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Reprogramming of metabolism is now recognized a hallmark of carcinogenesis as metabolic changes, such as
those related to glucose, glutamine and lipids, are tightly related to the proliferation, invasion, migration,

radiosensitivity, and chemosensitivity of several tumors, including thyroid cancer.

thyroid cancer metabolism epithelial-mesenchymal transition thyroid cancer progression

| 1. Introduction

Thyroid cancer (TC) represents the most common endocrine malignancy all over the world, with a steady increase
in both the incidence and the mortality rate for the more aggressive forms . According to the most recent
epidemiologic studies in United States, TC incidence increased, on average, 3.6% per year during the period
1974-2013, mainly due to an increase in the incidence of papillary thyroid carcinoma (PTC) [, and it has been
estimated that by 2030 TC will be the fourth leading cancer diagnosis in the United States [2. Accordingly, a recent
deep analysis of the Global Burden of Disease 2019 database has calculated that the global incidence of TC has
continued to increase in the past three decades [2l. Some of the highest TC incidence worldwide has been reported
in Italy where, under the age of 45, TC was the second most common cancer among women (after breast cancer),
and the fifth most common among men &. The most frequent TC (84% of all TC) is PTC, a differentiated TC (DTC)
deriving from epithelial follicular cells. It is generally characterized by an indolent growth and a good prognosis after
adjuvant radioiodine (RAI) treatment; the 5-year relative survival rate for patients who had TC diagnosed during the
period 2008—-2014 was 98%, and it refers mainly to the most prevalent PTC B, However, 20-30% of PTC cases
show a more aggressive behavior and patients experience relapse/persistence and/or development of lymph node
and visceral metastases with consequent increased mortality, despite the use of targeted therapeutic options, such
as tyrosine kinase inhibitors (TKI), including sorafenib and lenvatinib B4, During 1994-2013, incidence-based
mortality increased 2.9% per year for advanced-stage PTC [, Due to the high global incidence of PTCs, the
percentage of those RAl-resistant (RAI-R) has a significant impact and it is therefore imperative to find new
therapeutic strategies. The aim of our review is to analyze the possibility that the intercross between epithelial-to-
mesenchymal transition (EMT) and metabolism could be exploited to find such strategies. These aggressive forms
of PTC exhibit loss of differentiation characteristics, including loss of sodium iodine symporter expression/function,
resulting in RAI treatment failure and high mortality. At the molecular level, this loss of differentiation is related to
the degree of activation of the mitogen-activated protein kinase (MAPK), which is highest in tumors with BRAF

mutations &l
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On the other side, anaplastic thyroid carcinoma (ATC), the most undifferentiated TC, is a rare but devastating
disease. It accounts for only 2-5% of all TC cases and is associated with a median overall survival (OS), greatly
improved in the last years thanks to the targeted therapy, of 15.7 months, a median 1-year survival of 59%, and a
median 2-year survival of 42%, despite aggressive multimodal management [RILALL Current management of ATC
consists primarily of surgical resection, combined with adjuvant chemoradiation followed by targeted therapy
(dabrafenib and trametinib therapy in patients harboring the BRAF V600E mutation) 2. The pathogenesis of ATC
is still debated. Most studies support a gradual dedifferentiation from DTC to poorly differentiated thyroid carcinoma
(PDTC), and eventually to ATC, with the progressive accumulation of somatic pro-cancer mutations. This is
supported by the fact that 18-37% of ATC cases result from longstanding goiters or DTC lesions, where ATC
occurs concurrently in 30—-89% of cases, and ATC sometimes develops following treatment failure of DTC and
PDTC. Genomic analyses have further demonstrated shared mutations between co-existing ATC and DTC or
PDTC lesions, suggesting a common parent cell 12, Another theory states that ATC could arise from cancer stem
cells (CSCs) that are derived from adult stem cells present within a thyroid niche having accumulated genetic
mutations that drive the tumor development 41, For both theories, EMT plays a pivotal role. In fact, a DTC could
lead to ATC as a result of either a dedifferentiation process or the development of CSCs, and both depend on EMT.
CSCs are in turn the main responsible of cancer resistance 22 and therefore EMT is a cellular process associated
with both tumor progression and TC resistance to therapy. Hence, understanding the biology of EMT and the
reverse mesenchymal-to-epithelial transition (MET) process should lead to the design of more effective drugs to

target cancer cells, including CSCs.

