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Calcium (Ca2+) is a divalent cation and a universal second messenger that regulates the most important functions

and facets of all eukaryotic cells, including: gene expression, proliferation, regulation of bioenergetics, contraction

of muscles, mediation of fertilization, and many other cellular functions. Regulation of free intracellular

concentration of Ca2+ is an important mechanism for intracellular signaling, and it is a key component in the

mediation of many cell functions and biochemical reactions, being crucial for signal transduction in cells. On top of

all that, intra-mitochondrial Ca2+ regulates a cascade of physiological and pathophysiological processes in cells

The normal level of intra-mitochondrial Са2+ is essential for the correct functioning of mitochondria; whereas Ca2+

overload is typical for a wide range of mitochondrial dysfunctions and pathophysiological processes. Homeostasis

of Ca2+ in the mitochondria is determined by the delicate balance of mitochondrial Ca2+ transport systems in both

the inner (IMM) and outer mitochondrial membrane (OMM). Ca2+ influx and efflux systems are composed of

different components, including: channels, pumps, antiporters, or Ca2+ binding proteins that cooperate to maintain

intra-mitochondrial Ca2+ homeostasis.

mitochondria  Calcium transport  VDAC  MCU  RaM  mRyR  mPTP  LETM1

NCLX  HCX

1. Introduction

The organelles responsible for Ca  homeostasis are undoubtedly the mitochondria, which are essential for cellular

bioenergetics, not only by storing energy in the form of ATP, but also by playing a major role in Ca  signaling 

. Ca  uptake by mitochondria not only participates in the regulation of cytosolic Ca  concentration ([Ca ]), but

also stimulates mitochondrial respiration and ATP production . These properties make these organelles the

major cellular components in the regulation of the fate of a cell . 

Localization of mitochondria inside the cell can vary significantly: from the periphery of the cell, around the nucleus,

but also close to the plasma membrane or the endoplasmic/sarcoplasmic reticulum (ER/SR) . These different

localizations determine the Ca -buffering capacity of each individual mitochondria as well as the mitochondrial

network . Upon contact of the mitochondria, or more specifically the outer mitochondrial membrane (OMM) with

other organelles, membrane contact sites are formed . These inter-organelle associations have various

functions. For instance, those formed between the mitochondria and ER/SR (mitochondria-associated membranes,

MAMs) determine Ca -uptake from the cytoplasm to the mitochondria, and therefore play an essential role in the

Ca  signaling pathways . It is established that such associations contain microdomains with high Ca
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concentrations that determine the mediation of Ca  transport between the mitochondria and the ER/SR [24].

Moreover, mitochondrial associations with the plasma membrane are engaged in the mediation of Ca  transport

from the extracellular environment .

Mitochondria are the power generators of cells. They produce ATP in the citric acid cycle (the tricarboxylic acid

(TCA) or the Krebs cycle (see Box 1 for more information). Production of ATP involves activation of the Ca -

dependent dehydrogenases in the citric acid cycle, F0F1-ATP-synthase and metabolite transporters; all of them

being supplied by basal oscillating increases in the concentration of Ca  in the mitochondrial matrix . In

addition to these normal physiological oscillations, large Ca  spikes in mitochondria can cause an opening of the

mitochondrial permeability transition pore (mPTP) . In turn, this induces a collapse of the mitochondrial

membrane potential, termination of oxidative phosphorylation processes, osmotic changes, mitochondrial swelling,

and inner membrane remodeling. All of these processes culminate by mitochondrial outer membrane

permeabilization (MOMP) and the release of cytochrome c; being both an inducer of apoptosis and modulator of

other proapoptotic factors . Whereas mostly associated with programmed cell death, a number of

compounds trigger changes in Ca  homeostasis and mPTP-induced apoptosis .

The ability of mitochondria to uptake and retain Ca  had already been described in the early 1960’s using isolated

mitochondria . During the same years, the chemiosmotic theory, as proposed by Mitchell , revealed the

thermodynamic basis of the process.

