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Tumor-associated macrophages (TAMs) produce various chemokines and angiogenic factors that promote tumor

development, along with other immunosuppressive cells. TAMs generated from monocytes develop into functional, fully

activated macrophages, and TAMs obtain various immunosuppressive functions to maintain the tumor microenvironment.

The main population of TAMs comprises CD163+ M2 macrophages, and CD163+ TAMs release soluble (s)CD163 and

several proinflammatory chemokines as a result of TAM activation to induce an immunosuppressive tumor

microenvironment. Since direct blockade of PD1/PD-L1 signaling between tumor cells and tumor-infiltrating T cells is

mandatory to induce an anti-immune response by anti-PD1 Abs. Understanding the crosstalk between TAMs and

immunosuppressive cells is important for optimizing PD1 Ab-based immunotherapy.
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1. Definition

Tumor-associated macrophages (TAMs) have been detected in most skin cancers. TAMs produce various chemokines

and angiogenic factors that promote tumor development, along with other immunosuppressive cells such as myeloid-

derived suppressor cells (MDSCs), regulatory T cells (Tregs) and tumor-associated neutrophils. TAMs generated from

monocytes develop into functional, fully activated macrophages, and TAMs obtain various immunosuppressive functions

to maintain the tumor microenvironment. Since TAMs express PD1 to maintain the immunosuppressive M2 phenotype by

PD1/PD-L1 signaling from tumor cells, and the blockade of PD1/PD-L1 signaling by anti-PD1 antibodies (Abs) activate

and re-polarize TAMs into immunoreactive M1 phenotypes, TAMs represent a potential target for anti-PD1 Abs.

2. Introduction

Tumor-associated macrophages (TAMs) have been detected in most skin cancers . TAMs produce various chemokines

that attract other immunosuppressive cells such as myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs)

and tumor-associated neutrophils (TANs) to maintain an immunosuppressive tumor microenvironment . TAMs also

produce matrix metalloproteinases (MMPs), which play critical roles in the tissue remodeling associated with protein

cleavage to modify the immune microenvironment, angiogenesis, tissue repair, local invasion, and metastasis . In

addition, TAMs express immune checkpoint modulators (e.g., programmed death ligand 1 [PD-L1], B7-H3, B7-H4)  that

directly suppress activated T cells. Moreover, TAMs also express PD1, which is necessary for maintaining M2 phenotypes

in TAMs via PD-L1/PD1 signaling from tumor cells . Taken together, TAMs are a heterogeneous population of

macrophages that play a central role in the induction of immune tolerance in the tumor microenvironment .

Not only TAMs, but also other immunosuppressive cells such as MDSCs, Tregs and TANs, should be taken into account

when evaluating the immunosuppressive microenvironment of skin cancers . Similar to TAMs, both MDSCs and

TANs directly or indirectly suppress anti-tumor immune response , whereas Tregs directly suppress tumor-specific

cytotoxic T cells in the tumor microenvironment . Notably, environmental risk factors for skin cancer (e.g., sun exposure,

chemical exposure) have been widely reported . These risk factors modulate the profiles of tumor-infiltrating leukocytes

(TILs), at least in part, through aryl hydrocarbon receptor (AhR)-dependent signal pathways . Chronic exposure to AhR

ligands at skin lesions is known to induce chronic inflammation, including macrophages, neutrophils and T cells . Skin

cancer is thus one of the optimal models to discuss the development of immunosuppressive microenvironments in

cancers.

Since PD-L1/PD1 signaling is necessary for maintaining TAMs as immunosuppressive macrophages in PD-L1-expressing

cancers such as melanoma, non-small cell lung cancer, colorectal cancer and Hodgkin’s lymphoma , anti-PD1

antibodies (Abs) such as nivolumab and pembrolizumab could activate and re-polarize TAMs into anti-tumor

macrophages. In another report, Wang et al. reported that PD1  TAMs suppress CD8  T-cell function in gastric cancer .
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More recently, Li et al. reported that exosomal HMGB1 could trigger the generation of PD1  TAMs in esophageal

carcinoma . Notably, anti-PD1 Abs are useful and clinically permitted to be used for these cancer species. Taken

together, anti-PD1 Abs could not only abrogate the immune suppression and re-activate CD8  cytotoxic T cells , but also

activate TAMs to induce an anti-tumor immune response by blocking of PD-L1/PD1 signaling pathway. Not only TAMs, but

also MDSCs and Tregs help maintain an immunosuppressive microenvironment through PD-L1/PD1 signaling . MDSCs

can induce Tregs , and Tregs regulate the immunosuppressive function of MDSCs through PD-L1 .

