

Mastiha

Subjects: **Nutrition & Dietetics**

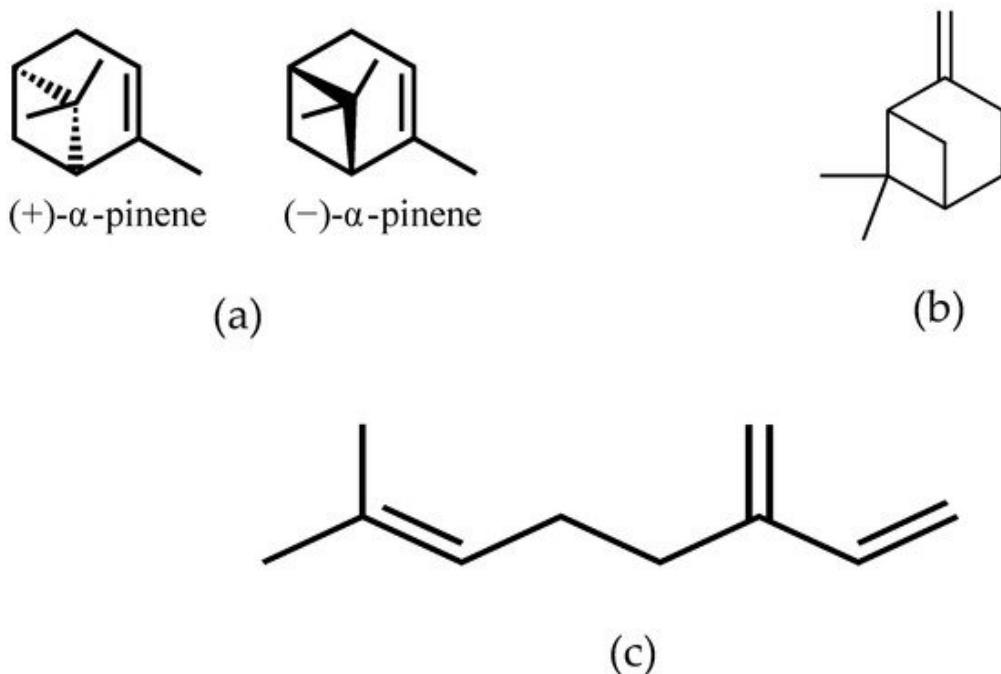
Contributor: Andriana C. Kaliora , Efstathia Papada

Mastiha is a natural product of the Mediterranean basin with several health benefits due to its bioactive compounds, namely terpenes, phenolic compounds, phytosterols, arabino-galactanes proteins. It appears as a dried resinous exudate from stems and branches of the tree *Pistacia lentiscus* (*Pistacia lentiscus* L. var *latifolius* Coss or *Pistacia lentiscus* var. *Chia*).