Box 1. The generation of ATP by mitochondria

Mitochondria are the power generators within all eukaryotic cells. They release their energy in the form of ATP

by the oxidation of sugars. Electrons supplied by NADH are transferred to oxygen by a series of protein

complexes in the inner mitochondrial membrane. By pumping protons across the membrane, these complexes

create a transmembrane electrochemical gradient (ΔΨ, ~ -180 mV). This reverse current of protons into the

mitochondrial matrix occurs through a proton channel formed by ATP synthase, and it is used to store energy in

the form of ATP.

Mitochondria are able to rapidly accumulate and transiently store Ca  for later quick release, making these

organelles important cytosolic depots or buffers for Ca  regarding mediation of the cell's physiological and

pathological processes, including from cell survival to cell death . Regulated elevations of Ca

levels in the mitochondrial matrix are necessary for the regulation of Ca -dependent mitochondrial enzyme

activity, which sequentially mediates the metabolic balance and function of the mitochondrial electron transport

chain, as well as the production of mitochondria-generated reactive oxygen species (ROS) .

Undoubtedly, the precise regulation of mitochondrial Ca  uptake and release is necessary for proper cellular

functioning and regulation of mitochondrial bioenergetics. The normal level of intra-mitochondrial Са  is essential

for the correct functioning of mitochondria; whereas Ca  overload is typical for a wide range of mitochondrial

dysfunctions and pathophysiological processes . Homeostasis of Ca  in the mitochondria is
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determined by the delicate balance of mitochondrial Ca  transport systems in both the inner (IMM) and outer

mitochondrial membrane (OMM) (Figure 1). Ca  influx and efflux systems are composed of different components,

including: channels, pumps, antiporters, or Ca  binding proteins that cooperate to maintain intra-mitochondrial

Ca  homeostasis .

Figure 1. Schematic presentation of Ca  transport systems in mitochondria. (1) Ca  influx and efflux through the

outer mitochondrial membrane (OMM) driven via the voltage-dependent anion channel (VDAC). (2) Ca  influx

through the inner mitochondrial membrane (IMM) driven by three major transport systems: (i) mitochondrial Ca

uniporter (MCU), (ii) mitochondrial ryanodine receptor (mRyR), (iii) rapid mode of Ca  uptake (RaM) and one

mitochondrial system under debate: (iv) leucine zipper- EF-hand containing transmembrane protein (LETM1). Ca

influx through the MCU is established by the electrochemical gradient created by the electron transport chain

(ETC). (3) Ca  efflux through the IMM driven by three other major transport systems: (i) Na /Ca /Li  (NCLX)

exchanger, (ii) H /Ca  exchanger (HCX), (iii) mitochondrial permeability transition pore complex (mPTPC) and one

mitochondrial system under debate: (iv) leucine zipper- EF-hand containing transmembrane protein (LETM1). (4)

The core constituents of mPTPC include: the adenine nucleotide translocase (ANT), matrix cyclophilin D (CypD)

and phosphate carrier (PiC), which serve as pore regulators, and the pro-apoptotic proteins Bax and Bak, which

can induce mitochondrial swelling and rupture during the mPTP opening. ATP-synthase is the key IMM-pore

forming unit of mPTPC.

2.1 Calcium influx and efflux through OMM

When Ca  enters the mitochondrial matrix from the cytoplasm, it first encounters the OMM. This membrane is

highly permeable to cations, anions, and molecules with molecular weights <5 kDa due to the presence of large

conductance channels. These channels, formed by voltage-dependent anion channel proteins (VDACs), allow for

the exchange of Ca  and small molecules by concentration gradients . They not only regulate
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transport of Ca  from the cytoplasm into the intermembrane space (IMS), but are additionally engaged in the

mediation of cellular metabolism by transporting ATP and other small metabolites across the OMM .

Importantly, the permeability of VDACs is precisely controlled and regulated, particularly by ATP and a variety of

cellular regulatory factors. 

VDAC (Figure 1) was the first channel that has been reconstituted and characterized in detail at the single-channel

level . It has been proposed to work as the principal metabolite transport system across the OMM, and had

also been proposed to serve as the interconnection point between the OMM and IMM . Later, three different

VDAC isoforms were identified: VDAC1, VDAC2, and VDAC3 .

