification problems. It takes into account of true and false positives and negatives and is generally regarded as

a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a
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correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, O an average

random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient.

y_tr

ue = [+1,

y_pred = [+1,

from sklearn.metrics import matthews_corrcoef

+1, +1, -1]
-1, +1, +1]

matthews_corrcoef(y_true, y_pred)

Receiver operating_ characteristics (ROC)

ROC curves are typically used in binary classification to study the output of a classifier. In order to extend ROC

curve and ROC area to multi-class or multi-label classification, it is necessary to binarize the output. One ROC

curve can be drawn per label, but one can also draw a ROC curve by considering each element of the label

indicator matrix as a binary prediction (micro-averaging).

Another evaluation measure for multi-class classification is macro-averaging, which gives equal weight to the

classification of each label. [sources]

from
from
from
from
from

from

X =

n_cl

sklearn

sklearn.
sklearn.
sklearn.

sklearn.

import numpy as np
import matplotlib.pyplot as plt

from itertools import cycle

import svm, datasets

metrics import roc_curve, auc
model_selection import train_test_split
preprocessing import label_binarize

multiclass import OneVsRestClassifier

scipy import interp

iris.data

# Import some data to play with

iris = datasets.load_iris()

y = iris.target

# Binarize the output

y = label_binarize(y, classes=[0, 1, 2])

asses = y.shape[1]

# Add noisy features to make the problem harder
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random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]

# shuffle and split training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,
random_state=0)

# Learn to predict each class against the other
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
random_state=random_state))

y_score = classifier.fit(X_train, y_train).decision_function(X_test)

# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, 1], y_score[:, 1i])

roc_auc[i] = auc(fpr[i], tpr[i])

# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())

roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])

Plot of a ROC curve for a specific class

plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color='darkorange',
lw=1lw, label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--"')
plt.x1lim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')

plt.title('Receiver operating characteristic example')
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plt.legend(loc="lower right")
plt.show()

Receiver operating characteristic example
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Area Under Curve (AUC)

Area under ROC curve (AUC) is a summary metric that measures the entire area underneath the ROC curve. AUC
holds helpful properties, such as increased sensitivity in the analysis of variance (ANOVA) tests, independence of
decision threshold, invariance to a priori class probability and the indication of how well negative and positive

classes are regarding decision index.

import numpy as np
from sklearn import metrics
fpr, tpr, thresholds = metrics.roc_curve(y, pred, pos_label=2)

metrics.auc(fpr, tpr)

Text and Document Datasets
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IMDB

 IMDB Dataset

Dataset of 25,000 movies reviews from IMDB, labeled by sentiment (positive/negative). Reviews have been
preprocessed, and each review is encoded as a sequence of word indexes (integers). For convenience, words are
indexed by overall frequency in the dataset, so that for instance the integer "3" encodes the 3rd most frequent word
in the data. This allows for quick filtering operations, such as "only consider the top 10,000 most common words,

but eliminate the top 20 most common words".

As a convention, "0" does not stand for a specific word, but instead is used to encode any unknown word.

from keras.datasets import imdb

(x_train, y_train), (x_test, y_test) = imdb.load_data(path="imdb.npz",
num_words=None,
skip_top=0,
maxlen=None,
seed=113,
start_char=1,
oov_char=2,

index_from=3)

Reuters-21578

o Reters-21578 Dataset
Dataset of 11,228 newswires from Reuters, labeled over 46 topics. As with the IMDB dataset, each wire is encoded

as a sequence of word indexes (same conventions).

from keras.datasets import reuters

(x_train, y_train), (x_test, y_test) = reuters.load_data(path="reuters.npz",
num_words=None,
skip_top=0,
maxlen=None,
test_split=0.2,
seed=113,
start_char=1,
oov_char=2,

index_from=3)
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20Newsgroups

o 20Newsgroups Dataset
The 20 newsgroups dataset comprises around 18000 newsgroups posts on 20 topics split in two subsets: one for
training (or development) and the other one for testing (or for performance evaluation). The split between the train

and test set is based upon messages posted before and after a specific date.

This module contains two loaders. The first one, sklearn.datasets.fetch_20newsgroups, returns a list of the raw
texts that can be fed to text feature extractors, such as sklearn.feature_extraction.text.CountVectorizer with custom
parameters so as to extract feature vectors. The second one, sklearn.datasets.fetch_20newsgroups_vectorized,

returns ready-to-use features, i.e., it is not necessary to use a feature extractor.

from sklearn.datasets import fetch_20newsgroups

newsgroups_train = fetch_20newsgroups(subset="'train'")

from pprint import pprint

pprint(list(newsgroups_train.target_names))

['alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
"comp.windows.x"',
'misc.forsale’,
'rec.autos’,
'rec.motorcycles',
'rec.sport.baseball’,
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',

'sci.space',
'soc.religion.christian',
'"talk.politics.guns',
'"talk.politics.mideast',
"talk.politics.misc',

'"talk.religion.misc']
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Web of Science Dataset

Description of Dataset:

Here are three datasets which include WOS-11967, WOS-46985, and WOS-5736 Each folder contains:

o X.txt

o Y.ixt

e YLI1.txt

e YL2.txt

X is input data that include text sequences Y is target value YL1 is the target value of level one (parent label) YL2

is the target value of level one (child label)

Meta-data: This folder contains on data file as the following attribute: Y1 Y2 Y Domain area keywords Abstract

The abstract is input data that include text sequences of 46,985 published paper Y is target value YL1 is the target
value of level one (parent label) YL2 is the target value of level one (child label) Domain is the major domain which
includes 7 labels: {Computer Science, Electrical Engineering, Psychology, Mechanical Engineering, Civil
Engineering, Medical Science, biochemistry} area is subdomain or area of the paper, such as CS-> computer

graphics which contain 134 labels. keywords: is authors keyword of the papers

» Web of Science Dataset WOS-11967

This dataset contains 11,967 documents with 35 categories which include 7 parents categories.
» Web of Science Dataset WOS-46985

This dataset contains 46,985 documents with 134 categories which include 7 parents categories.
» Web of Science Dataset WOS-5736

This dataset contains 5,736 documents with 11 categories which include 3 parents categories.

Referenced paper: HDLTex: Hierarchical Deep Learning for Text Classification
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