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The optimal generation scheduling (OGS) of hydropower units holds an important position in electric power systems,

which is significantly investigated as a research issue. Hydropower has a slight social and ecological effect when

compared with other types of sustainable power source. The target of long-, mid-, and short-term hydro scheduling

(LMSTHS) is to optimize the power generation schedule of the accessible hydropower units, which generate maximum

energy by utilizing the available potential during a specific period. Numerous traditional optimization procedures are first

presented for making a solution to the LMSTHS problem. Lately, various optimization approaches, which have been

assigned as a procedure based on experiences, have been executed to get the optimal solution of the generation

scheduling of hydro systems. This article offers a complete survey of the implementation of various methods to get the

OGS of hydro systems by examining the executed methods from various perspectives. Optimal solutions obtained by a

collection of meta-heuristic optimization methods for various experience cases are established, and the presented

methods are compared according to the case study, limitation of parameters, optimization techniques, and consideration

of the main goal. Previous studies are mostly focused on hydro scheduling that is based on a reservoir of hydropower

plants. Future study aspects are also considered, which are presented as the key issue surrounding the LMSTHS

problem.

Keywords: renewable energy ; optimal generation scheduling ; heuristic method ; genetic algorithm ; dynamic

programming ; hydropower generation

1. Introduction

The target of hydro scheduling is to maximize the gross utilization of the power generation of large cascaded hydropower

plants during the entire specific intervals of time while constrained to different operational and environmental constraints.

When the warranted energy production cannot not be enough, the main target is altered to maximizing the minimum

energy production. The OGS of hydro units is implemented throughout the procedure for a specified horizon of time during

the corresponding load demand .

Optimal hydro generation is difficult, and the major purpose is that decisions are time-dependent; the optimization problem

contains state-variables, which include the water level in the reservoir and stochastic, weather-reliable variables, the most

effective of which is water flow. Thus, the complete multi-dimensional optimization problem is divided into sub-problems.

Regularly, long-, mid-, and short-term sub-problems are detailed, and for each problem is made a solution by specified

solution methods , as presented in Figure 1. In this article, the hydro generation schedule is supposed to be covered

by the proposed solutions for all time horizons.

Figure 1. Hydro generation scheduling terms.

The previous research studies on hydro generation scheduling consider, typically, the hydropower plants based on the

reservoir. In this research, a complete survey shows the various aspects of a hydropower plant such as the case study,

limitation of parameters, optimization techniques, and consideration of the main goal, in the following subsections.
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2. Optimization of Short-Term Scheduling

Gea et al.  considered the optimization of the water time delay, which is continuously changing and creates a difficult

problem in dealing with the corresponding mathematical models. This study shows that the suggested model with a delay

period for the water may enhance the operational ability and profitability of scheduling utilization. Catalão et al. 

proposed a modern mixed-integer non-linear programming (MINP) technique, taking into account a non-linear function to

release water and the net head. An improved approach is implemented because of the more reliable modeling and

executed positively on cascaded hydro units with an ignored computational time condition. In Catalão et al. , they also

consider not only head dependency but intermittent operating regions and water release limitations as well. Numerical

results show the good performance of the suggested technique. Moreover, in Catalão et al. , they propose a new non-

linear method to solve the problem of hydro scheduling with constraints satisfied, taking into account the head

dependency. The results show that the suggested non-linear method is efficient.

Belsnes et al.  presented a model for operational stochastic hydropower scheduling. The proposed approach is based

on stochastic successive linear programming. From this study, enhancements achieve the objective function value and

reduce the risk of spills from reservoirs. Ge et al.  proposed a model that contains a non-linear function connected with

the water delay time, which is based on a successive approximation method. The suggested method is verified with two-

reservoir and ten-reservoir units. The numerical results prove that the suggested method provides realistic results.

Ma et al.  utilized the population initialization stage to improve the best individuals in the culture algorithm with

differential evolution (DE). For a constant water release operation, there is a better base to choose an operation strategy

in which the net head for hydropower generation is optimized and distributed economically for plant internal operation. Mo

et al.  presented a hybrid algorithm utilizing the multi ant colony system and the DE method that are used to solve the

sub-problems: unit commitment and economic load dispatch. The simulation results demonstrate that the suggested

technique has the best convergence features and computational proficiency with less consumption for water discharge.

Glotić et al.  considered the multi-population strategy to fulfil system requests with a reduced amount of water used in

each generated unit. The initial and final statuses of the reservoirs were fulfilled as well.