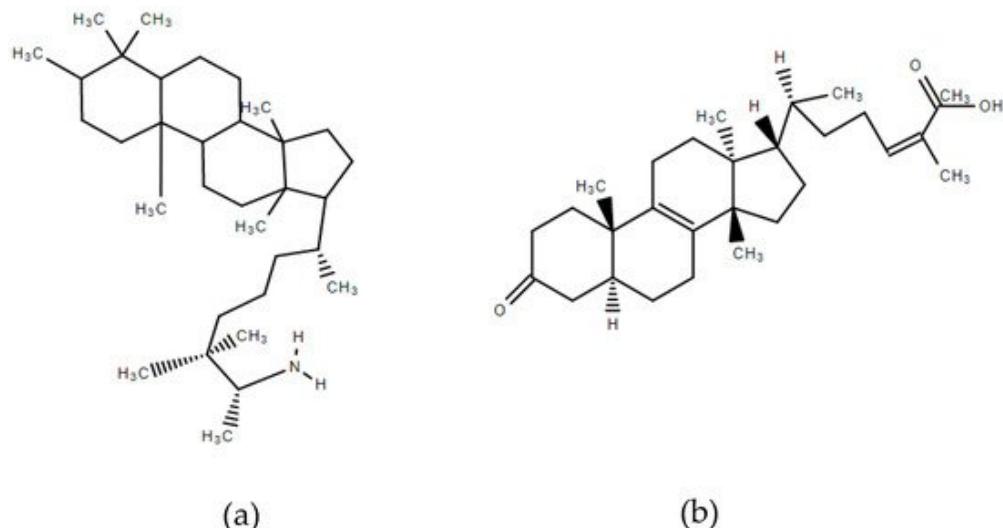
Mastiha

oxidative stress

inflammation


mastic gum

Pistacia lentiscus


terpenes

1. Introduction

Mastiha, is a natural product of the Mediterranean basin coming as a dried resinous exudate from stems and branches of the tree *Pistacia lentiscus* (*Pistacia lentiscus* L. var *latifolius* Coss or *Pistacia lentiscus* var. *Chia*). It consists of a plethora of bioactive constituents, including phenolic compounds, phytosterols, arabino-galactanes proteins, and 30% of a natural polymer (poly- β -myrcene) [1][2][3]. However, Mastiha is a concentrated source of terpenes, such as monoterpenes (i.e., α -pinene, β -pinene, β -myrcene) (Figure 1) and triterpenes (i.e., mastihadienonic, isomastihadienonic) (Figure 2).

Figure 1. Major monoterpenes of Mastiha. (a) isomers of α -pinene; (b) β -pinene; (c) β -myrcene.

Figure 2. Major triterpenes of Mastiha. (a) Mastihadienonic acid; (b) Isomastihadienonic acid.

Apart from its culinary usages, Mastiha is known since antiquity for its therapeutic properties documented for the first time by the ancient Greek physicians Hippocrates, Dioscorides and Galenos. Mastiha has been used by medical practitioners and botanists have used it for more than 2500 years mainly for the treatment of stomach and intestine disorders such as gastralgia, dyspepsia and peptic ulcer.

The European Medicines Agency has recognised Mastiha as a herbal medicinal product for the following indications, (a) mild dyspeptic disorders, and (b) symptomatic treatment of minor inflammations of the skin and as an aid in healing of minor wounds [4].

As there is an increasing consumer's interest for natural products as preventing and healing factors without side effects, the research interest upon the favourable effects and the mechanisms of action of natural products has increased as well. Regarding Mastiha, several researchers have investigated its antibacterial [5], antioxidant [6], anti-inflammatory [7], cytotoxic [8], hypolipidaemic activity [9] and the influence on liver and gut health [10][11].

2. The Antioxidant Properties of Mastiha

Oxidative stress occurs when oxygen/nitrogen radical levels exceed levels of antioxidants, either due to increased formation or due to deficiency or increased loss of enzyme and non-enzyme antioxidants. Reactive oxygen and nitrogen species (ROS and RNS) can induce severe oxidative damage to macromolecules that leads to cellular dysfunction. Oxidative stress seems to activate inflammatory pathways leading to transformation of a normal cell to tumor cell, tumor cell survival, proliferation, chemoresistance, radioresistance, invasion, angiogenesis and stem cell survival [12]. Many types of cancer are associated with oxidative stress such as breast, lung, ovarian and leukemia. Also, high levels of ROS and reduced antioxidant defense systems lead to insulin resistance and diabetes [13]. Additionally, oxidative stress is involved in the pathogenesis of hypertension, whereas risk factors for atherosclerosis can increase the production of free radicals from vascular endothelial cells and smooth muscle cells, thus increasing oxidative stress in the vessels and resulting in endothelial dysfunction. Increased vascular production of ROS is responsible for the production of oxLDL that critically contributes to the pathogenesis of atherosclerosis [14]. A highly complex antioxidant defense system in human body includes both endogenous and exogenous antioxidant molecules that function interactively and synergistically to neutralise free radicals. Antioxidant enzymes catalyse free radical quenching reactions, metal binding proteins sequester free iron and copper ions catalyze oxidative reactions, and

dietary plant-derived antioxidants either neutralise free radicals or enhance endogenous antioxidant activity. There is adequate evidence that bioactive compounds in plant foods may result in a reduction of oxidative stress. Crude plant materials or extracts obtained from plants are of wide scientific interest to further include either the whole extract or the drastic compound to complementary medicine supplements. Use of culinary herbs and medicinal plants has been a treatment approach utilised since ever for the prevention and/or treatment of diseases in humans. Used either as foods in daily nutrition or as components in dietary supplements, medicinal plants are valuable sources of bioactive compounds.

