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Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from membrane phospholipids. LPA initiates

cellular effects upon binding to a family of G protein-coupled receptors, termed LPA receptors (LPAR1 to LPAR6). LPA

signaling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, angiogenesis, and

lymphangiogenesis.
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1. Overview

Lysophosphatidic acid (LPA) is a bioactive lipid mediator primarily derived from membrane phospholipids. LPA initiates

cellular effects upon binding to a family of G protein-coupled receptors, termed LPA receptors (LPAR1 to LPAR6). LPA

signaling drives cell migration and proliferation, cytokine production, thrombosis, fibrosis, angiogenesis, and

lymphangiogenesis. Since the expression and function of LPA receptors are critical for cellular effects, selective

antagonists may represent a potential treatment for a broad range of illnesses, such as cardiovascular diseases,

idiopathic pulmonary fibrosis, voiding dysfunctions, and various types of cancers. More new LPA receptor antagonists

have shown their therapeutic potentials, although most are still in the preclinical trial stage. This review provided

integrative information and summarized preclinical findings and recent clinical trials of different LPA receptor antagonists

in cancer progression and resistance. Targeting LPA receptors can have potential applications in clinical patients with

various diseases, including cancer. 

2. Lysophosphatidic Acid

Lysophosphatidic acid (LPA) and LPA receptors (LPARs), including LPAR1 to LPAR6, are integral parts of signaling

pathways involved in cellular proliferation/migration/survival, vascular homeostasis, stromal remodeling, lymphocytes

trafficking, and immune regulation . In addition, autotaxin (ATX) is a secreted glycoprotein and functions as a pivotal

enzyme to produce extracellular LPA . Figure 1 illustrates the extracellular and intracellular biosynthesis of LPA.

Consequently, aberrant ATX-LPA-LPAR axis may be involved in the development and progression of many pathologic

conditions such as cancer and metastasis , radio- and chemo-resistances , fibrotic diseases ,

neuropathic pain , arthritis , metabolic syndromes , and atherosclerosis . Understanding ATX/LPA expression

and LPAR-mediated signals elucidated our understanding of the disease mechanisms and highlighted the therapeutic

potential of the druggable ATX-LPAR axis. To date, enormous in vivo and in vitro investigations have demonstrated

pharmacological antagonization of LPAR to be of paramount significance in reversing pathologic responses. This article

sought to update current progress regarding LPAR antagonists in clinical and preclinical settings, emphasizing

compounds being evaluated in completed and ongoing clinical trials.

3. LPA Receptor-Mediated Signaling in Cancer Biology

ATX-LPA-LPAR signaling is a complex network and intertwines with multiple cellular signaling to contribute a plethora of

activities such as proliferation, survival, migration, metastasis, angiogenesis, and inflammation in cancers . Individual

LPARs favor different Gα proteins for their downstream signals and cellular functions. In brief, the endothelial cell

differentiation gene (EGD) family LPARs (LPAR1 to LPAR3) bind to G  and trigger the Ras/Raf/MAPK signaling pathway,

phospholipase C (PLC), and the PI3K-Akt pathway . G  protein couples LPAR1–5 to mediate PLC and

calcium mobilization , whereas G  interacts with all LPARs, leading to cell migration and invasion through Rho and

Rho-associated protein kinase (ROCK) activation . Signaling through Gs would activate the cAMP-dependent protein

kinase A (PKA) signaling pathway and the large tumor suppressor 1 and 2 (LATS1/2). It would subsequently inhibit

downstream transcriptional co-activators Yes-associated protein (YAP) and PDZ-binding motif (TAZ), which usually drive
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cancer cell survival, proliferation, invasive migration, and metastasis . Interestingly, the ROCK activation would

suppress LATS1/2 and subsequently activate YAP and TAZ, resulting in tumorigenesis (Figure 2).

The LPA-LPAR signaling pathway is one of the most investigated mechanisms because overexpression of one or more of

these receptors was found in several types of cancers. Therefore, the concept of modulating cancer by agonizing or

antagonizing LPARs is naturally generated. The following sessions would discuss all LPARs in detail.