Yuan et al.  suggested a new hybrid chaotic GA. Simulation results have verified that the solution method is possible

and efficient for the applications. Chuanwen and Bompard  proposed a new self-adaptive chaotic PSO algorithm for the

hydropower plant dispatch model according to the base of optimum utilization. The results show the proficiency and

durability of the suggested approach in comparison with the original PSO algorithm. Li et al.  selected the support

vector machine with GA since it displays several benefits in handling non-linear and high dimensional pattern recognition.

By comparing its achievements, it is proven that the proposed model is a possible candidate for the optimum forecast of

hydropower generation. Mu et al.  highlighted an effective method to enhance the operation solutions of hydropower

plants in flood seasons. Three operation bases are validated with a numerical model by using the GA. Operation solutions

with bases executed may be obtainable with better objective values and higher optimization proficiencies.

Séguin et al.  presented a new technique to resolve the unit commitment and loading problem for a determined

hydropower system. The DP is employed to calculate the optimum output generated by a hydropower plant. Yuan and

Zhou  discussed how to process the problems produced by doubts and achieve self-optimization for real-time

hydropower operation. The results show that system dynamics simulation is a significant technique to model a composite

cascaded hydropower plant with feedback and specific loops. Changing et al.  proposed multiple stages of discharge

towards the outside of the upstream reservoir simultaneously with the discharge towards the inside of the downstream

reservoir, which can be computed by the Muskingum model. The result of the operation of the proposed model produces

additional advantages over realistic operation.

Jiekang et al.  presented a dynamic generation flow plan using the dynamically organizing net head of water in the

reservoir and the consumption quantity of water. The results show that this new approach can improve the synthesis

generation utilization of cascaded hydropower plants. Xin-Yu  composed the multi-objective optimal peak shaving

model. It minimizes the maximum remaining loads per energy grid, which is an integral part of distributing the energy of a

plant among some energy grids. A case study shows that the solution method is realistic, flexible and strong to get near-

optimal results proficiently. Lu et al.  suggested a real binary bee colony optimization algorithm that is used to resolve

parallel sub-problems of unit commitment and economic load dispatch. The simulation results prove that the suggested

approach can obtain top-advantage solutions with shorter computing times and less water consumption. Marchand et al.

 proposed a proficient model as a mixed-integer linear program, which shows a three-phase method based on a cost

analysis that produces, rapidly, close optimal solutions to real-world cases. Ellen et al.  presented a model for
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hydropower bidding according to the OGS from a stochastic model. Furthermore, they presented a heuristic algorithm for

decreasing the bid matrix into a size desired by a market operator. The results show how unchecked inflows may change

the bids.

Naresh and Sherma  presented a proposed technique using two phases of a neural network. The results show that the

suggested technique with a convenient choice of control parameters can generate and satisfy the optimal solution. Xu et

al.  focused on the entire price of operating a cascaded reservoir system for the corresponding power demand that

includes the price for the power source and the alternative price related to spillage. The results show that when

immensely rainy hydrological circumstances are predictable, a compromise method is a superior plan. Castro et al. 

highlighted the influence of operational choices on the market prices and the capability of regulating the tailwater level and

the generation and pumping proficiencies as a function of the water inflow. As a result, the advantage of the operation of

the hydro systems is assessed in a more realistic way, since market prices increase when pumping overrides generation

and decrease if generation overrides pumping.

A summary of the research studies executed previously on the overall optimization methods used for the operation of

short-term hydro scheduling is presented in Table 1.

Table 1. Optimization of short-term hydro generation scheduling. Mixed-integer linear programming, MILP; mixed-integer

non-linear programming, MINP; particle swarm optimization, PSO; optimal generation scheduling, OGS.

Case Study Limitation of Parameters Optimization Techniques Consideration of Main Goal Ref.

44 units, China
Balance, discharge, delay period,

and outflow of water; reservoir
storage volume; generation.

MILP method
Maximize the utility of energy

production during the outlining
horizon.

Portuguese
Water conversion of the reservoir;

head, storage, discharge, and
spillage of water; power generation.

MINP method

Employed to model the on-off
behaviour via integer variables to

avert inflows at prohibited
regions.

Two cases,
Portuguese

Parity and disparity constraints or
unpretentious variables of

restrictions.

A mixed-integer
quadratic programming

method

Model on–off behaviour to obtain
realistic energy, without affecting

future operations.

Portuguese
Balance, head, storage, discharge,

and spillage of water; power
generation.

A non-linear approach Considering head-dependency.

Norwegian
industry

The uncertainty of water inflow and
upcoming costs.

Stochastic successive
linear programming

Employed a first-order
approximation to the optimization

of water head.

34 hydro units,
China

Level and hydraulic coupling of
reservoirs; release and the flow of

water; power production.

Successive
approximation approach

The constant difference for a
delay period of water to define

operations realistically
exhaustive.