VDAC1 is highly expressed in most cells, and seems to be the most prevalent and most extensively characterized;

it is also considered as the main transport channel for Ca  . VDAC1 is the gatekeeper for the passage of ions

and metabolites, and is crucial for the regulation of apoptosis, thanks to its interactions with pro- and anti-apoptotic

proteins . Activity of VDAC1 is critical for the mitochondrial metabolic pathways balance, as well as for cell

survival . Imaging of VDAC1 by stimulated emission depletion nanoscopy revealed the organization of VDAC

proteins into clusters in H9C2 cells, which has also been studied in VDAC transfected U2OS cells . VDAC1

consists of 19 transmembrane β-strands that are organized into the membrane-incorporated β-barrel and a

amphipathic 26-residue-long N-terminal domain, which can translocate from the pore interior to the channel

surface . This behavior is crucial for controlling the gating of the channel as well as its interactions with apoptotic

proteins . Whereas isoforms of VDAC1 and VDAC2 self-assemble into structures resembling a pore, VDAC3

forms smaller conductance channels that are able to modulate the physiological functions of various proteins . As

demonstrated by Checchetto et al. [58], VDAC3 isoforms demonstrate different electrophysiological properties

compared with those of VDAC1 and VDAC2. In the context of their structural/functional characteristics, VDAC1,

VDAC2, and VDAC3 have some similarities; at the same time, they exhibit different physiological functions

regarding their interaction with cytosolic proteins and other mitochondrial proteins . Furthermore, only

limited information is available regarding the potential functions of VDAC2 and VDAC3 for the influx of Ca  

.

2.2 Calcium influx through IMM

Compared to the OMM, the IMM exhibits a fundamentally higher selectivity for anions and cations thanks to the

presence of highly-specific and different protein machinery in the IMM. The key transporters that determine Ca

uptake by mitochondria through the IMM until recently were unclear. It is now believed that the transport of Ca

through the IMM is accomplished by a group of mitochondrial Ca  uptake transporters. Basically, three main

mechanisms of Ca  influx have been proposed (Figure 1): (1) a mechanism that requires an electrogenic

mitochondrial Ca  uniporter multi-protein complex (MCU complex); (2) a so-called rapid mode (RaM); (3) a

mechanism requiring the mitochondrial ryanodine receptor (mRyR) ; and (4) additionally, leucine

zipper-EF-hand containing transmembrane protein (LETM1) could represent another Ca  influx mechanism, but

its role is still under discussion .
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2.2.1 Calcium influx by mitochondrial Ca  uniporter (MCU) multi-protein complex

The molecular identity of this Ca  transport pathway had been unclear for several decades. However, in 2011, the

CCDC109a gene, a pore-forming component of the MCU channel, mediating Ca  influx into mitochondria was

discovered [65,66]. The protein encoded by the CCDC109a gene is responsible for Ruthenium Red-sensitive

mitochondrial Ca  uptake. Currently, accumulation of Ca  through the MCU multi-protein complex is the most

widely characterized and commonly accepted pathway of Ca  influx into mitochondria; and it is considered as the

major pathway of the mitochondrial Ca  influx. It is determined by a large electrochemical gradient (∼−180 mV)

across the IMM, and may be inhibited by Ruthenium Red and lanthanides . The complex consists

of several subunits, including transmembrane core components and regulatory subunits that are associated with

the membrane. The core components of the MCU multi-protein complex (see Box 2 for details) are comprised of:

a) core protein components: Mitochondrial Ca  Uniporter (MCU), a MCU dominant negative beta subunit (MCUb),

and Essential MCU REgulator (EMRE); and b) membrane associated regulatory components: mitochondrial Ca

uptake protein 1-3 (MICU1-3) and Mitochondrial Ca  Uniporter Regulator 1 (MCUR1) .

Solute Carrier 25A23 (SLC25A23)) was initially identified as an essential component of MCU, however, it is

currently under debate whether SLC25A23 is an component of MCU or whether it influences MCU indirectly 

. Importantly, the MCU complex can be found in multiple states. 

Box 2. Structure of the MCU multi-protein complex

Core components

MCU (mitochondrial Ca  uniporter, previously known as CCDC109a, 40kDa) is a key core component of

the complex. It is encoded by a highly conservative MCU gene and is present in virtually all eukaryotic

organisms . MCU can be found in multiple states, and it consists of two coiled-coil domains (CC) and

two transmembrane domains connected via a short loop (9 amino acid residues) containing a highly conserved

DIME motif [42,65,66].