2.1. Preclinical Studies

The antioxidant activity of Mastiha and specifically of the crude resin obtained from the trunk of the tree *Pistacia Lentiscus* was first manifested by an in vitro study of Andrikopoulos and colleagues [15]. Inhibition of the oxidative modification of human LDL by copper sulphate was measured in different extracts from several resins and, overall, Mastiha proved to be the most effective in protecting the LDL particle. The most active extract was that of methanol/water, a common solvent combination applied to isolate polar constituents from natural products, such as phenolic compounds. Also, individual fractions of the resin were investigated to determine the most bioactive as regards antioxidant activity. Mastiha oil, collofonium like residue and the acidic fractions of NaOH and Na₂CO₃, were potent inhibitors of LDL oxidation, whereas the neutral fraction and the acidic emulsion were both quite inactive. In continuation to the previous, the investigation of the molecular mechanisms underlying the antioxidant and antiatherogenic effect of the polar extract from the resin was investigated [6]. The extract from Mastiha exhibited a potent antioxidant activity restoring glutathione levels in mononuclear cells under oxLDL-induced oxidative stress. The total extract inhibited both apoptosis and necrosis and downregulated the mRNA expression levels of scavenger receptor CD36, thus inhibiting oxLDL accumulation in monocytes. Interestingly, the triterpenoid fraction of the resin rather than the phenolic one demonstrated remarkable increase in intracellular glutathione. When enlightening Mastiha's effect in activated macrophages, crude resin solubilised in dimethyl sulfoxide was found to inhibit the nitric oxide (NO) production in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting iNOS rather than reducing the radical intensity of NO, while it did not scavenge O₂⁻ that is known to counteract NO. On the other hand, a liquid form consisting of crude Mastiha and coconut oil at the ratio of 3:7 scavenged the hydroxyl radical generated by the Fenton reaction in activated macrophages [16]. Similarly, weak 1,1-diphenyl-2-picryl hydrazyl radical scavenging activities were observed in the study of Mahmoudi and colleagues, however, it showed good Fe²⁺ chelating ability [17]. It is apparent that Mastiha is mediating the regulation of antioxidant defense via pathways other than the radical scavenging. The general antioxidant activity of Mastiha via a non-radical scavenging mechanism has been also proposed by Triantafyllou and colleagues in 2011 [18]. In stimulated smooth muscle cells and endothelial cells Mastiha was proven to decrease the superoxide production associated with downregulation of NADPH oxidase activity, most probably due to inhibition of protein kinase C [18]. The evidence that in Mastiha treated mononuclear cells a glutathione restoration was reported [6] and that glutathione inhibits protein kinase C by a non-redox mechanism [19] indicates the protein kinase C pathway for the antioxidant activity of Mastiha.

In addition to the above, in normally fed experimental rabbits at different time points of ischemia and reperfusion Mastiha significantly decreased levels of malonaldehyde measured as an index of lipid peroxidation. Although in cholesterol fed rabbits Mastiha did not affect malonaldehyde levels, however it exhibited potent antiatheromatic and hypolipidemic activities [20]. **Table 1** summarises the preclinical evidence on antioxidant and anti-inflammatory properties of Mastiha.

Table 1. Preclinical evidence of the antioxidant and anti-inflammatory effects of Mastiha.

Reference	Experimental Design	Biomarker	Effect
Antioxidant Effects			

Reference	Experimental Design	Biomarker	Effect
[6]	Mononuclear cells under oxLDL-induced oxidative stress 2.7, 27 and 270 µg of the Folin Ciocalteau reactant substances in polar extract per mL of culture medium	Glutathione levels	↑
[15]	Copper sulphate induced LDL oxidation Methanol/water or hexane extract from 2.5, 5.0, 10.0, 25.0 and 50.0mg Mastiha resin (normal and liquid type collections) and fractions (neutral fraction, acidic emulsion, acidic fractions)	CD36 expression	↓
[16]	LPS-stimulated macrophages RAW264.7 Solid (0–100 µg/mL) and liquid (0–0.5%) types of Mastiha in culture medium	Thiobarbituric acids reactant substances	↓
		O ₂ radical scavenging	-
		OH radical scavenging	↓
		NO and prostaglandin E2	↓
		Inducible NO synthase and cyclooxygenase-2	↓
		NO	↓
[17]	Carrageenan-induced paw edema in rats Mastiha at 200–800 mg/kg administered intraperitoneally 1 h before carrageenan injection	1-diphenyl-2-picryl hydrazyl radical scavenging	↓
[18]	TNF-α stimulated smooth muscle cells, angiotensin II stimulated endothelial cells Mastiha resin at 0.1–10 µg/mL	Carrageenan induced edema	↓
[20]	Experimental ischemia/reperfusion in normal-fed rabbits 46 mg/kg ⁻¹ /day of Mastiha total extract without polymer or the neutral Mastiha fraction in the form of sunflower oil solution orally administered with habitual diet for 6 weeks	Superoxide and H ₂ O ₂	↓
[20]	Experimental atherosclerosis in cholesterol-fed rabbits 46 mg/kg ⁻¹ /day of Mastiha total extract without polymer or the neutral Mastiha fraction in the form of sunflower oil solution orally administered with cholesterol enriched diet for 6 weeks	NADPH oxidase activity	↓
		Malonaldehyde	↓
		Malonaldehyde	-
Anti-Inflammatory Effects			
[2]	Pull-down experiments with Helicobacter pylori neutrophil-activating protein and neutrophils 5 g Mastiha mixed with 0.1 mol/L NaCl, 20 mmol/L Tris–HCl to extract arabinogalactan proteins	Neutrophils activation	↓
[7]	Experimental TNBS-colitis in rats 50–300 mg kg ⁻¹ /day Mastiha administered orally for 3 days	TNF-α, ICAM-1, IL-6, IL-8 in colonic tissue	↓
[21]	TNF-α stimulated human aortic endothelial cells 25–200 µg/mL (for Mastiha extract) and 1–100 µM (for tirucallol)	Colonic damage	↓
		VCAM-1 expression	↓
		ICAM-1 expression	↓