Gezhouba and
Gorges, China

Water discharge; hydraulic head;
online/offline time; reservoir water

level.

Culture algorithm with
differential evolution

Maximize the electrical power
generation through an entire

dispatch interval.

Three Gorges–
Gezhouba,

China

Balance, discharge, and head of
water; power balance;

uptime/downtime; turbine-
generator capacity; reservoir

storage volume.

Hybrid multi ant colony
system with adaptive
deferential evaluation

Locate which unit ought to be on
and the standards at which to
produce energy in per unit to

match the specific energy
request with full water

consumption.

Slovenia

Min and max for reservoir volume;
permissible variation in the

reservoir; production energy;
discharge.

Parallel Self-Adaptive
Differential Evolution

Optimal production distribution
via minimizing the utilized water
volume in each generated unit.

Benchmark of
two examples

Hydropower generation; dynamic
balance and discharge of water;

reservoir storage volume.

A hybrid chaotic genetic
algorithm

Discovery of the optimum hydro
generation units in each hour to

employ the restricted resource of
water.

Hubei, China
Dynamic balance and discharge of
water; reservoir storage volume;

hydropower generation.

A self-adaptive chaotic
with PSO

The optimal dispatching is by
maximum generation considering

the security conditions and
reliability.
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Case Study Limitation of Parameters Optimization Techniques Consideration of Main Goal Ref.

Yunnan, China Installed capacity utilization hour;
hydropower generation.

Genetic algorithm with
support vector machine

Power generation energy
prediction.

Three-gorge
dam, China

Maximum volume of water
discharge; initial level in the water

reservoir.

Developed a genetic
algorithm.

Establish the operation principle
values for optimal decisions.

Saguenay-Lac-
St-Jean,
Canada

Unit commitment and loading
problem; hydro generation; turbine-

generator efficiency; gravity
acceleration; turbine net head and

water discharge.

Dynamic programming

Dispatches energy production
among units and explores to

optimize gross generation and
select the unit commitment and
make discipline unit start-ups.

Qing River,
China

Uncertainties of inflow containing
its local and upstream outflow;
temporary power instructions.

Self-Optimization System
Dynamics Operation including real-time.

Sichuan,
China

Balance, storage capacity, and
outflow of water; expected output.

Multi-Stage Dynamic
Programming method

Uses maximum power generation
criterion to establish reservoirs

optimal operation.

8 stations,
China

Volume, head of water; reservoir
storage volume; power output;

dealing within/non-equality.

Electromagnetism-like
algorithm.

Realize the optimal power output
and to define its relationship with

the existing level of water.

State Grid of
China

Energy loads per grid; primary
storage of reservoir; domestic

inflow of reservoir; energy
production; storage of reservoir;

turbine inflow and spill.

Local search algorithm

Acquire nearer to the OGS for a
group of hydropower units on

some rivers and transmit
produced energy to some energy

grids.

Xiluodu and
Xiangjiaba,

China

Hydraulic connection; reservoir
storage; water discharge and

balance; forbidden operating areas;
limits of hydropower system;

uptime/downtime.

Developed binary-real
bee colony optimization

algorithm

Minimize the gross water
exhaustion, taking into account

enough demands of load and
different restrictions.

Québec,
Canada

Water reservoirs; what comes in
and out of the rivers and the transit

capacity in the river divisions;
possible delays; head and flow of

water; production.

Fast Near-Optimal
Heuristic

Maximize the stored value of
water in the reservoirs at the
scheduling end, maximize the

final water quantity and control
the variations in turbine

discharge.

Norwegian
watercourse

The inflow uncertainty function
when setting the maximum values

of bids.
Heuristic algorithm.

Demonstration of how prototypes
can be expanded to grant a
maximized curve of bids.

Block diagram
Load balance; spillage modeling;
water flow and reservoir storage

volume; turbine net head.

Two-phase neural
network

Minimize the production costs for
non-hydraulic power through the

period of schedule.

Qingjiang,
China

Load balance; balance and storage
of daily water; daily average and

limits for power output.

Multi-objective
optimization model

Maximizing the stored power in
the hydropower units and

minimizing the gross discharge
of water.

Douro River,
Portuguese Flow and head of water. The Linprog Function

To set hydropower plants as
price producers to get a more

practical model.