3. Significance of Immunosuppressive Cells in Developing Skin Cancers

3.1. Significance of TAMs in Developing Skin Cancers

3.1.1. Chemokines from TAMs Determine Profiles of Tumor-Infiltrating Lymphocytes (TILs) in the Tumor
Microenvironment

Since TAMs are stimulated by stromal factors, and produce characteristic chemokines in each tumor site in melanoma

and non-melanoma skin cancers , understanding the correlations between chemokines derived from TAMs and stromal

factors in each cancer species is important. The extracellular matrix protein periostin (POSTN) is expressed in the region

surrounding melanoma cell nests in metastatic melanoma lesions , and could be a stimulator for TAMs in melanoma .

Notably, CD163  M2 macrophages increase the production of chemokine C-C motif (CCL)17 and CCL22, both of which

are known to recruit regulatory T cells (Tregs), by POSTN stimulation in vitro , and chemokine production is suppressed

by type I interferons (IFNs) , suggesting that TAMs could also be used as a target of immunotherapy. Indeed,

Georgoudaki et al. reported that TAMs derived from mouse B16 melanoma expressed macrophage receptor with

collagenous structure (MARCO), and intravenous administration of anti-MARCO antibodies (Abs) reprogrammed the

TAMs population to a proinflammatory phenotype and increased tumor immunogenicity . In another report, IFN-β

decreases the production of CCL22 from TAMs in B16F10 melanoma, leading to suppression of tumor growth by the

modulation of TIL profiles in vivo . Based on these pre-clinical findings of TAM-targeting therapies, a clinical study has

already been undertaken . Taken together, these reports suggest the significance of chemokines from TAMs that can

be influenced by stromal factors to induce melanoma-specific profiles of TILs in melanoma.

Non-melanoma skin cancers such as extramammary Paget’s disease (EMPD), cutaneous squamous cell carcinoma

(cSCC) and Merkel cell carcinoma (MCC) also possess heterogeneous CD163  TAMs that could secrete an array of

cytokines and chemokines in lesional skin to regulate the tumor microenvironment . For example, serum

sCD163 is increased in patients with EMPD compared to healthy donors , suggesting that CD163  TAMs are

constitutively activated in the lesional skin of EMPD. Indeed, soluble receptor activator of nuclear factor kappa-B ligand

(RANKL) released by Paget’s cells activates TAMs and increases the production of CCL5, CCL17 and chemokine CXC

motif (CXCL)10 from RANK CD163  M2 polarized TAMs . These data suggested that sCD163 could represent a

biomarker for the progression of EMPD. On the other hand, as Petterson et al. reported , CD163  TAMs in cSCC

heterogeneously polarized from M1 to M2, suggesting heterogeneous activation states of TAMs. CD163  TAMs contribute

to the tumor microenvironment in MCC to promote tumor development by inducing lymphangiogenesis and

immunosuppressive cells such as Tregs . These reports suggested that CD163  TAMs could represent a therapeutic

target for the treatment of these non-melanoma skin cancers.

3.1.2. Angiogenic Factors from TAMs

TAMs produce angiogenic factors such as vascular endothelial growth factor (VEGF), platelet-derived growth factor, and

matrix metalloproteinases (MMPs) to induce neovascularization . Recent reports have suggested that

melanoma-derived factors could differentiate M2 macrophages that produce angiogenic factor such as VEGF and MMP9

. Among these, Tian et al. reported that expression of tripartite motif (TRIM)59 on TAMs attenuates the tumor-

promoting effect of TAMs by inhibiting MMP9 expression on melanoma cells . They conclude that TRIM59 in TAMs

could be a potential regulator of tumor metastasis, and thus provide a target for immunotherapy . Notably, MMP9

facilitates MMP9-dependent cleavage of PD-L1 surface expression, leading to anti-PD1 Ab resistance . Taken together,

the decreased expression of MMP9 achieved by targeting TAMs would suppress anti-PD1 Ab resistance by inhibiting PD-

L1 downregulation.