Reference	Experimental Design	Biomarker	Effect	
[22]	OVA induced allergic asthma in mice 50 or 100 mg kg ⁻¹ dissolved in 1% DMSO in saline administered intraperitoneally 4 h before challenge	Phosphorylation of NF- kB p65	↓	
		Binding of U937 cells	↓	
		Number of infiltrating eosinophils	↓	
		IL-5, IL-13, eotaxin, eotaxin2 levels in BALF	↓	
		Eotaxin-induced eosinophil chemotaxis	↓	
[23]	Co-cultured human colon epithelial HT29 cells and monocytes/macrophages Mastiha at 0–150 ng/mL culture medium or respective Acidic or Neutral fraction	Expression of IL-8 and NF- kB p65	↓	
		LDH release from the HT29 cell monolayer	↓	
		TNF-a, ICAM-1, IL-6, IL-8 in colonic tissue	↓	
[24]	Experimental TNBS-colitis in rats 100 mg kg ⁻¹ / day of Mastiha or respective Acidic or Neutral fraction administered orally for 3 days	Colonic damage	↓	
		CRP, IL-6	↓	
decreases serum lipids and glucose when administered daily in doses ranging from 2 to 10 g [25][26].				
limited. As erosion and tivity as it				

Focusing on biomarkers of oxidative stress, most recently we assessed levels of oxLDL and serum antioxidant capacity in an open-label and single arm postprandial study of absorption and bioavailability of Mastiha's terpenes in healthy adults. Results indicated the bioavailability pattern of targeted triterpenes after oral administration of Mastiha and the potential of these to mediate antioxidant defense *in vivo*. The increase in triterpene concentration followed an increase in serum antioxidant capacity and a decrease in oxLDL [27].

In inflammatory bowel diseases (IBD) chronic inflammation of the intestinal mucosa induces ROS/RNS overproduction leading to oxidative stress [28][29]. Oxidative stress has been considered as both a putative causal and perpetuating factor playing a crucial role in the pathogenesis, progression, and severity of IBD [30]. When patients with active IBD, both Crohn's disease (CD) and ulcerative colitis (UC) were randomised to a double-blind and placebo-controlled trial with Mastiha, a decrease in serum oxLDL and oxLDL/LDL or oxLDL/HDL was reported in patients under Mastiha supplementation [31]. Additionally, cysteine, was found significantly lower in the placebo arm versus verum arm whereas it correlated negatively with levels of oxLDL. Since cysteine is a precursor of glutathione, the above finding is significant and coincides with the *in vitro* findings that Mastiha's antioxidant efficacy involves glutathione synthesis.

Another recent study assessed the acute effects of Mastiha on peripheral and aortic haemodynamics and changes in gene expression of molecules involved in hypertension pathways. A total of 27 subjects (13 hypertensive patients) participated in a randomised double-blind case controlled crossover study with 2.8 g of Mastiha or placebo. Gene expression analyses in mononuclear cells showed that Mastiha administration in hypertensive patients decreased the expression of the pro-oxidant NOX2 genes as well as of the proteasomal (PSMB6, PSMB7, RPN6) and chaperone HSP27. When compared with controls,

NOX2 expression in hypertensive patients significantly decreased indicating that Mastiha exhibits regulatory effects on genes involved in pro-oxidant pathways [32].