| 2. The Warburg and Reverse Warburg Effects

Carcinoma cells show preferential use of lactate-generating glycolysis over the more energy-efficient route of
oxidative phosphorylation (OXPHOS), which produces more ATP per glucose molecule than glycolysis [£6IL7][18][19]
(201 This altered metabolism, named “Warburg effect”, implies that cancer cells have increased glucose uptake and
lactate secretion, and allows cancer cells to gain an advantage in terms of growth and survival, possibly due to
increased carbon utilization, hypoxic adaptation, and increased rate of ATP production. More recently, similar
metabolic changes have been described in cancer-associated fibroblasts (CAFs) present in the tumor
microenvironment (TME), often as a result of oxidative stress induced by hydrogen peroxide secreted by cancer
cells. CAFs in turn increase their own production of reactive oxygen species (ROS), resulting in the induction of
aerobic glycolysis and consequent production and secretion of lactate and pyruvate. These metabolites are
transferred to cancer cells via inflammation, where they are metabolized into mitochondria to generate new ATP,
which assists tumor progression. This metabolic interplay between different tumor cell compartments is called
“reverse Warburg effect” and facilitates cancer cell anabolism through catabolic reactions pursued by the TME [21]
(22)[231[24]125] The reverse Warburg effect can occur not only between CAFs and tumor cells but also between
different tumor cells, one of which being hypoxic and hypersecreting intermediate catabolites such as lactate and
glutamine. Metabolic coupling with glycolysis occurring in some cancer cells and OXPHOS in other cancer cells

promotes cell proliferation and survival. In this multi-compartment metabolism, a key role is played by the lactate
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monocarboxylate transporters MCT-1 and MCT-4, which mediate the influx into the cell and the efflux from the cell,

respectively 28 (Figure 1).
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Figure 1. Warburg and reverse Warburg effect. The cancer cell on the left is undergoing the Warburg effect
consisting in the metabolic switch from OXPHOS to aerobic glycolysis, which implies increased glucose uptake and
secretion of lactate. Cancers cells also establish a metabolic coupling with cancer-associated fibroblasts (CAFs)
and other cancer cells: secretion of reactive species, such as hydrogen peroxide in the tumor microenvironment
(TME) induces oxidative stress into a neighboring CAF, which hence engages aerobic glycolysis and generates
lactate. This in turn is secreted into the TME and fuels OXPHOS in the cancer cell on the right, thus getting efficient
ATP production and promoting survival and proliferation. Lactate monocarboxylate transporters mediate efflux
(MCT-4) and the influx (MCT-1) of the lactate from and into the cell.

| 3. Metabolic Reprogramming in Thyroid Cancer

Metabolic rewiring towards an enhanced glycolytic phenotype primarily involves increased glucose uptake and
glycolysis flux, mitochondrial dysfunction, and a more acidic TME, playing a critical role in tumor aggressiveness. In
other words, malignant tumor cells alter their glucose metabolism to enhance aerobic glycolysis so that they can

maintain their metastatic potential.

Amino acids metabolism has a critical role in maintaining cellular metabolic homeostasis. Among all amino acids,
glutamine has the greatest consumption during tumor progression and is considered the most important substrate
of the cancer cells. It has an essential role in nucleotide and non-essential amino acids synthesis, as well as in
providing substrates for the tricarboxylic acid (TCA) cycle, which fuels tumor growth 24, In particular, TCA cycle is
maintained by glutamic acid derived from the conversion of glutamine through the process of glutaminolysis.
Consistently, glutamic acid has been found increased in the plasma of patients with thyroid nodules, consisting of

19 PTCs and 16 multinodular goiters, compared to 20 healthy controls 28, In this pilot study, a panel of significantly
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altered metabolites, including some associated with amino acids metabolism, such as cysteine and cystine as well
as glutamic acid, was identified by untargeted gas chromatography-mass spectrometry in the plasma of patients
with PTC nodules compared to healthy subjects. Differently from glutamic acid, cysteine and cystine were

decreased in PTC patients and their levels correlated with the tumor stage [28].

Conversely, in a previous study, cysteine and most amino acids were found significantly up-regulated in PTC tissue
(collected from 57 patients) compared to adjacent non-tumor tissue 23, Cysteine is a precursor for glutathione
(GSH) biosynthesis, which plays an essential role in supporting intracellular redox homeostasis by extinguishing
ROS from mitochondrial respiration. Cancer cells require exogenous cysteine for GSH synthesis to protect
themselves from ROS in order to maintain cell proliferation and resistance to apoptosis 9. Therefore, decreased
plasma levels of cysteine and cystine in patients with thyroid nodules may be explained by the higher consumption
of cysteine in the cancer cells. Consistently, in the study by Abooshahab and coworkers, significantly altered
metabolites between PTC nodules and healthy persons were also associated with GSH biosynthesis. Overall, they
found that the metabolism of about 11 amino acids, including metabolites related to GSH biosynthesis, but also
methionine, glycine, serine, threonine, and phenylalanine, had been changed in plasma of patients with PTC
nodules compared to healthy subjects. Moreover, the TCA cycle, fatty acids (FA), and purine and pyrimidine