In daily-term scheduling optimization, Mengfei et al.  proposed a hybrid approach that merges discrete differential DP

with the progressive optimality algorithm. To correspond to the realistic operational requirements of the power grid, a

utilization maximization model is developed, in which the peak shaving requirements are used as constraints. With this

unit-commitment plan, the calculation speed may be faster, and the estimated optimal solutions may be obtained in a

sensible period. Yuan et al.  suggested a chaos concept to get self-adaptive parameter settings in the DE method. The

suggested approach is verified with four interconnected cascaded hydropower units, and the experience results are

validated with those obtained by the conjugate gradient and two-phase neural network technique to prove the superiority

of the proposed solution. Moreover, they proposed an enhanced PSO algorithm using chaotic sequences . The

simulation results show that both of the suggested approaches can get top quality solutions. Moreno and Kaviski 

highlighted an adjusted PSO algorithm. It is executed to achieve the maximum water benefit and with all constraints
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associated with synchronous water discharge. Computational evidence and comparisons with other heuristics approaches

such as simulated annealing proved the efficiency of the solution method. A summary of the research studies executed

previously on overall optimization methods used for the operation of daily-term hydro scheduling is presented in Table 2.

Table 2. Optimization of daily-term hydro generation scheduling.

Case Study Limitation of Parameters Optimization
Techniques Consideration of Main Goal Ref.

Zagunao
River, China

Peak shaving; equations of water;
spinning-reserve; uptime/downtime;

limits of the generator and
prohibited operating zones.

Discrete differential
dynamic

programming

Acquire additional benefit for power
generation with a confirmed water

volume based on the real requests of
the energy grid.

Numerical
simulation
example

Hydropower production; turbine
inflow; the net head of the reservoir;
delay period for the water transfer.

An enhanced
differential evolution

algorithm; chaos
theory

Minimize the variation summation
between the gross generation of
hydropower system and the load

request per hour during the period of
dispatching.

Numerical
simulation

Load balance; limits of generation;
water discharge; reservoir storage

volumes; transport delay time.

Enhanced PSO
algorithm

Minimize the gross expenses while
utilizing the accessibility of the hydro

exporter as far as possible.

Brazilian
Power

System

Generation and outflow of the hydro
plant; reservoir storage volumes;

water dynamic balance.

Adjusted PSO
algorithm

Maximize the gross hydropower
production to meet different material

and operational constraints.

3. Optimization of Mid-Term Scheduling

Shrestha et al.  addressed the optimal organization of hydropower properties based on optimizing the expected profits

of a provider, and the decision variables are generation and future contracts per interval of time. Baslis et al.  presented

a stochastic self-scheduling model for a hydro cost provider. The provider intends to optimize revenues in the daily

markets. The results indicate the possibility of getting a unique commercial solver. Catalão et al.  proposed a new

contribution to market volatility, which is presented in a model using cost strategies and risk management via conditional

value-at-risk concept to prevent revenue volatility. Furthermore, plant scheduling and pool contribution by hydropower

providers are concurrently considered to provide a solution for practically cascaded hydro units.

Flatabø et al.  established a plan to operate the generation system for a period of time. The arrangement of the turbine

and spill capacities of water is such that it minimizes the predictable operational expenses. Huber et al.  presented a

modeling method, in which the real accessible electricity market provides the source of data for the model. A benefit of this

modeling method includes the normal consideration of power future that provides hourly price curves. Besides, the model

can unify the optimizations. Moreover, they proposed a method to contain the capability of contribution to secondary

control. The output is an approximation of water quantities for use in the optimization and optimal contribution of

secondary control . They also proposed an approach based on Lagrangian relaxation, which is employed to discover

realistic quantities of water . Arild et al.  described an approach for optimal scheduling, a revenue optimizing, price-

taking approach with neutral risk to the provider for the exported energy and the ability to isolate and serially clear

markets. Martin et al.  assessed the quantity for producing initial reserves and how significant correct modeling is for

selling ability. It was discovered that the predictable revenue from selling ability decreased by 40% when the simulator

results are compared with the planning model.

Aquino et al. considered a recurrent  and hybrid intelligent  two-phase optimization neural network to resolve the

economic dispatch of power that minimizes the total cost of production with the corresponding load demand. The results

show that the enhanced model delivers optimal scheduling that gives orientation to the minimal cost of operation. Lotfi and

Ghaderi  proposed a new possibilistic price according to the MILP method. The result shows the capability and

suitability of the suggested method, and it may be simply executed for a regulated environment. A summary of the

research studies executed previously on overall optimization methods used for the operation of mid-term hydro scheduling

is presented in Table 3.

Table 3. Optimization of mid-term hydro generation scheduling.
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Case Study Limitation of Parameters Optimization
Techniques Consideration of Main Goal Ref.

Nord Pool,
Norway

Reservoir balance of water; upper
and lower limit of generation,

contract, and reservoir; spillage.

Stochastic linear and
non-linear

programming.

To determine the OGS and the
extent of binary contracts.