Until today and based on the limited data available, it seems that most possibly Mastiha exhibits its antioxidant activity through the protein kinase C pathway rather through the radical scavenging properties of the contained phytochemicals. Further studies are required to shed light on the mechanism underlying these effects. **Table 2** summarises the clinical evidence on antioxidant and anti-inflammatory properties of Mastiha.

Table 2. Clinical evidence of the antioxidant and anti-inflammatory effects of Mastiha.

Reference	Experimental Design	Biomarker	Effect
[33]	Pilot, active CD patients ($N = 10$) and healthy ($N = 8$), 2.2 g of Mastiha daily, 4 weeks	Plasma CRP, IL-6	↓
		Plasma TNF-α, MCP-1	-
		TNF-α secretion from PBMC	↓
[34]	Pilot, active CD patients ($N = 10$) and healthy ($N = 8$), 2.2 g of Mastiha daily, 4 weeks	MIF release	↑
		Plasma IL-6, MCP-1	-
		Neutrophil activation	↓
[2]	Healthy volunteers ($N = 3$) and <i>H. pylori</i> positive patients ($N = 5$), 1 g of Mastiha daily, 2 months	Gene expression of pro-oxidant NOX2 genes	↓
[32]	Double-blind, case-controlled, crossover study ($N = 27$), 2.8 g of Mastiha (acute administration)	Faecal lysozyme, Serum IL-10 & CRP	-
[31]	Open-label, single arm, postprandial study, healthy ($N = 17$), 10 g of Mastiha	Plasma oxLDL	↓
		Serum antioxidant capacity	↑
		Serum IL-6, faecal calprotectin & lactoferrin	↑ in placebo
[35]	Double-blind, placebo-controlled, parallel arm RCT, IBD patients in remission ($N = 68$), 2.8 g of Mastiha daily, 6 months	Plasma valine, proline, alanine, glutamine, tyrosine	↑ in placebo
[31][36]	Double-blind, placebo-controlled, parallel arm RCT, IBD patients in relapse ($N = 60$), 2.8 g of Mastiha daily, 3 months	oxLDL	↓ in verum
		Plasma cysteine	↓ in placebo
		Faecal lysozyme	↓ in verum
		Faecal calprotectin and lactoferrin	↑ in placebo
		Serum IL-6	↑ in both arms
		Serum IL-10 & CRP	-

Reference	Experimental Design	Biomarker	Effect
		Plasma fibrinogen	↓ in verum

(↓) indicates decrease, (↑) indicates increase and (-) indicates no effect.

References

1.3. The Anti-Inflammatory Properties of Mastiha

1. Assimopoulou, A.A.; Papageorgiou, V.P. GC-MS analysis of pentacyclic triterpenes from resins of Pistacia species. Part I. *Pistacia lentiscus* var. Chia. *Biomed. Chromatogr.* 2005, 19, 285–311.

As the primary cause of injury to vital cellular components such as DNA, proteins and membrane lipids, oxidative stress causes numerous disorders including inflammation. Inflammation is a fundamental response of the human immune system and includes a range of molecular reactions and cellular activity (e.g., phagocytosis, chemotaxis and cell differentiation).

2. Kottakis, F.; Kouzi-Koliakou, K.; Pendas, S.; Kountouras, J.; Choli-Papadopoulou, T. Effects of mastic gum on innate cellular immune effectors. *Eur. J. Gastroenterol. Hepatol.* 2009, 21, 143–149.

Types of inflammation have been classified into acute and chronic. Acute inflammation is a short process (minutes to a few days) with main characteristics the leakage of plasma proteins or fluid and migration of leukocytes into an extravascular area

3. Paraschos, S.; Magiatis, P.; Makrilia, S.; Petraki, K.; Kallaropoulos, A.; Maragkoutakis, P.; Menits, A.; Sgouras, D.; Skaltsounis, A.L. In vitro and in vivo activities of Chios mastic gum extracts and constituents against *Helicobacter pylori*. *Antimicrob. Agents Chemother.* 2007, 51, 551–559.

4. European Medicines Agency. 2015. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Herbal_Herbal_monograph/2015/07/WC500100099.pdf (accessed on 6 March 2017).