MCUb (MCU dominant negative beta subunit, formerly known as CCDC109b, 40 kDa) is a core component

of the MCU multi-protein complex encoded by the MCUb gene, and is present in all vertebrates . It

exhibits a 50% homology with MCU; however, MCU and MCUb demonstrate diverse expression profiles in

different tissues. Importantly, MCUb significantly impairs Ca  permeation through MCU .

EMRE (essential MCU regulatory element, 10-12 kDa) is the last core component identified in the complex. It

contains a single transmembrane segment, and crucially regulates MCU activity as has been shown using

EMRE knockout cells, which inhibited mitochondrial Ca  influx . EMRE is assumed to be involved in the

formation of interactions between the core and the regulatory subunits, despite the fact that such ensembles of

regulatory components do not require the presence of EMRE  .
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2+

2+

2+

2+ 2+

2+

2+

[27][55][36][60][61][62]

2+

2+

2+ [2][55][11][36][41]][61][62][63][64][65]

[55][36]

[66]

2+

[35][55][41]

[64][65][67]

2+ [36][62][63]

2+ [68]

[55][36][41] [68]



Calcium Transport Systems in Mitochondria | Encyclopedia.pub

https://encyclopedia.pub/entry/3012 6/26

MICU1 (mitochondrial Ca  uptake protein 1, known as CBARA1/EFHA3, 54kDa) known as

CBARA1/EFHA3, is a membrane-associated and water-soluble component localized in the inter-membrane

space; it is considered as central for the activation of MCU. In the resting state (i.e., at low intracellular

concentrations of Ca ), MICU1 blocks access of Ca  to the MCU channel . It also acts as a

cooperative activator of MCU and it stimulates MCU Ca -transport conductivity .

MICU2 (mitochondrial Ca  uptake protein 2, known as EFHA1, 50 kDa) and MICU3 (mitochondrial Ca

uptake protein 3, known as EFHA2, 60 kDa) display the EF-hand domains in the protein structure, and were

identified as MiCU1 paralogs with 41% and 34% identity to the MICU1, respectively . MiCU2 forms

heterodimers with MiCU1 through disulfide bonds, and acts as a Ca  sensor, protecting the mitochondria

against Ca  overload, and it also acts as the regulator of several cell functions .

MCUR1 (mitochondrial Ca  uniporter regulator 1, known as CCDC90A, 40 kDa) is composed of 2

transmembrane domains and 1 specific coiled-coil region, and it belongs to yet another regulatory component

of the MCU complex . MCUR1 knockdown prevents Ca  entry into the mitochondria; whereas, its

overexpression promotes mitochondrial Ca uptake . MCUR1 interacts with EMRE and MCU-pore via its

coiled-coil domains, which stabilize all components of the MCU complex . It is involved in the assembly of the

mitochondrial respiratory chain, and represents a cytochrome c oxidase assembly factor; possibly also

regulating the mitochondrial membrane potential .

SLC25A23 (solute carrier 25A23, 48-54 kDa) was initially identified in the IMM as a protein with the EF-hand

domain, and has been proposed as a component of MCU multi-protein complex . SLC25A23 may also

function as an ATP-Mg/Pi exchanger, promoting the influx of adenine nucleotides into the matrix of mitochondria

and the efflux of inorganic phosphate. Of note, SLC24A23 functions in a Ca  dependent manner [73,88].

Mutations and modifications of the EF-hand domains in this carrier decrease Ca  influx into mitochondria;

however, it still remains unclear whether SLC25A23 influences the uniporter complex directly or whether it

affects the mitochondrial bioenergetics . Further studies are necessary to understand the exact

mechanism by which SLC25A23 regulates mitochondrial Ca  influx.

2.2.2 Rapid mode mechanism (RaM) of Ca  uptake

The RaM (RApid Mode of Ca  uptake) mechanism is able to accumulate Ca  up to a hundred times faster

compared with the MCU multi-protein complex (no molecular structure responsible for this mechanism has yet

been identified) . It is transiently activated by low calcium concentrations (50-100 nM) and by high

concentrations of Ruthenium Red . This behavior contrasts sharply with MCU, which is activated by Ca

concentrations higher than 500 nM. RaM promotes mitochondria to rapidly sequester Ca  at the beginning of each

cytosolic Ca  pulse, and rapidly recovers between pulses, allowing mitochondria to respond to repetitive Ca

oscillations . It is still speculated that RaM is just an additional state of the MCU multi-protein complex
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because of their similarity as well as the absence of RaM in MCU knockout mitochondria . At present, the

progress of research targeted on explaining the role of RaM in Ca  influx at the molecular level is very limited.