Overall, TAMs produce a series of chemokines and angiogenetic factors under the stimulation of cancer-specific stromal

factors to maintain an immunosuppressive tumor microenvironment in each cancer species.

3.2. Myeloid-Derived Suppressor Cells (MDSCs)

3.2.1. Significance of MDSCs in Developing Skin Cancers
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MDSCs are one of the key types of immunosuppressive cells with heterogeneous cell populations that can be found in

tumor-bearing mice and in patients with cancer (Table 1) . In humans, MDSCs are defined by a combination of several

surface markers (e.g., CD11b CD14 HLA-DR  for monocytic (Mo-)MDSCs, or CD11b CD14 CD33 CD15 CD66b  for

granulocytic (G)MDSCs) . Since these markers are also expressed on other immune cells, such as neutrophils (e.g.,

CD15, CD66b), evaluation of direct immunosuppressive function is mandatory for the definition of MDSCs .

Table 1. Positive and negative markers for TAMs and MDSCs.

 Subtypes Positive Negative

TAMs
M1 CD68, CD86, CD169, HLA-DR, CCR7  

M2 CD163, CD204, CD206, PD-L1, ARG1  

MDSCs
MoMDSC CD11b, PGE2, IL-10, TGFb, iNOS, ARG1 HLA-DR, CD14

G-MDSC CD15, CD33, CD66b, ROS, G-CSF, ARG1 HLA-DR, CD14

The immunosuppressive functions of MDSCs are mediated by several secreted factors, including prostaglandin E2

(PGE2), IL-10, transforming growth factor (TGF)-β, nitric oxide (NO) and arginase 1 (Arg1) for Mo-MDSCs , and

reactive oxygen species (ROS), granulocyte-colony stimulating factor (G-CSF) and Arg1 for G-MDSCs . Since Mo-

MDSCs are generated from monocytes, and further differentiate to TAMs, Mo-MDSCs and TAMs in human tumors share

several cell surface markers . On the other hand, although several reports have suggested that G-MDSCs are

generated from the neutrophil linage, the differentiation of G-MDSCs remains under discussion . Notably, both Mo-

MDSCs and G-MDSCs correlate with poor prognosis IN cancer patients . Targeting MDSCs for the treatment of

cancer patients is thus considered to resemble targeting TAMs.

3.2.2. MDSCs and ICIs

Recent reports have suggested the significance of MDSCs in patients with advanced cancer treated using immune

checkpoint inhibitors (ICIs) . Increased microRNAs in the plasma of melanoma patients are associated with the

generation of MDSCs mediated by melanoma extracellular vesicles, and are even associated with resistance to treatment

with ICIs in melanoma patients , suggesting that MDSC-related miRs could offer a biomarker of poor prognosis in

melanoma patients treated with ICIs. Moreover, among the miRs, a recent report also suggested that miR-150-5p

mediates angiogenesis function through the secretion of vascular endothelial growth factor (VEGF) and matrix

metalloproteinase (MMP)9 . In another study, hypoxia induced miR-210 to modulate MDSC function by increasing Arg

activity and NO production, without affecting ROS, IL6, or IL10 production or expression of PD-L1 . Notably, as we

described above, since MDSCs (like TAMs) secrete MMP9  to facilitate MMP9-dependent cleavage of PD-L1 surface

expression anti-PD1 Ab resistance , hypoxia hinders the anti-tumor effects of anti-PD1 Abs. Since hypoxia-inducible

factor (HIF)-1a is one of the key regulators for the differentiation and accumulation of MDSCs in hypoxic tumor regions 

, targeting HIF-1a might improve anti-tumor immune responses in patients with anti-PD1 Abs.