5. Sakagami, H.; Kishino, K.; Kobayashi, M.; Hashimoto, K.; Iida, S.; Shimetani, A.; Nakamura, Y.; Takahashi, K.; Ikarashi, T.; Fukamachi, H.; et al. Selective antibacterial and apoptosis-modulating activities of mastic. *In Vivo* 2009, 23, 215–223.

A research group in 2009 investigated whether Mastiha restrains the production of proinflammatory factors, like NO and proinflammatory cytokines.

6. Aggelakoski, E.G.; Vassilopoulou, A.; Kalliora, A.; Aggelakoski, S.; Gioxari, A.; Mylonaki, A.; Papalopoulou, N.; Choli-Papadopoulou, T.; Niki, E.; Andrikopoulos, N.K. Antiphlogistic effect of *Pistacia lentiscus* via GSH restoration and downregulation of the COX-2 mRNA contained in Mastiha. *Atherosclerosis* 2004, 174, p. 293–303.

7. Gioxari, A.; Kalliora, A.C.; Papalopoulou, A.; Agrogiannidis, G.; Triantafyllidis, J.K.; Andrikopoulos, N.K. *Pistacia lentiscus* resin regulates intestinal damage and inflammation in trinitrobenzene sulfonic acid-induced colitis. *J. Med. Food* 2011, 14, 1403–1411.

The anti-inflammatory potential of Mastiha was also pointed in the study of Mahmoudi and colleagues that showed significant

8. Balan, A.; Kedra, D.; Principe, J.; Han, J.; Dimas, K.; Giannakou, M.; Wyche, J.H.; Sitaras, N.M.; Pantazis, P. Antiproliferative activity and induction of apoptosis in human colon cancer cells treated in vitro with constituents of a product derived from *Pistacia lentiscus* L. var. chia. *Phytomedicine* 2007, 14, 263–272.

In 2009, Kottakis and colleagues investigated the effects of Mastiha and arabinoxylan-protein (AGPs) extracted from

9. Vallianou, I.; Peroulis, N.; Pantazis, P.; Hadzopoulou-Cladaras, M. Camphene, a plant-derived monoterpenes, reduces plasma cholesterol and triglycerides in hyperlipidemic rats independently of HMG-CoA reductase activity. *PLoS ONE* 2011, 6, e20516.

10. Kotsopoulos, S.; Kyriakopoulou, K.; Emmanouil, C.; Fokialakis, N.; Skaltsounis, A.; Menits, A.; Magiatis, P. Both the neutral extract and CYP1A1 and CYP1A2 isoenzymes of rat liver contain triterpenes from mastic gum (1) and

11. Dabos, K.J.; Sfika, E.; Vlatta, L.J.; Giannikopoulos, G. The effect of mastic gum on *Helicobacter pylori*: A randomized pilot study. *Phytomedicine* 2010, 17, 296–299.

12. Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? *Free Radic. Biol. Med.* 2010, 49, 1603–1616.

13. Kaliora, A.C.; Dedoussis, G.V. **Natural antioxidant properties of Mastiha on risk factors for cardiovascular disease**. *Pharmacol. Res.* **2007**, *56*, 99–109.

14. Kaliora, A.C.; Dedoussis, G.V.; Schmidt, H. **Dietary antioxidants in preventing atherogenesis**. *Atherosclerosis* **2006**, *187*, 1–17.

15. Andrikopoulos, N.K.; Kaliora, A.C.; Assimopoulou, A.N.; Papaneorgiou, V.P. **Biological activity of some receptor and chemokine receptors**. The authors suggested that the observed decrease in IL-8, IL-10 and eotaxin levels in BALF from Mastiha treated mice might result from the inhibition of NF- κ B activation [21]. *Phytother. Res.* **2003**, *17*, 501–507.

The anti-inflammatory capacity of Mastiha was also investigated on an animal model of IBD. Administration of 100mg of Mastiha/kg of body weight daily led to the decrease of inflammatory cytokines TNF- α , ICAM-1, IL-6, IL-8, and ameliorated the histological damage. A proposed mechanism of action proposed by the authors was the regulation of key inflammatory mediators of IBD by the terpenes and phenolic compounds of Mastiha [7]. When fractions of Mastiha were applied to the above experimental model of colitis, the authors reported regulation of inflammation by acidic and neutral fractions, however with no histological improvement of [22]. On an attempt to elucidate the mechanism of the anti-inflammatory activity in experimental colitis, a model of inflammation in co-cultured human colon epithelial HT29 cells and Lipopolysaccharide stimulated monocytes/macrophages was established. Results from the in vitro experiment pointed towards a down-regulation of IL-8 and NF- κ B p65 with crude Mastiha and reduction of LDH release. Most probably, the crude Mastiha rather than its individual fractions exert an anti-inflammatory activity via NF- κ B regulation [23].

