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Sarcomas represent one of the most challenging tumor types to treat due to their diverse nature and our

incomplete understanding of their underlying biology. Recent work suggests cyclin-dependent kinase (CDK)

pathway activation is a powerful driver of sarcomagenesis. CDK proteins participate in numerous cellular

processes required for normal cell function, but their dysregulation is a hallmark of many pathologies including

cancer. The contributions and significance of aberrant CDK activity to sarcoma development, however, is only

partly understood. Here, we describe what is known about CDK-related alterations in the most common subtypes

of sarcoma and highlight areas that warrant further investigation. As disruptions in CDK pathways appear in most, if

not all, subtypes of sarcoma, we discuss the history and value of pharmacologically targeting CDKs to combat

these tumors. The goals of this review are to (1) assess the prevalence and importance of CDK pathway

alterations in sarcomas, (2) highlight the gap in knowledge for certain CDKs in these tumors, and (3) provide

insight into studies focused on CDK inhibition for sarcoma treatment. Overall, growing evidence demonstrates a

crucial role for activated CDKs in sarcoma development and as important targets for sarcoma therapy.
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1. Introduction

Sarcomas are rare, highly diverse malignancies. They account for just 1% of all adult human cancers, although

their frequency is significantly greater (roughly 20%) among pediatric tumors. These lesions arise from

mesenchymal tissue, where approximately 80% occur in soft tissue and 20% in bone . Currently, there are
over 70 subtypes that classify lesions based on tissue resemblance and molecular characteristics .
Two broad groups of sarcomas exist—those with simple karyotypes, often characterized by a
specific, disease-driving alterations and those with complex karyotypes, where there are multiple
genomic losses, gains, and amplifications . Standard treatment for localized disease remains
surgical resection with adjuvant radiation and/or chemotherapy used in certain types of sarcoma.
Regrettably, many patients experience recurrence and metastasis, requiring systemic therapies that
are unfortunately not very effective. Additionally, since these lesions are heterogeneous, responses
to generalized treatments are variable and typically do not translate between different subtypes . To
combat sarcomas more effectively, the key pathways promoting their development and progression
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need to be elucidated. Recent advances suggest that activating alterations in cyclin-dependent
kinase (CDK) pathways are major drivers of sarcomagenesis.

CDKs are serine/threonine kinases involved in key cellular processes, primarily cell cycle
progression and transcription. As monomeric proteins, CDKs lack enzymatic activity due to a
structural conformation that buries the catalytic and substrate binding domains . To become active,
CDKs require association with a regulatory subunit known as a cyclin, hence their designation as
cyclin-dependent kinases. Humans have 20 CDKs that are classically divided into two main groups
— cell cycle (CDKs 1, 2, 3, 4, 6, and 7) and transcriptional (tCDKs 7, 8, 9, 12, 13, and 19), with
CDK7 contributing to both processes. Many CDKs that control cell cycle progression can bind
multiple cyclins, allowing for dynamic regulation throughout the cell cycle as well as increased
substrate possibilities. CDKs associated with transcription bind a single, specific cyclin, whose
expression is not regulated in a cell cycle-dependent manner . “Other” CDKs (5, 10, 11, 14–18,
and 20) do not fit into the two canonical roles and, instead, exhibit diverse functions that are often
tissue specific. For example, CDK11 variants have multiple functions in mediating transcription,
mitosis, hormone receptor signaling, autophagy, and apoptosis . Likewise, in the nervous system
CDK5 promotes neurite outgrowth and synaptogenesis while in pancreatic β cells it reduces insulin
secretion . As CDKs control crucial processes required for cell survival and propagation, their
hyperactivation (typically through mutation, gene amplification, or altered expression of their
regulators) is commonly observed in cancer.

The rarity and diversity of sarcomas has slowed efforts to identify key mutations driving these
cancers. In addition, sarcomas are sometimes simplistically viewed as a single entity or described in
broad, unspecified terms. As our knowledge of sarcoma biology has increased, there is a growing
appreciation for CDK pathway dysregulation in promoting disease progression. This review
discusses the current knowledge about CDK and CDK-related aberrations in the most common
subtypes of sarcoma in both adult and pediatric patients. Additional consideration is given to CDK-
targeted therapy in the pre-clinical setting as well as recent clinical trials.

Table 1 provides a consolidated listing of the genetic alterations in CDKs and CDK pathways within each human

sarcoma, strongly predicting the hyperactivation of tumor promoting CDKs in these cancers. Notable overlap exists

in the genetic alterations found within multiple sarcomas although there are unique genomic events that also

distinguish each sarcoma type. A recent analysis of genomic profiles and clinical outcomes in two independent

datasets of diverse soft tissue sarcomas identified the most frequently altered genes shared by most sarcomas,

namely TP53, CDKN2A, RB1, NF1, and ATRX . Strikingly, CDKN2A was the only gene whose inactivation was

associated with worse overall survival across all types of localized soft tissue sarcomas. CDKN2A is a fascinating

gene in cancer biology as it encodes not just one, but two powerful tumor suppressors . Through shared DNA

sequences that are translated in different reading frames, CDKN2A yields the p16  inhibitor of CDK4 and CDK6

as well as the ‘Alternative Reading Frame’ protein, ARF . While p16  functions by activating the

retinoblastoma (RB1) tumor suppressor, ARF inhibits cancer through multiple mechanisms including activation of
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p53. Thus, the observation that CDKN2A loss correlates with worse patient survival across many sarcoma types

suggests a central role for the p16 -CDK4/6-RB1 and/or ARF signaling pathways in sarcoma pathogenesis.

