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A quantum-classical system is a system consisting of two interacting subsystems, one of which behaves

classically, and the other requires a quantum description.

guantum-classical system Liouville equation Heisenberg equation von Neumann equation

| 1. Introduction

Quantum-classical systems are systems consisting of two interacting subsystems, one of which behaves
classically, and the other requires a quantum description RI2EI4 Over the past decade, the mathematical
formularization of quantum-classical dynamics has attracted considerable interest RIBI7IEl and, as it turned out,

there are conceptual difficulties in this problem.

Quantum-classical systems are described in terms of two objects: observables and states. The functional mean
value of observables determines a duality between observables and states, and, as a result, there are two
equivalent approaches to describing evolution, namely within the framework of the evolution of observables or the

evolution of states.

| 2. Formula Derivation

The observabIeA(Xj }Ef) of a quantum-classical system is a function of canonical variables X characterizing
classical degrees of freedom, and of non-commuting self-adjoint operatorsj: satisfying canonical commutation
relations, characterizing quantum degrees of freedom. For example, the Hamiltonian of a quantum-classical
system has the following structure: H(X, i’] - HC{X]f + Hq[ff) + Hint{X? f{]j Wheref is a unit
operator, HC,Hq,Him are the Hamiltonians of classical and of quantum degrees of freedom and their

interactions, respectively.

Further, as an example, we consider a one-dimensional system consisting of a classical particle and a quantum
one with unit masses. In this case

H.(X) = —p*, Hy(X)==p% Hu(X,X)=2(qd),

where P, gare canonical variables of a classical particle, ﬁ,ﬁ are self-adjoint operators satisfying canonical

commutation relations and the functiond is an interaction potential.

https://encyclopedia.pub/entry/98 1/7



Quantum-classical system | Encyclopedia.pub

The mean value of the observable A(h X, i’) ataninstant £ € R  (expectation value) is determined by the

positive continuous linear functional on the space of observables, which has the following two representations:

(A)(t) = f dX Tr A(t, X, X)D(0, X, X) =

= f dX Tr A(0, X, X)D(t, X, X),
1)
where ,:1([1J X, j{) is an observable at the initial instant, the state of a quantum-classical system is described by
so-called the density operatorD(l'.]., X, i') which depends on classical canonical variables (its kernel is a density

matrix depending on classical canonical variables), such that de Tr JD({]j X, f{} =1,

The evolution of observables of a quantum-classical system is described by the following initial-value problem:

9
S A(t) = LA(®),

A(t)]¢—o = A(0),
2)

where the generatory” of this evolution equation depends on the quantization rule of a quantum subsystem. In the

case of the Weyl quantization rule it has the form

LA(t) = —— [A{t H| + ({A t),H} — {H,A(t)}),
(3)

where H = JH{X1 i’}is the Hamiltonian, [, ,. ] is a commutator of operators, and { . ,. }is the Poisson

bracket. For some other quantization rules, the operator f*is defined in 2I2I4],

In the case of a one-dimensional system consisting of classical and quantum particles in the configuration space
representation, generator (3) has the form

: 2
(£A)(g,p;€,€) = —%( i —(—A¢ + &g) + (B(6—q) — ®(¢ —q))) Alg,p; &, € )+

+(paﬂq—§g(¢'{e—q -3 - a) 9 ) Alaupi &, &),

where A(q,p; 5?5':] is a kernel of the operator-valued function A(JQ j:) in the configuration space

representation, and in the Wigner representation it looks as follows
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0 0

2
I
LA)(zy,x =E — Az, 32) — —P — — Az, 22 )+
( )(1 2) ._:11?',18%_ (1 2) aa, (ql qﬂ)al (1 2)

+3 .h dndé e’ (& (g — (g2 — %n)) —®(q1 — (g2 + gﬂ)]) A(z1, g2, 8),

where z; = (g;,pi) € R x Rand A(z;, 2) is a symbol of the operator-valued function 4(X, X).

Usually, the evolution of a quantum-classical system is described within the framework of the evolution of states 2

4l namely by the evolution equation dual to equation (2)

a L
5 D(t) = £°D(1),

D(t),—o = D(0),
(4)

where the generator ££* — — [ is an operator adjoint to the operator (3) in the sense of functional (1).

Hereafter we consider the self-consistent field approximation of this equation [G(1981)]. For that we introduce the

marginal states of classical and quantum subsystems:

D(t,X) = TrD(t, X, X),
p() = [ dXD(t,X, X),
(5).(6)

respectively, and the correlation of the classical and quantum subsystems

g(t, X, X) = D(t, X, X) — D(t, X) jp(t)
(7)

If we assume that at any instant of time there are no correlations between classical and quantum subsystems, i.e. it
is trueg[t,’ X, }?:} = {}), then in such approximation, we derive from equation (4) the self-consistent equations set

of the Liouville and von Neumann equations for marginal states (5),(6) of the classical and quantum subsystems

%D[t,){) — [H.(X) + Tr Hu (X, X) p(t), D(t, X)},
z‘ﬁ%ﬁ(t] — [H,(X) + f X Hy (X, X) D(t, X) , ()]
©.9)
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with the corresponding initial states

D(f”t:u = D(0),
ﬁ'(t}h_u = ﬁ(ﬂ)-

We note that the initial-value problem for equations (8),(9) describes the evolution of all possible states of
guantum-classical systems in the absence of correlations between the classical and quantum subsystems(the self-
consistent field approximation). This type of approximation can not be treated as the mean-field approximation
since we consider systems of finitely many particles while the mean-field approximation assumes the transition to

the thermodynamic limit, i.e. it has a sense for systems of infinitely many particles.