16. Zhou, L.; Satoh, K.; Takahashi, K.; Watanabe, S.; Nakamura, W.; Maki, J.; Hatano, H.; Takekawa, F.; Shimada, C.; Sakagami, H. **Re-evaluation of anti-inflammatory activity of mastic using activated macrophages**. *In Vivo* **2009**, *23*, 583–590.

17. Mahmoudi, M.; Ebrahimzadeh, M.A.; Nahavi, S.F.; Hafezi, S.; Nahavi, S.M.; Eslami, S. **Anti-inflammatory and antioxidant activities of gum mastic**. *Eur. Rev. Med. Pharmacol. Sci.* **2010**, *14*, 765–769.

18. Triantafylou, A.; Bikchayeva, A.; Dikarova, A.; Nazarewicz, R.; Lerakis, S.; Dikarov, S. **Anti-inflammatory activity of Chios mastic gum is associated with inhibition of TNF-alpha induced oxidative stress**. *Nutr. J.* **2011**, *10*, 64–72.

19. Gopalakrishna, R.; Jaken, S. **Protein kinase C signaling and oxidative stress**. *Free Radic. Biol. Med.* **2000**, *28*, 1349–1361.

20. Andrikopoulos, N.K.; Papadatos, S.; Paraschos, S.; Chrousos, G.P.; Lekakis, I.; Moutsatsou, P.; Kaklamani, L.; Kalabakali, M.; Skordis, A. **Anti-inflammatory and hypolipidemic activity of Mastiha in cholesterol-fed rabbits**. *Phytother. Res.* **2016**, *30*, 1220–1226.

21. Loizou, S.; Paraschos, S.; Mitakou, S.; Chrousos, G.P.; Lekakis, I.; Moutsatsou, P. **Mastic gum extract and isolated phytosterol tirucallol exhibit anti-inflammatory activity in human aortic endothelial cells**. *Exp. Biol. Med.* **2009**, *234*, 553–561.

22. Qiao, J.; Li, A.; Jin, X.; Wang, J. **Mastic alleviates allergic inflammation in asthmatic model mice by inhibiting recruitment of eosinophils**. *Am. J. Respir. Cell Mol. Biol.* **2011**, *45*, 95–100.

23. Papadatos, S.; Gioura, A.; Kaliora, A.C.; Aggelis, A.; Aggelis, G.; Mitakou, S.; Papadatos, E.; Andrikopoulos, N.K.; Skordis, A. **Anti-inflammatory and hypolipidemic activity of Mastiha in cholesterol-fed rabbits**. *Phytother. Res.* **2012**, *16*, 974–983.

24. Tzani, A.I.; Doulamis, I.P.; Konstantopoulos, P.S.; Pasiou, E.D.; Daskalopoulou, A.; Iliopoulos, D.C.; Georgiadis, I.V.; Kavantzas, N.; Kourkoulis, S.K.; Perrea, D.N. **Mastic gum decreases renin levels and ameliorates vascular remodeling in renovascular hypertensive rats**. *Biomed. Pharmacother.* **2018**, *105*, 899–906.

25. Karthi, A.; Didigeles, M.; Georgiadis, I.; Benetos, G.; Sardou, M.; Nihal, M.; Karayannidis, M.; Vassilakou, Z.; Zoumbas, G. **Cardioprotection and Andrikopoulos, S. **Effects of Chios mastic gum on cholesterol and glucose levels of healthy volunteers: A prospective, randomized, placebo-controlled, pilot study (Chios-Mastiha)****. *Eur. J. Prev. Cardiol.* **2016**, *23*, 722–729.

Based on this pilot study, Papadatos and colleagues investigated the effect of Mastiha on patients with active IBD in the context of a randomised, double-blind, placebo-controlled clinical trial. A total of 60 patients with active IBD were randomly allocated

26. Triantafyllou/Aay Chariot, N. S. Gentiletti, T. J. Piroozi, E. Tekinalp, J. Mastiha, B. S. Vaidya. *Major hemostatic parameters in a human population in Thessaloniki and 2007-11-14-101 Disease Questionnaire (IBDO) were assessed. IBDO score significantly improved in the Mastiha group compared with baseline. There was a significant decrease in faecal lysozyme in Mastiha group with the mean change being significant between groups, and Kaliora, A.C. Bioavailability of Terpenes and Postprandial Effect on Human Antioxidant Potential. An Open-Label Study in Healthy Subjects. Mol. Nutr. Food Res. 2018, 62, 1700751.*

27. Papada, E.; Gioxari, A.; Brieudès, V.; Amerikanou, C.; Halabalaki, M.; Skaltsounis, A.L.; Smyrnioudis, I.; Kaliora, A.C. Bioavailability of Terpenes and Postprandial Effect on Human Antioxidant Potential. An Open-Label Study in Healthy Subjects. *Mol. Nutr. Food Res.* **2018**, *62*, 1700751.