Greek Power
System

Uncertainty of turbine discharges,
load request, and rivals’ quotes.

Stochastic mixed-
integer linear
programming.

To optimize financial revenue and
making use of manipulating market

costs.

Portugal

Balance, head, storage, discharge,
discharge ramping, and spillage of

water; power generation;
commitment.

Mixed-integer non-
linear programming.

Realize the best quotes by
determining the plans of bids in the

daily markets.

Norway

Contents and spillage of the
reservoir; water flow pumping

capability; demand and supply of
power.

Stochastic DDP.
Establish system operation and

contribute to minimizing the
expected future operational costs.

Swiss hydro
system

Taking part in the over-the-counter,
power futures, options, day-ahead,

and spot markets.

Stochastic dynamic
programming.

Optimization depending on hourly
price forward curve.

Swiss hydro
system

Upper and lower basin level and
water inflows; the water levels in the

basins have negligible influence.

Integrating ancillary
services.

An optimal offering of secondary
control of cost-taker hydropower
generators with pumped storage.

Swiss hydro
system

Processes of avoiding risk, saving
of stores for spinning, and

hydropower generation flexibility.
Stochastic DDP.

Discovery of realistic quantities of
water that was supported by

national legal cuts.

Norwegian
watercourse

Inflow handling to reservoirs, their
volumes, hydro energy costs. Stochastic DDP.

Determine equivalent involvement
in the daily ability markets and its

reserve.

Lysebotn,
Norway

Balance of energy and reservoir;
springing reserve, startup cost;

hydro coupling; power discharge
function.

Stochastic DDP.
Fulfil the hydropower units

operators’ demands to get steady
operation for the grid.

Parnaiba river,
Brazil

Storage, discharge from of bounds
on the reservoir; initial volume and

target volume; hydraulic generation.

Two-phase
optimization neural

network.

Minimize the overall production
cost while satisfying the load

demand.

Guilan, Iran
Accessibility of energy production

units; obtainable water in
hydropower units reservoir.

Possibilistic
programming

approach.

Set the production, selling and
purchasing units of generation

company for the following season.

4. Optimization of Long-Term Scheduling

Zhao et al.  proposed a constrained Markov decision method for managing the water discharge to satisfy water supply

conditions and the system requirements for electric power and to minimize the entire expenses of energy production.

Numerical results prove the activity and the proficiency of the configuration and the solution method. Scarcelli et al. 

presented the Markovian stochastic DP by modeling monthly discharges based on possibility distribution functions. The

results demonstrate that the production of regular and proposed programs is very similar, corresponding to an average of

spillage and power generation but with cheaper costs. Scarcellia et al.  proposed monthly discharges based on

possibility distribution functions. The results show that the solution method produces spillage that decreases and

increases in electrical energy production, which reduces operational costs by up to 2.1%.

Birger Mo et al.  presented a method of operation scheduling and economic hedging by future contracts that are

combined in a unique model. The method may be valuable for hydropower firms that cover cost risks as well as the

discharge volatility. In , they described the structure of the cost model and its identification that is employed in the

stochastic optimization of hydro operation and adjustable contracts. The result shows how the cost model is employed to

combine hydro operation and economic hedging. Hongling et al.  assessed state-of-the-art techniques like Tree

Captures (TC), the Clustering Method (CM), the Heuristic Method (HM), the Stochastic of the DP, and Monte-Carlo

Simulation (MCS), in which considerations focus on the revenue produced by volatility in instant costs and reservoir

discharge. Moreover, generation sources can also be employed to control risk to some extent. Larsen et al.  proposed

a linear time series model based on stochastic discharge that considers flood season and lag-one autocorrelation as well

as the strategy of decrease based on reducing the size of a conventional strategy set while retaining the wasted
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stochastic information included. The results show that the selection of the strategy of decrease technique affects the

solution to the planning problem of hydropower operation considerably. Hjelmeland et al.  proposed a stochastic DDP

scheduling model according to mixed integer programming (MIP). The predictable revenue from the selling ability of the

linear stochastic DDP model was 29.2% greater than that from the simulator model. The total revenue wasted reduces by

0.93%, quantifying the overestimation of revenue in the proposed model.

Baohong et al.  introduced three optimization approaches including the progressive optimization algorithm, the PSO,

and the GA. The minimum rate of water inflow consumption is selected as the objective function. After comparing the

effects of the three approaches, the progressive optimization algorithm is discovered to be more suitable for the Zhelin

reservoir. Mengfei et al.  considered the prediction error that occurs in monthly forecasting of the flow of watercourses

and suggested an approach named the predicting dispatching chart for Xiluodu and Xiangjiaba cascaded hydro plants.