metabolism were significantly changed as well (28],

4. Thyroid Cancer Progression and Reciprocal Role of
Epithelial-Mesenchymal Transition and Metabolic Rewiring

Activation of EMT, a process by which epithelial cancer cells acquire mesenchymal features, is a key determinant
of cancer progression toward an invasive and metastatic phenotype. By acquiring mesenchymal features, cancer
cells, in fact, lose cell-to-cell junctions and gain the capacity to migrate and invade the basal lamina thanks to a
complex reprogramming of transcription through epigenetic changes. In TC progression, the tumor cells undergo
EMT, becoming spindle shaped and invading tumor stroma. Molecular changes include reduced E-cadherin
expression levels and increased expression of Snail, Slug, Twist, Paired Related Homeobox 1 (PRRX1), and other
EMT-related genes. Hence, first intravasation into the blood and/or lymphatic vessels and then extravasation in
distant metastatic sites, such as the lymph nodes and lungs, occur. After a variable time in the quiescence state,
the tumor cells are subjected to MET to colonize distant organs forming secondary tumors (Figure 2). During this
last phase there is a decrease in the expression of Twist and PRRX1 and an increase in the expression of
epidermal growth factor (EGFR) and c-Met 12 Indeed, well-differentiated TC and normal thyroid express high
levels of E-cadherin, but do not commonly express Snail and Twist 21, However, the leading front of PTCs, as well

as ATCs, frequently express EMT markers, such as vimentin and Snail, Slug and Twist, but not E-cadherin [22132]
s3]
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Figure 2. Thyroid cancer progression: reciprocal role of EMT and metabolic reprogramming. The cartoon illustrates
the phases of thyroid cancer progression, from in situ to invasive carcinoma and metastatic tumor, highlighting the
molecular actors of EMT as well as their reciprocal relationship with metabolic players. Upregulation (arrow

up)/downregulation (arrow down) of proteins demonstrated in other cancers but not yet validated in TC is shown in

gray.

During EMT cancer cells also acquire stem cell features that allow them to resist to different treatment options.
Based on the CSC hypothesis of TC development, normal follicular cells that accumulate errors can give rise to
differentiated cancers, which in turn can develop into undifferentiated cancers following the enrichment of CSCs
through the EMT process 12l This is likely the reason why patients with ATCs, which consist of CSCs and non-

CSCs, usually have a relapse after surgery and conventional chemotherapy and radio-iodine 13,

More recently, it has become clear that EMT is also involved in metabolic rewiring needed for the increased
energetic demand of the mesenchymal cells compared to their epithelial counterparts due to the increased motility
and invasion ability. In fact, EMT induction in epithelial mammary cells by Twist expression upregulates the
expression of 44 metabolic genes, including dihydropyrimidine dehydrogenase (DPYD), an enzyme involved in
pyrimidine catabolism, that in turn upregulates EMT [B4l. Therefore, it is likely that metabolic rewiring is required for
completeness of EMT. Other metabolic pathways modulated by EMT include glycolysis, lipid metabolism,
mitochondrial metabolism and glutaminolysis. Specifically, it has been shown that EMT induction suppresses the
expression of multiple metabolic proteins, including fructose-1.6-bisphosphatase 1 (FBP1), thus resulting in
increased glycolysis (23 fatty acid synthase (FASN) and ACC, thus resulting in decreased lipogenesis (28],
nucleoside transporter 7, and pyruvate dehydrogenase kinase 4 (PDK4) 28 whilst enhancing the expression of

glutaminase 1 (GLS1) B2 enzymes of glutathione metabolism, cytochrome P450, aldehyde dehydrogenase, thus
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accounting for the increased chemoresistance 4%, and GLUT3 41, On the other side, these metabolic alterations

sustain the Warburg effect and induce EMT by enhancing glycolysis and blocking the TCA cycle. In particular,

upregulation of (i) GLUT1 and GLUTS3 glucose transporters activates matrix metallopeptidase MMP-2, which in turn

induces EMT and invasiveness; (i) HK1 and HK2 hexokinase, involved in the first step of glycolysis, activates Snail

and Slug, which in turn induces EMT; (iii) PFKM and PFKP, rate-limiting enzymes of glycolysis, directly induce

EMT, (iv) LDHA and LDHB, associated with enhanced glycolysis and lactate production, as well as extracellular

lactate, activate Snail and therefore EMT 42,
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