2.2.3 The mechanism of Ca  uptake requiring mitochondrial ryanodine receptor (mRyR)

mRyR (mitochondrial ryanodine receptor, 600 kDa) is the ryanodine-sensitive mitochondrial Ca  uptake

mechanism, capable of Ca  transport, which was detected in the IMM of isolated heart mitochondria in 2001 by

Beutner at al. [92]. This group confirmed the presence of the ryanodine receptor in the IMM using [3H]ryanodine

binding, RyR antibody conjugated immunogold particles, and Western blot analysis . It could serve as an

alternative mechanism for Ca  accumulation in mitochondria as well as a regulator of Ca  efflux under

mitochondrial Ca overload and pathological conditions . Interestingly, the single channel activity of mRyR

was confirmed on recombinant mRyR proteins reconstituted in supported lipid bilayers prepared from IMM

vesicles . This study elucidates pharmacological and electrophysiological features of mRyR in the model of IMM

merged to lipid bilayers, where a mitochondrial transporter with gating properties similar to those of RyR in ER/SR

was demonstrated .

2.2.4 The mechanism of Ca  uptake including LETM1

LETM1 (leucine zipper- EF-hand containing transmembrane protein, 70 kDa) is an integral mitochondrial inner

membrane protein, usually co-localized with a mitochondrial matrix protein HSP60 . The N-terminus of this

protein is linked to the IMM via a transmembrane domain consisting of 3 proline residues; whereas the C-terminus

extends to the mitochondrial matrix . It was also demonstrated previously that LETM1 is an endogenous

protein in HeLa cells, with a molecular weight of 83 kDa, and it has been assumed that it is initially produced as a

cytosolic precursor with a presequence . LETM1 is a transporter protein shown to exhibit Ca /H⁺

exchange activity, acting as a crucial component in the regulation of Ca  homeostasis . Later it

was proposed as an inner mitochondrial membrane Ca /H  antiporter   that is able to transport Ca

bidirectionally across the membrane. In addition, experimental work indicated the important role of LETM1 in

maintaining K  homeostasis, and this has led to the suggestion that LETM1 works as an H /K  exchanger with an

electroneutral activity (1H /1K ) . Of note, this exchanger shares a key role with MCU to catalyze Ruthenium

Red-sensitive transport of Ca  into mitochondria . It would likely serve as an alternative mechanism for Ca

accumulation in mitochondria, as well as a regulator of Ca  efflux under mitochondrial Ca  overload . In

summary, although the importance of LETM1 for cellular functioning is clear, the molecular characteristics and

details of LETM1 organization still remain unclear.

2.3 Calcium efflux through IMM

In order to maintain the intra-mitochondrial Ca  homeostasis under physiological and pathological conditions, the

balance between Ca  influx and efflux into/from mitochondria has to be maintained. The functional and molecular

characterization of the mitochondrial Ca  efflux system already had started in the 1970s, when Na -dependent

Ca  efflux from mitochondria was described in isolated rat heart mitochondria , and two different mechanisms
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were proposed: (1) Na -dependent (Na /Ca /Li  exchange, NCLX) and (2) Na -independent (H /Ca  exchange,

HCX) mechanisms. It was reported that the Na /Ca  exchange takes place in excitable tissues (i.e., brain, heart);

whereas H /Ca  exchange is typical for non-excitable tissues (i.e., liver). However, both systems provide slow

Ca  release in comparison to the rate of Ca  influx through the MCU [108,109]. Later, (3) the mitochondrial

permeability transition pore complex (mPTPC) was identified as an important Ca  efflux mechanism .

Besides this, LETM1 (4) has been proposed as an additional Ca  efflux system  (Figure 1).