The chart has been verified for realistic operations and realizes enough production.

Cheng et al.  proposed a new chaotic GA. The results show that the average yearly power is the largest, and its

convergent speed is not only quicker than the DP but exceeds that of the GA as well. Therefore, the solution method is

possible and efficient for the optimal operations of composite reservoir units. Yao-Yao et al.  presented a new chaotic

PSO algorithm and makes a comparison between the proficiency of one- and three-dimensional chaotic charts within a

regular range. Statistical results and validations prove the influence and speed of various algorithms for a realistic hydro-

system. Hammid and Sulaiman  focused on the enhancement of the optimization model by using the PSO and Firefly

Algorithm (FA) approaches to obtain a steady utilization of power generation at its optimum level. The results show the

robustness of the FA, its proficiency and its excellence. They have made a new strategy to improve PSO and FA via a

series division method as well. The results show that the Series Division Firefly Algorithm is robust and has good

efficiency and superiority . Lia et al.  proposed a multi-core parallel PSO algorithm. The results show the

enhancement of the efficiency, the dependability of the optimal production, and its low execution price. The proposed

method has a high possibility for future optimal operation.

Zhang et al.  proposed a multi-objective adaptive DE with a chaotic neural network. The proficiency of the proposed

algorithm is obtained to compare with multi-objective optimization algorithm and demonstrates that it can be an assuring

choice and deliver optimal trade-offs for multi-objective reservoir operation. Wang et al.  proposed multi-population ant

colony optimization for a continuous domain. The effectiveness and steady state of the proposed algorithm are validated

by its further acceptable outcomes. The system can get more power generation gain than other choices during a wet,

normal and dry year.

Liao et al.  formulated an economic dispatch of hydropower systems and analyzed the accomplishments of three

various principles of the control parameter adjustment standard. Then, the accomplishment of the suggested algorithm is

compared with that of different algorithms like the PSO. Liao et al.  presented a modern multi-objective evolutionary

algorithm called the multi-objective artificial bee colony algorithm. Statistical results prove the performance and proficiency

of the suggested algorithms, which have better convergence speed and satisfy the distribution of the Pareto front.

Zambelli et al.  proposed a yearly discharge predicting model in an open-loop feedback control operational strategy. In

Zambelli et al. , they proposed a predictive control according to deterministic non-linear optimization and yearly

discharge predicting models. The production of the suggested method is compared with that of the stochastic DP method.

The results illustrate that both solution methods indicate an operational production nearer to that of an excellent solution,

producing higher average hydropower generation and lower spillages of the reservoir. Moreover, in Zambelli et al. ,

they proposed a novel deterministic method based on adaptive model predictive control. In comparison, the suggested

method is discovered to deliver a better product because of the increased effective utilization of water sources, causing a

safer and cost-effective operation.

Mantawy et al.  proposed a Tabu search algorithm and introduced novel concepts for generating possible solutions

with a flexible stage vector orientation. The statistical results illustrate an enhancement in the introduced solution

compared with earlier solutions.

Nabona  employed deterministic discharges for the case of the discharge that is delivered as possibility density

functions via multicommodity network discharges. It has been illustrated that problems including numerous reservoir units

with incomplete reliance on discharges can be passably modeled as well. Fosso et al.  created a model based on

maximizing generation by taking into account the spot market cost. The result shows how to implement the management

computations for water value. Fleten et al.  presented a multi-stage stochastic MIP model that has a current tax time

decision and a harsher decision in the future. It treats cost as a stochastic parameter and considers deterministic water

discharge as it is designed for treatment in the wintertime period. Grønvik et al.  proposed linear decision rules that

optimize the market price from the energy production sale in a good performance market. The uncertainty concept is
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included in market costs and reservoir discharges. The results show that the suggested estimation is efficient at reducing

the complexity of computations. Guisández et al.  considered water discharge as another case variable to determine

the problem case description. The results of the water discharge as a state variable does not illustrate an important

influence in the expected yearly profits, but assured variations are recognized for specified time intervals of the year that

might prove its deliberation in fewer period prospects. Xiaolin et al.  aimed to explore the possibility of power

generation and load requests. The results show that the cost-effectiveness of the system is developed when power

generation and load requests are combined in the scheduling.

Sharma et al.  presented the optimum exploitation of accessible hydro sources in all parts of the country with minimum

ecological influences. It not only satisfies the country’s power demand but also provides power to the north grid to support

the general progress of the country. Zhao et al.  determined the optimum ability endurance of storage between tight,

minimal cost increment and reduced minimal return. The results support the analytical decisions and show that the

minimal return from the ability endurance of storage is larger than the minimal cost. Molina and Soares  presented the

evaluation efficiency of a simulation model that proves a scientific application using two fundamental comparisons of the

model: a hydropower generation function and the balanced equation of water. The results show that the simulation model

may be exaggerating, by more than 3%, the hydropower production of the recognized plants. A summary of the research

review executed on the overall optimization methods used for the operation of long-term hydro scheduling is presented in

Table 4.