28. Ng, S.C.; Tang, W.; Ching, J.Y.; Wong, M.; Chow, C.M.; Hui, A.J.; Wong, T.C.; Leung, V.K.; Tsang, S.W.; Yu, H.H.; et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn's and colitis epidemiology study. *Gastroenterology* **2013**, *145*, 158–165.

29. Zeng, Z.; Zhu, Z.; Yang, Y.; Ruan, W.; Peng, X.; Su, Y.; Peng, L.; Chen, J.; Yin, Q.; Zhao, C.; et al. Incidence and clinical characteristics of inflammatory bowel disease in a developed region of Guangdong Province, China: A prospective population-based study. *J. Gastroenterol. Hepatol.* **2013**, *28*, 1148–1153.

30. Pereira, C.; Grácio, D.; Teixeira, J.P.; Magro, F. Oxidative stress and DNA damage: Implications in French cohort study. *Gut* **2018**, *67*, 1261–1268.

31. Papada, E.; Forbes, A.; Amerikanou, C.; Torović, L.; Kalogeropoulos, N.; Tzavara, C.; Triantafyllidis, J.K.; Kaliora, A.C. Antioxidative efficacy of a Pistacia lentiscus supplement and its effect on the plasma amino acid profile in Inflammatory Bowel Disease: A randomised, double-blind, placebo-controlled trial. *Nutrients* **2018**, *10*, 1779.

32. Kontogiannis, C.; Georgopoulos, G.; Loukas, K.; Papanagnou, E.D.; Pachi, V.K.; Bakogianni, I.; Laina, A.; Kouzoupis, A.; Karatzi, K.; Trougakos, I.P.; et al. Chios mastic improves blood pressure haemodynamics in patients with arterial hypertension: Implications for regulation of proteostatic pathways. *Eur. J. Prev. Cardiol.* **2019**, *26*, 328–331.

33. Kaliora, A.C.; Stathopoulou, M.G.; Triantafyllidis, J.K.; Dedoussis, G.V.Z.; Andrikopoulos, N.K. Chios mastic treatment of patients with active Crohn's disease. *World J. Gastroenterol.* **2007**, *13*, 748–753.

34. Kaliora, A.C.; Stathopoulou, M.G.; Triantafyllidis, J.K.; Dedoussis, G.V.Z.; Andrikopoulos, N.K. Alterations in the function of circulating mononuclear cells derived from patients with Crohn's disease treated with mastic. *World J. Gastroenterol.* **2007**, *13*, 6031–6036.

35. Papada, E.; Amerikanou, C.; Torovic, L.; Tzavara, C.; Kalogeropoulos, N.; Forbes, A.; Kaliora, A.C. Plasma free amino acid profile in quiescent Inflammatory Bowel Disease patients orally supplemented with Mastiha; a randomized clinical trial. *Phytomedicine* **2019**, *56*, 40–47.

36. Papada, E.; Gioxari, A.; Amerikanou, C.; Forbes, A.; Tzavara, C.; Smyrnioudis, I.; Kaliora, A.C. Regulation of faecal biomarkers in Inflammatory Bowel Disease patients treated with oral Mastiha supplement: A randomized controlled clinical trial. *Phytother. Res.* **2019**, *33*, 360–369.

37. Markiewski, M.M.; Lambris, J.D. The role of complement in inflammatory diseases from behind the scenes into the spotlight. *Am. J. Pathol.* **2007**, *171*, 715–727.

38. Arulselvan, P.; Fard, M.T.; Tan, W.S.; Gothai, S.; Fakurazi, S.; Norhaizan, M.E.; Kumar, S.S. Role of antioxidants and natural products in inflammation. *Oxid. Med. Cell. Longev.* **2016**, *2016*, 5276130.

Retrieved from <https://encyclopedia.pub/entry/history/show/32825>