2.3.1 The mechanism of Ca  efflux by NCLX 

NCLX (Na /Ca /Li  exchanger systems): Mitochondrial Na /Ca  (NCX) exchange was discovered by Carafoli

et al. in 1974 . However, the molecular composition of the Na -dependent Ca  efflux system was resolved

relatively recently , and interestingly, seems to function as a transporter of Li  ions as well, being a member of

the family of Na /Ca  exchangers . The ability of NCLX to conduct both Na /Ca  and Li /Ca

transport is a unique feature of the mitochondrial carrier . In fact, it can transport either Li  or Na  in

exchange for Ca . NCLX is the only known member of the Na /Ca  exchanger superfamily that can also

transport Li . Na /Ca  exchangers are characterized as transporters with a low affinity and high capacity;

thus they could be most effective in regulating of Ca  homeostasis during transient Ca  fluxes commonly

expressed in excitable cells .

NCLX mechanism predominates in the mitochondria of cardiomyocytes, neurons, cells of the skeletal muscle,

parotid gland, adrenal cortex, and brown fat  and to a lesser extent also being present in lung

mitochondria and mitochondria of the kidney and liver . NCLX can be inhibited by benzodiazepines and

CGP37157 inhibitor of the mitochondrial Na /Ca  exchanger . Of note, under conditions when mitochondria

are depolarized, all types of Ca  exchangers can act in the reverse mode, pumping Ca  into the mitochondria

.

2.3.2 The mechanism of Ca  efflux by HCX

HCX (H /Ca  exchanger): Na -independent Ca  efflux (HCX) is prevalent in mitochondria of non-excitable cells

(i.e., liver, kidney, lung, smooth muscles), in contrast to the NCLX mechanism  . The molecular

composition of the HCX is still unclear and the literature on this complex sparse; however, it is assumed to be

electroneutral with the stoichiometry of 2 molecules of H  per 1 molecule of Ca . The rate of Ca  efflux

through HCX decreases with an increase in the pH gradient . 

2.3.3 The mechanism of Ca  efflux by LETM1

LETM1 (leucine zipper- EF-hand containing transmembrane protein, 70 kDa): In comparison to NCX, NCLX,

or HCX, Ca  efflux via LETM1 does not represent the major pathway, but it could serve as an alternative

mechanism for the release of Ca . Moreover, the activity of this protein might be essential for
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maintenance of the tubular shape of mitochondria and for cristae organization . In addition, LETM1 can work

as a Ca /H  antiporter (see section 2.2.4 - Mechanism of Ca  uptake including LETM1) .

2.3.4 The mechanism of Ca  efflux by mPTP/mPTPC

mPTP/mPTPC (mitochondrial permeability transition pore or mPTP complex): mPTP or mPTPC is considered

as the main transport system for Ca  efflux from mitochondria under pathophysiological conditions

 Although the mPTPC was initially described in swelling experiments using the fraction of

isolated mitochondria and characterized as a non-selective channel that transports ionic and nonionic molecules as

early as 1979 , yet the transport mechanism of this channel actually remains poorly understood. 

It is commonly believed that mPTPC is a multi-protein system in the OMM and IMM. Originally, only regulatory

components were identified. The first unambiguously established component was CypD (Fig. 1), which still remains

the only protein whose involvement in mPTPC pore formation and activity regulation is undisputed

. CypD can stimulate structural rearrangements in the proteins responsible for the formation of mPTPC pore

channel, preventing mPTP-mediated necrosis . Most of the studies on the role of CypD in the regulation of

mPTP relied on pharmacological cyclosporin A or transient siRNA inhibition of CypD, as well as on the results

obtained on models of the knockout mouse, which demonstrated its interconnection with mPTPC .

Adenine nucleotide translocase (ANT) was initially believed to represent the main regulatory component of mPTPC

. Recent studies characterized ANT as a pore-forming component and proposed a “multi-pore model” with two

separate pore-forming molecular components: one of which is ANT and the other depends on CypD . It is also

possible that CypD and ANT function in a “dual regulatory model”, where mPTPC is regulated by both ANT and

CypD . Moreover, it is currently believed that ANTs are multifunctional proteins, which represent not only the

pore-forming component of the mPTPC but may also be crucial for mitochondrial uncoupling and for the stimulation

of mitophagy .