If at the initial moment the states of the classical and quantum subsystems are pure states, i.e.

D(0,X) = 6(X — Xq),
p(0,€,€) = Wa(E¥5(¢),

(10)

where :5(}: - Xﬂ} is the Dirac measure, X is the phase space point in which we measure observables of a
classical subsystem, ﬁ{ﬂ, £, E":} is a kernel (a density matrix) of marginal density operator (6) in the configuration
space representation (it is a rank one projection on the vector ¥y, & Lz), then in the configuration space
representation

the initial-value problem for equations (8),(9) is equivalent to the initial-value problem for a self-consistent set of

equations of Hamilton and Schrédinger:

D x(t) = {x(), B.(x) + [ de Hu(Xi 6.9 102, )}
iﬁ%ﬂ?{t,g) = fd{’ (Hy(&€) + Hin (X(2);€,€)) (8, €)
(11),(12)
it intal data
X0y = X,

U(t, &)l = Yol£)-

For example, in the case of a one-dimensional system consisting of classical and quantum particles, the equations
(11),(12) take the form
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d? d 2
#90 =500 fdg@(@[t) =& ¥,

. 0 R 0°
th—¥(t,§) = 2 e

with initial data (X = (g, v))

d
Q(t)lf:u = 4, EQ(t”t:ﬂ =1
]Ir[t: f)|t=ﬂ - ‘I"D (‘f)a

where@(|QQ(t) — £|) is a two-body interaction potential, () is a position at the instant¢ of a classical particle
in the space. Such a self-consistent set of equations of Newton and Schrodinger is usually used for the description

of the evolution of states of quantum-classical systems.

Now we consider the description of a quantum-classical system in the self-consistent field approximation (7)

between the classical and quantum particles by means of the evolution of observables.

We assume that the initial state of a quantum-classical system specified by the initial uncorrelation pure state (10),

i.e.

D(0,X; X) = §(X — Xg) Py,,
(13)

where Py, = (W¥g, . )% (or in the Dirac notation: Py, = |¥q}{W¥g|) is a one-dimensional projector onto a

unit vector ${\Psi_0}$ from a Hilbert space. In the configuration space representation, a kernel of operator-valued
function (13) has the form

!
D(Uv X;6.€ ) - 6(X - Xﬂ)wﬂ (‘f)wa("fr)
We emphasize that the problem of how to define a pure state of the quantum-classical system is an open problem.

Then according to equality (1), in this approximation the evolution of the canonical observables of quantum and
classical particles is described by the following set of equations:

8 ) R R .
EX(t)I = {X(f)f , HC(X)I +Hint(X?X)};
iho X (1) = [X(), Hy(X) + Hi (X, X)]

(14),(15)
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with the corresponding initial data

X(t)]1=p = X,
X{t}|t=ﬂ = X.

For example, in the case of a one-dimensional system, consisting of the classical and quantum particles, equations
(14),(15) could be rewritten for pairs of canonically conjugated variablesX(t) = (Q(t},P(t]] and

X(t) = {Q[f},ﬁ(t}) as follows

d
EQ“) = 'P(t}a-
d a ~

GPOT = —553(Q(0).Q(),
d . .

d - ' A
Ep(t] = —®(Q(t),Q(t)),

where@’ is the derivative of the functiong. These equations can also be rewritten similar to (11),(12) as equations

in the configuration space representation. In the Wigner representation, they take the following fascinating form

d
EQl[ﬂ = P (t),

d d

EPl(t] = — 901 (1) P(Q1(t) — Q2(1)),
%Qz(i) = P, (1),

4 p)y =2 8(Qut) - Q:(1))
dt 2" T 0Q,(t) 1 ’

with initial data
X4 {t)|E=I] = L1, Xﬂ{”|t=n = Lz,

where X; (t) = (Q,,l [tjzﬁ?:‘;-'l[t})j i=1,2 andX,(t) = (Q2 (t],Pg[t)] are symbols of the operators
}{’{tj = {@[f}, ﬁ(t}) We note that in this representation a symbol of the uncorrelation pure state (13) is

determined by the following Wigner function

D(0,z1,22) = (2m) "6 (21 — zo) /dgllfu(fﬂ + %h&)‘l‘ﬁ (g2 — %&éj)e‘im ,
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and the mean value of the observable is determined by the following functional
-1
(A)(0) = (2e) " [ dordas At 21,2) DO, 21,2)

Thus, quantum-classical dynamics is governed by the quantum-classical equation (2) within the framework of the
evolution of observables or by the quantum-classical equation (4) within the framework of the evolution of states. A
guantum-classical system can be described by the self-consistent Hamilton and Schr\"{o}dinger equations set (11),
(12) as well as by means of the self-consistent set of equations of Hamilton (14) and Heisenberg (15) in the case of
uncorrelation states.
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