3.2.3. Cross-Talk between MDSCs and Other Immunosuppressive Cells

Not only direct immune suppression, MDSCs induce other immunosuppressive cells, such as regulatory T cells (Tregs)

and TAMs to maintain the immunosuppressive tumor microenvironment . For example, Hwang et al. reported that

Gr1 CD115  MDSCs can induce de novo generation of Tregs from adoptively transferred antigen-specific CD25 CD4  T

cells in the presence of IL-10 and interferon (IFN)-γ in vivo . In another report, MDSCs expanded tumor-specific Tregs

via Arg-dependent and TGF-b-independent pathways . On the other hand, Tregs regulated the immunosuppressive

function of MDSCs through B7 homologs (B7-H1, B7-H3, B7-H4) in a mouse ret tumor model in vivo . In addition to

Tregs, TAMs could also affect MDSC recruitment at the tumor site . Since several types of MDSCs express

CXCR2 , intratumor production of CXCL5 and CXCL8 is important to migration of MDSCs in the tumor

microenvironment . Since one of the main sources of CXCL5 in advanced melanoma is TAMs , and CXCL5 could be

a predictive biomarker for the efficacy of anti-PD1 Abs in advanced melanoma patients , the CXCR2/CXCL5 axis

should play a significant role in recruiting MDSCs to the tumor site, and blockade of CXCR2 enhanced anti-tumor immune

responses in a melanoma model . Notably, TAMs also produce CCL17 and CCL22 to promote migration of CCR4

Tregs to the tumor site . Since TAMs are a heterogeneous population of cells, and could re-polarize from

immunosuppressive M2 phenotypes to classically activated phenotypes by immunotherapy such as type 1 IFN  and

anti-PD1 Abs , these reagents could inhibit migration of CCR2  MDSCs and CCR4  Tregs to the tumor site to induce

anti-tumor immune responses in the tumor-bearing host.
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In summary, another type of immature macrophage, the MDSC, maintains an immunosuppressive microenvironment by

suppressing tumor-specific T cells directly or indirectly. Notably, MDSCs expressed PD-L1, and thus could also represent

a target for immunotherapy using anti-PD1 Abs.

3.3. Regulatory T Cells: Tregs

3.3.1. Significance of Tregs in Developing Skin Cancers

As described above, Tregs maintain an immunosuppressive tumor microenvironment in skin cancers together with other

immunosuppressive cells. Previous report has suggested that a large number of effector (e)Tregs

(CD45RA Foxp3 CD25 ) infiltrate tumor sites to induce tolerance by various pathways and thus suppress the

function of tumor-specific T cells, contributing to poor prognosis in cancer patients . Notably, eTregs highly express

various immune checkpoints, including CTLA4 and PD1, to suppress activated cytotoxic T cells, suggesting that eTregs

could represent an optimal target for ICIs such as ipilimumab and nivolumab . Indeed, Romano et al. reported that

ipilimumab depletes CTLA4  Tregs through antigen-dependent cell-mediated cytotoxicity (ADCC) in melanoma patients

. In addition, eTregs express inducible T-cell costimulator (ICOS), which promotes the proliferation of activated eTregs

by ICOS ligand expressed by plasmacytoid dendritic cells (DCs) .

3.3.2. Tregs and ICIs: Anti-PD1 Abs and Anti-CTLA4 Abs

As we described above, eTregs express various immune checkpoints and suppress the cytotoxic function and proliferation

of conventional effector T cells to maintain an immunosuppressive tumor microenvironment . Indeed,

CD45RA Foxp3 CD25  eTregs express CTLA4 as well as PD1, ICOS, GITR, OX-40 and LAG3 . CTLA4

expressing Tregs bind to CD80/86 on DCs to inhibit maturation of DCs . Moreover, eTregs produce inhibitory cytokines

(TGF-b, IL-10, IL-35) to promote B lymphocyte-induced maturation protein (BLIMP1)-dependent exhaustion of CD8  TILs

in the tumor microenvironments of B16 melanoma and the BrafPten melanoma model . In addition to being a

therapeutic target, PD1  Tregs are also a useful diagnostic target for anti-PD1 Ab monotherapy . For example,

decreased circulating PD1  Tregs could offer a predictive marker for favorable clinical outcomes from anti-PD1 Abs in

advanced melanoma . Moreover, in another report, nivolumab monotherapy in an adjuvant setting decreased

circulating PD1  Tregs in stage III melanoma patients .