3.1. LPAR 1

Studies show that LPAR1 enhances metastasis and tumor motility . Aberrant LPAR1 expressions were observed in

many cancer cell lines and primary tumors, including ovarian cancer , breast cancer , liver cancer , gastric cancer

, pancreatic cancer , lung cancer , glioblastoma (GBM) , and osteosarcoma . Ovarian cancer is

the most investigated cancer in studying the malignancy of LPA signaling. High LPAR1 expressions in ovarian serous

cystadenocarcinoma correlate with high proliferation, invasion, migration, and poorer prognosis than those with low

expressions . LPAR1 also promotes the development of intratumoral heterogeneity by regulating PI3K/AKT signaling

. Retaining the stemness phenotype of ovarian cancer, an autocrine loop via the ATX-LPA-LPAR1-AKT1 signaling axis

is critical . In breast cancer, overexpression of LPAR1 in MCF-10A mammary epithelial cells causes cells to acquire an

invasive phenotype , which correlates with the heparin-binding EGF-like growth factor  and mediate basal breast

metastasis through LPAR1-PI3K-ZEB1-miR-21 pathways . For hepatocellular carcinoma, LPA-LPAR1 enhances cancer

invasion via inducing MMP-9 expression through coordinate activation of PI3K and p38 MAPK signaling cascade .

Similarly, increased cancer cell invasiveness mediated by LPAR1 was found in pancreatic cancer . For lung A549

cancer cells, the LPAR1/Gi/MAP kinase/NF-κB pathway is involved in LPA-induced oncogenesis, and using the LPAR1/3

antagonist Ki16425 to block LPAR1-mediated signaling would significantly reduce tumor volume . In GBM, LPAR1

expression is also significantly higher than other gliomas . Of interest, the LPA pathway of microglia-and-GBM

interaction is a target to improve survival because microglia-derived LPA and ATX upon hypoxia stress may promote GBM

proliferation and migration . A recent report indicates LPAR1/PKCα/progesterone receptor pathway is involved in GBM

migration . In prostate PC-3 cancer cells, hyperglycemia triggers enhanced vascular endothelial growth factor-C

(VEGF-C) expression via the LPAR1/3-Akt-ROS-LEDGF signaling . The LPA-mediated VEGF-C expression can be

modified by calreticulin, a multifunctional chaperon protein. In addition, pharmacological LPAR1 receptor antagonism may

significantly reduce tumoral lymphatic vessel density and nodal metastasis in tumor-bearing nude mice, suggesting the

key role of LPAR1 in prostate cancer lymphatic metastasis .

3.2. LPAR2

LPAR2 activation has been shown to associate with cell survival because of its anti-apoptosis function. For ovarian

cancer, tumors with overexpression of LPAR2 were associated with poorer survivals compared with controls .

Furthermore, LPAR2 signaling promotes invasion and metastasis through the production of VEGF , EGFR ,

interleukin-8 , and urokinase plasminogen activation , implying the multiple hyper-vascularization processes. LPAR2-

Gi-Src-EGFR-ERK signaling cascade may mediate cell movement and LPA-stimulated COX-2 expression . Together

with LPAR1, LPAR2 regulates phosphorylation of ezrin/radixin/moesin (ERM) proteins, known as membrane-cytoskeleton

linkers, and leads to promotion of ovarian OVCAR-3 cancer cell migration through cytoskeletal reorganization and

formation of membrane protrusions . The metastatic activity of gastric SGC-7901 cells was enhanced as well through

LPA-LPAR2-Notch pathway activation . LPAR2 is the major LPAR in colon cancer, and most of the cellular signals by

LPAR2 were primarily mediated through interaction with scaffold proteins Na /H  exchanger regulatory factor 2 (NHERF2)

. In another two reports, LPA-LPAR2 may facilitate colon cancer proliferation via transcription factor Kruppel-like factor