 Table 1. Genetic alterations of CDK pathway genes in sarcoma

INK4a

Gene Protein Alteration Sarcoma Subtype

RB1 Retinoblastoma
Deletion,

Mutation

UPS , MFS , PLPS ,

LMS , CS , OS ,

EwS , MPNST 

CDKN2A p16  and ARF
Deletion,

Mutation

UPS , MFS , LMS ,

MPNST , CS

,

 ARMS , OS , EwS 

CDKN2B p15 Deletion MFS , MPNST 

CCND

1-3
Cyclin D1-3 Amplification MFS , LMS , CS , OS 

CDK4 CDK4 Amplification
UPS , WD/DDLPS , SS , CS ,

ARMS , OS 

CDK6 CDK6 Amplification MFS 

MDM2 Mdm2 Amplification
UPS , MFS , WD/DDLPS , CS ,

ARMS , OS 

TP53 p53
Deletion,

Mutation

UPS , MFS , PLPS , CS , ARMS

, OS , EwS , MPNST , LMS 

KRAS Ras Amplification UPS , ARMS 
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Mutation

NF1 Neurofibromin Mutation
UPS , MFS , MPNST ,

ARMS 

ATRX
ATRX chromatin

remodeler
Mutation UPS , MFS , LPS 

TLS
Translocated in

liposarcoma
translocation,

(12;16)
M/RCLPS 

CHOP
C/EBP homologous

protein

MYC Myc Amplification
LMS , ARMS , OS ,

MPNST 

PTEN
Phosphatase and tensin

homolog
Deletion LMS , OS , MPNST 

SUZ12
Suppressor of zeste 12

protein homolog
Mutation MPNST 

EED
Embryonic ectoderm

development
Mutation MPNST 

SSX Synovial sarcoma, X

translocation,

(X;18)
SS 

SS18
Synovial sarcoma

translocation, chr18
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Abbreviations: UPS, undifferentiated pleiomorphic sarcoma; MFS, myxofibrosarcoma; WD/DDLPS, well- and de-

differentiated liposarcoma; M/RCLPS, myxoid/round cell liposarcoma; LMS, leiomyosarcoma; MPNST, malignant

peripheral nerve sheath tumor; SS, synovial sarcoma; CS, chondrosarcoma; ERMS, embryonal

rhabdomyosarcoma; ARMS, alveolar rhabdomyosarcoma; OS, osteosarcoma; EwS, Ewing sarcoma

2. Summary

Despite the diverse nature of sarcomas, activation of CDK pathways is a common alteration contributing to their

development and progression. One of the more frequent changes is inactivation of the CDKN2A locus, resulting in

loss of ARF-p53 and p16 -RB1 tumor suppressive signaling and consequent hyperactivation of cell cycle

IDH Isocitrate dehydrogenase Mutation CS 

CDKN1C p57 Deletion ERMS 

PAX1 Paired box 1
translocation,

(2;13)
ARMS 

FOXO1 Forkhead box O1

BRAF B-Raf Mutation ARMS 

PIK3CA p110a Mutation ARMS 

TWIST1
Twist family bHLH

transcription factor 1
Amplification OS 

CCNE1 Cyclin E1 Amplification OS , MPNST 

EWSR1
Ewing sarcoma

breakpoint region 1
translocation,

(11;22)
EwS 

FLI1
Friend leukemia

integration 1
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CDKs. Loss of other CDK inhibitors, such as p27, and upregulation of cyclin partners, such as cyclins D and E, are

also predominant events leading to aberrant CDK activation in sarcomas. While more remains to be learned about

the roles and significance of CDKs in the many different types of sarcomas, especially for CDKs with transcriptional

or other activities besides cell cycle regulation, it is clear these kinases are key players in sarcoma biology.

Continued studies of CDK dysfunction in sarcomagenesis are expected to solidify their importance in this disease

and further justify CDK-based therapies for patients. Currently, there is high enthusiasm in the clinic for newer

generation CDK inhibitors that target CDK4 and CDK6, such as palbociclib, as these drugs are more specific and

less toxic than earlier, more broadly acting compounds.

Based on impressive anti-tumor activities in pre-clinical studies, CDK4/6 inhibitors have become a central

component of current phase 1 and 2 clinical trials for various types of sarcoma. These drugs offer promising

treatment options for sarcoma patients who are in dire need of effective therapies to treat their cancers. Most of the

ongoing clinical trials for sarcoma have just started accruing patients and many involve combination therapy to

prevent acquired resistance to CDK-targeted monotherapy. Early phase studies in select soft tissue sarcoma

subtypes are showing promising results, particularly for liposarcoma where there is frequent CDK4 amplification. In

a phase 2 study of patients with advanced or metastatic well-differentiated / dedifferentiated liposarcoma

(NCT01209598), palbociclib therapy resulted in occasional tumor response along with a favorable progression-free

survival rate of 57% at 12 weeks . Currently, there is a multi-center phase 2 trial of palbociclib monotherapy in

Spain for patients who have advanced sarcomas with elevated expression of CDK4 (NCT03242382). Moreover,

CDK4/6 inhibitors are recognized as high priority agents by the Children’s Oncology Group for testing in metastatic,

relapsed Ewing sarcoma . As our understanding of the CDKs expands and we learn more about their individual

roles in sarcoma pathogenesis, it is fair to say these kinases represent increasingly valuable targets in the

treatment of sarcomas.
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