Table 4. Optimization of long-term hydro generation scheduling. Tree captures, TC; clustering method, CM; heuristic

method, HM; dynamic programming, DP; dual dynamic programming, DDP; genetic algorithm, GA; Monte-Carlo

simulation, MCS.

Case Study Limitation of Parameters Optimization
Techniques Consideration of Main Goal Ref.

Yellow River,
China

Annual consumption, release, and
storage of water; cost structure.

Constrained Markov
decision process

Determining the water release and
to minimize the total energy

production cost.

Hydro plants,
Brazil

Hydro generation; head, discharge,
and density of water; gravity

acceleration; average efficiency.

Markovian
stochastic DP

Minimizing the predictable
quantities of the operating expense

by considering discharges.

Sobradinho,
Brazil

Time; cost; load demand; efficiency;
discharge and head from turbine;
spillage; forebay/tailrace function.

Markovian
stochastic DP

Monthly inflow for single-reservoir
hydropower systems.

Røldal/Suldal
Scandinavia

Balance of water and reservoir;
contract balance of future period,
spot market, and accumulation of

profit.

Stochastic DDP
Obtain a firm’s risk management to

maximize an outlined interval
separable advantage task.

Norsk Hydro,
Norway

Modified transition probabilities; cost
node numbers; the medium cost in a
period time of stage for cost node.

Stochastic DDP
approach

To assess the transmission
prospects for cost from the
previous week and beyond.

Yalong River,
China

Min/max level of release and storage
for the reservoir at the overall/end of

time; max/min of generation.

TC; CM; HM; MCS;
stochastic DP

Generate energy and sell with the
best revenue with minimum market

risks.

Tokke Sys.,
Norway

Equations of water balance; reservoir
capacity limitations; inflows of water

for each reservoir at plants.
Stochastic DDP

To solve an inherently stochastic
problem because of the

uncertainty upcoming discharge of
the reservoir.

South-west,
Norway

Reservoir balance; energy balance
including inflow and generation; start-
up expenses; the amount of capacity
available for sale; primary frequency

reserve.

Stochastic DDP
To produce a performance metric

of the revenue assignment to reach
convergence.

Jiangxi,
China

Balance, level, and the outflow of
water; power output; non-negative

constraints.

Progressive
optimization

algorithm

Optimal reservoir scheduling to
completely utilize water exported

and make it economical.

Xiangjiaba,
China

The capacity of reservoir storage;
head and inflow of water; power
generation; hydro plant network.

Improved parallel
progressive
optimality

Maximize the gross energy
production of entire hydro plants
throughout the dispatching time.
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Case Study Limitation of Parameters Optimization
Techniques Consideration of Main Goal Ref.

Nanpan River,
China

Storage volume and discharge of
reservoir; power generation; water

balance.
Chaos in the GA

Maximize generation output based
on the reservoir discharges

chronologically.

Three Gorges,
China

Balance, discharge, and the level
volume of water; capacities of

reservoir storage; the level of river
water; hydro generation.

Chaotic maps in the
PSO algorithm

Maximize the gross revenue of the
energy production and distribution

during a long period.

Himreen lake
dam, Iraq

Net head of turbine; flow rate and
density of water; hydropower system

efficiency.

Firefly algorithm and
PSO

To estimate optimal discharge of
water of hydro reservoirs and
energy production per unit.

Himreen lake
dam, Iraq

Net head of turbine; flow rate and
density of water; hydropower system

efficiency.

Series division
method with FA and

PSO

To estimate optimal discharge of
water of hydro reservoirs and
energy production per unit.

Three Gorges,
China

Balance, level, and discharge of water
limits; power generation limits.

Multi-Core
Parallelization of

PSO

To discover the optimum plan for
maximum power generation

through the operation interval.

Three Gorges,
China

Level, head, discharge, and balance
of water; reservoir storage

conversion; output generation.

Multi-objective
adaptive differential

evolution

Minimum environmental shortage
and excess water capacity;

maximum energy production.

Jinsha
River, China

balance, level, head, and outflow of
water; hydraulic connection; storage

reservoir.

Multi-population ant
colony optimization

The maximum utility of energy
production of big cascaded

hydropower plants.

Three Gorges,
China

Hydraulic connection; output limit;
water limits of balance, release, level,

and reservoir.