5 (KLF5) and hypoxia-inducible factor 1α (HIF-1α) activations. The LPAR2 associated HIF-1α expression also promoted

breast cancer proliferation/migration and conferred poor prognosis in the Chinese population . Regarding the link

between chronic inflammation and cancer, Lin et al. found genetic LPAR2 depletion may attenuate colon cancer

development in a colitis mice model triggered by azoxymethane and dextran sulfate sodium . Noteworthy, LPAR2

activation may exert anti-migration effects by blocking EGF-induced migration and invasion of pancreatic Panc-1 cancer

cells through the G /Rho signaling pathway . G  protein is also involved in enhanced ovarian cancer invasion and

migration via the HIF1α-LPA-LPAR2 axis . The distinct structure of LPAR2 from other LPARs is its carboxyl-terminal tail

contains a zinc finger-binding motif to interact with TRIP6 and pro-apoptotic Siva-1. TRIP6 has a PSD95/Dlg/ZO-1 (PDZ)-

binding motif to interact with scaffold proteins, particularly NHERF2 . Siva-1 is an early response gene activated by

DNA damage that promotes apoptosis through binding up the antiapoptotic Bxl-XL protein. Moreover, Siva-1 acts with p53

and the ubiquitin ligase Mdm2 in the nucleus complexes, and the polyubiquitinated complex would be degraded once the

LPA-LPAR2 axis is activated. The functional significance of the LPAR2-activated assembly leads to up-regulation of

ERK1/2, PI3K-Akt, and NFκB prosurvival pathways and the subsequent inhibition of apoptosis . LPAR2 can protect
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cancer cells against apoptotic stress after irradiation and chemotherapy by augmenting DNA damage repair response and

inhibiting the mitochondrial apoptosis cascade .

3.3. LPAR3

LPAR3 is the predominant receptor subtype in colon, liver, and lung cancers. LPAR3-expressing cells significantly

promote motility and invasiveness through Ras-, Rac-, Rho-, and PI3K-signaling pathways . In hepatocellular

carcinoma, Zuckerman et al. reported distinct LPAR3 expressions within the tumor and normal tissues, and LPAR3 may

enhance liver cancer migration via the LPAR3-Gi-ERK/MAPK pathway . Okabe et al. found LPAR3 contributes to

hepatocellular carcinoma proliferation and invasion via the β-catenin pathway in rat hepatic RH7777 cancer cells. They

also demonstrated that tumor cells with high LPAR3 expression were resistant to cisplatin and doxorubicin through

multidrug-resistance-related up-regulation of genes . In melanoma, LPAR3 is essential to promote viability and

proliferation, and the Src homology 3 domain is required for LPAR3 to mediate viability in melanoma SK-MEL-2 cells 

. In ovarian cancer, LPAR3 promotes cell expansion and invasion in SKOV-3 cells, and tumors with overexpression of

LPAR3 were associated with poor survival . Besides G  and G  proteins, LPAR3 can also activate G , increase

dephosphorylation and nuclear translocation of YAP, and induce migration of ovarian cancer cells . In addition, the

LPA/LPAR3 signaling may initiate mutation-independent epithelial-to-mesenchymal transition (EMT) through β1-integrin-

dependent activation of Wnt/β-catenin signaling . Pharmacological suppression of LPAR3 would suppress motility and

invasion in various cancers, including hamster pancreatic cancer cells , human triple-negative breast cancers ,

fibrosarcoma HT1080 cells, and osteosarcoma HOS cells . Direct targeting of LPAR3 by miR-15b has been shown to

repress cell proliferation and drive the senescence and apoptosis of ovarian cancer cells through the PI3K/Akt pathway

, suggesting the potential mRNA treatment against LPAR3.