Although nivolumab plus ipilimumab combined therapy is one of the first-line therapies for unresectable melanoma, and is

a most effective protocol for BRAF wild-type melanoma, the frequency of serious adverse events is higher than that with

anti-PD1 Ab monotherapy . As mentioned above, since ipilimumab depletes CTLA4  Tregs through ADCC, as one of

the mechanisms for inducing anti-tumor immune response in melanoma patients that leads to induction of high

therapeutic efficacy when administered with nivolumab , investigations for other drugs that selectively deplete

eTregs are ongoing.

For these reasons, several recent studies have targeted eTregs to establish novel anti-PD1 Ab-based immunotherapies 

. Among those, Doi et al. reported a phase 1 study of mogamulizumab, an anti-CCR4 Ab, in combination with

nivolumab for the treatment of solid tumors . They concluded that mogamulizumab decreased the population of eTregs

(CD4 CD45RA Foxp3 ) during treatment, with an acceptable safety profile in combination with nivolumab . More

recently, Schoonderwoerd et al. reported that Abs for endothelin, a coreceptor for TGF-β ligands, significantly decreased

the number of intratumoral Tregs, leading to enhanced anti-tumor immune response with anti-PD1 Ab therapy . Hu-

Lieskovan et al. reported that dabrafenib monotherapy increased TAMs and Tregs in melanoma, which decreased with the

addition of trametinib, suggesting that dabrafenib plus trametinib combination therapy could decrease immunosuppressive

Tregs, and enhance the anti-tumor effects of anti-PD1 Abs in melanoma patients .

Taken together, Tregs suppress tumor-specific T cells, leading to induction of tolerance in the tumor microenvironment in

skin cancers. Since Tregs express both PD1 and CTLA4, Tregs could represent an optimal target for nivolumab plus

ipilimumab combination therapy.

3.4. TANs in Developing Skin Cancers

Neutrophils are polymorphonuclear cells that are classically known to play roles in acute immune responses (e.g., host

defense, immune modulation, tissue injury) as one of the innate immune cells [7]. Since oncologists started focusing on

cancer inflammation as one of the main facilitators for development of the tumor microenvironment, TANs have recently

been taken into accounts as immunosuppressive cells, even in skin cancer . Indeed, TANs could drive tumor

progression through various pathways. For example, TANs not only eliminate the pathogen by phagocytosis, but also lead

to DNA base damage and mutation, and subsequent initiation of tumor development . In addition, TANs produce
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various tumor-driving cytokines such as TGF-β into the tumor microenvironment to maintain macrophages as an M2-

polarized phenotype , leading to promotion of tumor progression. TANs also produce inducible nitric oxide synthase

(iNOS) to directly suppress CD8  effecter T cells at the tumor site . Such reports suggest the significance of inhibiting

TAN recruitment at tumor sites.

Among the inducers of TANs, IL-17 could play a significant role in developing skin cancers. Indeed, several reports have

suggested the significance of IL-17 in the development of skin cancers such as cutaneous squamous cell carcinoma

(cSCC)  and extramammary Paget’s disease (EMPD) . For example, Wu et al. reported that IL-17 signaling in

keratinocytes drives IL-17-dependent sustained activation of the TRAF4-ERK5 axis, leading to keratinocyte proliferation

and tumor formation in cSCC . Gasparoto et al. reported a significant correlation between IL-17 and development of

mouse cSCC . More recently, a possible correlation of CCL20/IL-23/IL-17 axis in the development of EMPD has been

reported . These reports suggest the significance of IL-17 in the carcinogenesis of skin cancers, and IL-17 might be

partially caused by the induction of TANs at the tumor site.

In aggregate, TANs are induced by IL-17-related cancer inflammatory factors. TANs produce iNOS to directly suppress

the proliferation of effector T cells at a tumor site to promote cancer development.
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