An adaptive artificial
bee colony algorithm

Maximize the gross utilities of
energy production by finding the
optimal procedure of the water

level rate.

Three Gorges
Dam, China

Hydraulic connection; level, release,
and dynamic balance of water;

reservoir water level; output power.

Multi-objective
artificial bee colony

algorithm

Optimize both generation benefits
and firm output simultaneously.

Southeast
river, Brazil

Net head of water storage as a non-
linear function, spillage, and inflow. Predictive control

To exemplify hydro energy
production by using deterministic

optimization model.

Paranaíba
River, Brazil

Net head of water storage as a non-
linear function, spillage, and inflow. Predictive control

Provide an inflow sequence and
supply the optimal inflow solutions

throughout a specific period.

UNICAMP,
Brazil

Operating costs; generation; head
and discharge of water; release and

balance of the reservoir; spillage.

Adaptive model
predictive control

Provides optimal releases and
optimizes operation costs plus the
minimum future operation costs.

Block diagram
The capacity of the reservoir;

minimum and maximum for storage
and discharge.

Tabu search
algorithm

Predictable value of the water
residual in the reservoir, optimize

power generated, and water
conservation.

Spain

Independent, linear and quadratic
coefficients, and the predicted value

operator of the probabilistic
production expenses; generation; the

flow per specific commodity

The non-linear
network flow

technique

Minimizing the total predictable
production expenses per period,
considering the water inflows per

period.

Norway

Maximum and time of generation:
minimum and maximum level of the

reservoir; spillage; the value of
storage.

Successive linear
programming

How is scheduling mixed in the
new arrangement for market-

clearing and system operation?

Leirdøla,
Norway

Volume available capacity of bid;
water flow rate; generated power; the

day-ahead; balance, level, and
bounds of the reservoir; start-up and

shutdown costs.

The multistage
stochastic mixed-

integer programming
model

Generate bid curves as this is the
only output that depends on the

expectation on future prices rather
than the actual realizations.

Nord Pool,
Norway

Min and max level, production,
spillage, and Inflow of reservoir;
electricity price; water discharge.

Linear Decision
Rules

Obtain optimal use of resources
and the expected discounted

market value of total production.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]



Case Study Limitation of Parameters Optimization
Techniques Consideration of Main Goal Ref.

Miño-Sil River,
Spain

Hourly water inflows and head;
reservoir level; generation; costs of
wear and tear, start-up/shut-down,
and energy; environmental flows;

ramping rates.

Mixed-integerlinear
programming

The uninterruptible discharge
between sequential weeks is

warranted via accreditation of the
inflows per hour as a variable in

the yearly problem.

Southern,
China

Electrical energy balance;
interruptible load; generating; head,
flow, storage, and balance of water.

Mixed-integer
programming

method

Minimize the cost caused by
various power interruption

measures.

Kashmir and
Jammu, India

Average power production; specific
weight, flow, and net head of water;
efficiency of turbine and generator.

Decision support
system

Improve operational efficiency and
make optimal operational and

trading decisions.

Three Gorges,
China

One/two-period formulation depends
on single-period utility includes

(reservoir volume storage; inflow and
release of water) and maximum

cumulative utility.

Marginal utility
principle

Determine the optimal delay of
storage among intervals that set
the proposed concept in water

equipping.

Francisco
River, Brazil

Storage, spillage, and discharge of
water; upstream plant. Simulation model

Evaluating the simulation
efficiency of the hydropower

model.

5. Conclusions

The optimal generation scheduling (OGS) of the hydro system is resolved by the employment of various optimization

algorithms, which include the heuristic optimization approaches. The description of the objective function of the LMSTHS

optimization problem shows the numerous parities and disparities related to hydro generation systems. A renewed and

complete survey of the optimization method implementation for the hydro scheduling solution is given in this article, which

examines approaches from various perspectives. In this article, the fundamentals of various optimization algorithms for

solving the hydro scheduling problem are studied, and special parameters of the algorithms are included. Many methods

take into account the statistical analysis of the acquired solutions of the OGS of hydro units, in which several case studies

are considered. The article, which describes various optimization approaches to the hydro scheduling problem, considers

the qualitative and statistical comparison of the approaches. It may considerably benefit the academic authors in the field

of solving the LMSTHS problem limited by the execution of optimization approaches. The solution to the OGS of hydro

and thermal systems in alternating current power flow is a more practical problem that may be presented as future

research in the field. The scheduling of hydro systems would be more necessary and valuable by considering other

sustainable energy resources like wind and solar power, which are currently manipulated by the employment of

optimization approaches. The impact of pumped water storage on the solution of LMSTHS problem has additional study

potential, which may be investigated in future work.
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