3.4. LPAR4

In contrast to LPAR1–3, LPAR4 and LPAR5 negatively affected cancer cell proliferation and motility . LPAR4 attenuates

tumor motility and colony formation in colon cancer cell lines. Knockdown of LPAR4 in the long-term 5FU treated DLD1

cells increased cell motility . Similarly, LPAR4 depletion increases tumor motility in pancreatic cancer cells  and

increases tumor proliferation in head and neck carcinoma . Another recent study by Eino et al. found that LPAR4 is

critical for developing a fine capillary network in brain tumors . LPAR4 promotes endothelial cell-cell adhesion and

VCAM-1 expression via RhoA/ROCK signaling, enhancing anti-PD1 therapy efficacy and lymphocyte infiltration .

However, a contradictory pro-tumorigenesis was found in fibrosarcoma. In HT1080 cells, LPAR4 promotes cell invasion

and invadopodium formation via cAMP/EPAC/Rac1 signaling . Of interest, LPAR4/6 is necessary for embryogenic

angiogenesis to activate YAP and transcriptional coactivator TAZ via the G /G  signaling pathway . In the

malignancies, YAP promotes cancer proliferation and migration in bladder cancers through YAP-Mask2  and lung

cancers through LKB1-YAP-human telomerase RAN (hTERC), respectively . These suggested the involvement of

LPAR4 in YAP-mediated cancer progression.

3.5. LPAR5

LPAR5 was considered a negative regulator in cancer cell motility and survival . The inhibitory effect of LPAR5 on cell

motility has been shown in pancreatic cancer  and sarcoma . Nevertheless, contradictory effects of LPAR5 were

found in different cancers. Okabe et al. reported upregulation of the LPAR5 gene with aberrant unmethylated status

enhanced cell proliferation and motility in rat liver-derived hepatoma RH7777 and lung-derived adenocarcinoma RLCNR

cells . Blocking LPAR5 in thyroid cancer with a selective LPA5 antagonist TCLPA5 attenuated cancer proliferation and

migration via PI3K/Akt signaling in vivo and in vitro . Moreover, depletion of LPAR5 in murine B16-F10 melanoma

resulted in fewer lung metastasis . Interestingly, LPAR5 appears to mediate chemorepulsion in response to LPA. The

underlying mechanism was proposed to be mediated via a non-canonical elevation of cAMP along with reduced PIP3

signaling in melanoma B16 cells . LPAR5 expression is markedly increased in long-term cisplatin-treated melanoma

cells . Therefore, LPAR5 knockdown significantly conferred chemo-resistance and enhanced cancer cell survival . In

addition to the cancer cell growth and metastasis, LPAR5 was shown to suppress the function of CD8-positive cytotoxic T

cells by inhibiting intracellular Ca  mobilization and ERK activation, suggesting LPAR5 might act as a mediator of

immune suppression .

3.6. LPAR6

Reports regarding LPAR6 in cancer are relatively limited compared with other LPARs . Several articles investigated the

role of LPAR6 in liver, pancreatic, and colon cancers. LPAR6 expression in hepatocellular carcinoma correlated with

poorer survival  and increased microvascular invasion . Moreover, LPAR6 promotes hepatocellular carcinoma
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proliferation via the NCOA3-LPAR6-HGF signaling cascade, and the tumor-suppressive effect by depletion of LPAR6 is

similar to that of anti-HGF treatment . In pancreatic cancer, LPAR6 knockdown also inhibited cancer invasion and

colony formation . However, LPAR6 can, by contrast, be a negative regulator in different cancers. LPAR6 knockdown

caused larger colonies  and enhanced motility in colon DLD1 and HCT116 cancer cells . The role of LPAR6 in

various cancer types should be further characterized in the future.

4. Conclusions

In conclusion, it deserves our attention that multiple therapeutic agents undergo clinical trials or preclinical evaluation for

various diseases via inhibition of LPA signaling. Their safety is generally acceptable, and the LPAR antagonists are

potentially effective and novel for improving pain and current cancer therapies. In general, being inflammatory mediators,

LPA signaling inhibitors could be potential therapeutic modalities for chemoprevention, enhancing the efficacy of

chemotherapy and radiotherapy and improving prognosis.
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