Furthermore, F0F1 ATP Synthase and the phosphate carrier (PiC) are considered as the core pore-forming

components of mPTPC . FoF1 ATP Synthase forms the channel in mPTC and transports

molecules through the 2 ATP synthase monomers or through the ring of the c-subunit, which overlaps with the IMM

and the pore forming component . However, it should be noted that classification of the last named

component (PiC) is more complicated, since in the context of its ability to activate mPTP opening it can be

considered as the pore forming component . At the same time, following patch clamping of the PiC displayed

too low of a conductance to assume that it functions as the core pore-forming constituent of the mPTPC.

Undoubtedly, the precise nature and molecular organization of the pore-forming part of mPTPC remain

controversial . m-AAA protease Spastic Paraplegia 7 (SPG7)

was previously thought to be a core component of the mPTP that is able to interact with CypD and with VDAC1 at

the OMM/IMM contact sites . However, recent results demonstrate that SPG7 is not a core component of the

mPTP, but could regulate the mPTP activity by decreasing Ca  levels in mitochondrial matrix through modulation

of MCUR1 and MCU assembly .
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The efflux of Ca  occurs through a transient or low conductance opening of mPTP, most likely by lower oligomeric

states of mPTP . The evidence for transient opening of mPTP for Ca  was

demonstrated by the early studies on the inhibition of Ca  release by Cyclosporin A in isolated adult rat ventricular

cardiomyocytes . Transient opening or low conductance opening of the mPTP represent a Ca  efflux

mechanism, and various studies have confirmed the essential role of mPTP in the release of Ca

. mPTP is a nonspecific channel, used by cells in signal transduction and the transfer of molecules between the

mitochondrial matrix and cytoplasm. In particular it maintains Ca  homeostasis, regulates oxidative stress signals,

and mediates cell death . Regarding the multi-conductance function of mPTPC, it likely can be

assumed that mPTPC is partially oligomerized into a complex with multiple subunits . The first studies

using different sized polyethylene glycols identified solutes of up to 1500 Da that could be transported through the

pore that matches the modeled pore size of 1.4 nm . Importantly, mPTP is able to reversibly open upon an

increase in ADP concentration, as well as during restoration of the Mg /Ca ratio , reestablishing mitochondrial

membrane potential, and allowing for mPTP to have either a sustained or transient opening . The different

regimes of mPTP opening determine the selectivity in signaling.

The opening of mPTP is directly regulated by the concentration of free Ca , and triggered by mitochondrial Ca

overload; allowing for rapid Ca  release from mitochondria . Obviously, Ca  is the most

important regulator and inductor of mPTP opening, regarding its numerous indirect roles in the regulation and

modulation of the mPTP . The functional dualism of Ca  is an important factor of mPTP mediation.

At physiological levels of Ca  it can activate transient opening of the pore; whereas at Ca  overload it can induce

pathological changes, resulting in sustained mPTP opening and subsequent mitochondrial and cellular dysfunction

.

Activation of mPTP could also be mediated at different levels through regulation by kinases, as well as

posttranslational modification of CypD . It has been shown, that mPTP could be stimulated by Ca  in

combination with an increase in the concentration of ROS and phosphate; aditionally, that it could be inhibited by

divalent cations (such as Mg , Mn ), adenine nucleotides, low pH, or CypD inhibitors (such as CsA and

sanglifehrin A) . Importantly, modifications and loss of CypD induce a significant increase in the threshold

concentration of Ca  required for pore opening .

Hypothetically, VDAC could also mediate mPTPC activity; however, genetic analysis did not prove to be any

essential function of this protein in mPTP-mediated cell death . Electrophysiological and biochemical studies

supported the molecular model of mPTPC with the VDAC on the OMM, ANT on the IMM, and CypD in the matrix

. In brief, the following facts speak for involvement of VDAC1 in mPTP opening and function:

overexpression of microRNA-7 prevents opening of mPTP by downregulating VDAC1 ; the loss of mitochondrial

fission factor Mff inhibits mPTP opening via blocking of VDAC1 oligomerization and separation of HKII, which leads

to the inhibition of mPTP opening . On the other hand, additional studies have provided opposing results,

indicating that the closed state of VDAC stimulates Ca  permeability, and therefore forces mPTP opening .
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